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Abstract: Bayesian inversion of crosshole ground penetrating radar (GPR) data is capable of
characterizing the subsurface dielectric properties and qualifying the associated uncertainties.
Markov chain Monte Carlo (MCMC) simulations within the Bayesian inversion usually require
thousands to millions of forward model evaluations for the parameters to hit their posterior
distributions. Therefore, the CPU cost of the forward model is a key issue that influences the efficiency
of the Bayesian inversion method. In this paper we implement a widely used straight-ray forward
model within our Bayesian inversion framework. Based on a synthetic unit square relative permittivity
model, we simulate the crosshole GPR first-arrival traveltime data using the finite-difference
time-domain (FDTD) and straight-ray solver, respectively, and find that the straight-ray simulator
runs 450 times faster than its FDTD counterpart, yet suffers from a modeling error that is more than
7 times larger. We also perform a series of numerical experiments to evaluate the performance of
the straight-ray model within the Bayesian inversion framework. With modeling error disregarded,
the inverted posterior models fit the measurement data nicely, yet converge to the wrong set of
parameters at the expense of unreasonably large number of iterations. When the modeling error
is accounted for, with a quarter of the computational burden, the main features of the true model
can be identified from the posterior realizations although there still exist some unwanted artifacts.
Finally, a smooth constraint on the model structure improves the inversion results considerably, to the
extent that it enhances the inversion accuracy approximating to those of the FDTD model, and further
reduces the CPU demand. Our results demonstrate that the use of the straight-ray forward model in
the Bayesian inversion saves computational cost tremendously, and the modeling error correction
together with the model structure constraint are the necessary amendments that ensure that the
model parameters converge correctly.

Keywords: crosshole ground penetrating radar (GPR); Bayesian inversion; Markov chain Monte
Carlo (MCMC); forward model; modeling error; discrete cosine transform (DCT)

1. Introduction

The crosshole ground penetrating radar (GPR) is an effective tool to map the subsurface
properties, and found widespread application in soil moisture estimation [1,2], hydraulic parameter
qualification [3,4], geological investigation [5–7], and civil structure inspection [8,9]. This method uses
a transmitting antenna in one borehole to emit high-frequency (10 MHz to 1 GHz) electromagnetic
(EM) waves and a receiving antenna in an adjacent borehole to receive them. By analyzing the
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acquired crosshole GPR data (first-arrival traveltimes, first-cycle amplitudes, or waveforms), the spatial
distribution of the dielectric properties (the dielectric permittivity, ε and electrical conductivity, σ)
in-between the two boreholes can be characterized for a better understanding of the subsurface features
that are sensitive to those properties [10].

To derive the EM properties from crosshole GPR data, a variety of inversion methods have
been developed. Perhaps the most popular methods are the ray-based tomographic algorithms that
simplify the EM wave propagation to a straight or bending ray from the transmitter to receiver [11,12].
These approaches that use the information of first-arrival traveltimes and maximum first-cycle
amplitudes solve iteratively for the EM wave velocity and attenuation fields [13–16]. Ray tomography
is usually computationally efficient but the resolution is limited to the scale of the first Fresnel
zone due to the high-frequency approximation [17,18]. In contrast, the waveform-based inversion
techniques that make the best of the information of the full-waveforms can reach a sub-wavelength
resolution [19–22]. In the process of full-waveform inversions, the forward computations need
numerical solutions of the Maxwell’s equations in either the time or frequency domain and place
a heavy burden on computational resources. Recently a neural network-based model is proposed
for forward computing [23]. This method uses a trained neural network to calculate crosshole GPR
traveltimes, which is fast to evaluate and more accurate than the ray-based model. Yet the main
challenges lie in generating a large training data and training the neural network.

The commonly used inversion methods that adopt gradient-based approaches to search for
a group of “optimal” model parameters (permittivity or conductivity values) to fit the measurement
data are referred to as deterministic inversion methods. They provide only a single realization and are
not able to quantify the result uncertainties. On the contrary, probabilistic inversion methods treat
different sources of error explicitly and provide a set of solutions drawn from the posterior distribution
of model parameters [24–28]. In previous work we have developed a Bayesian inversion method to
determine the relative permittivity fields, εr (εr = ε/ε0, where ε0 signifies the dielectric permittivity
in free space) from crosshole GPR waveform data [29]. This method treats the grid values of the
discretized εr model as unknown parameters and uses the discrete cosine transform (DCT) to reduce
the parameter dimensionality [30]. We employ a 2D finite-difference time-domain (FDTD) solver
of the Maxwell’s equations for forward computing [31,32], and resort to the Markov-chain Monte
Carlo (MCMC) simulation with the DREAM(ZS) algorithm to explore the posterior distribution of
model parameters (DCT-coefficients) [33–35]. The usefulness of the proposed inversion method was
demonstrated on both numerical and real-world applications [28,29]. However, we find the use of the
CPU-intensive FDTD forward modeling leads to the inversion work a daunting task as the MCMC
iteration requires thousands to millions of model evaluations. In order to improve the computational
efficiency, ray-based models could be possible replacements for the forward calculations. Yet due to the
ray assumption, any scattering effects of EM waves are neglected and notable modeling errors might be
produced and bias the inversion results. Before the ray-based model can be implemented successfully
within the Bayesian inversion framework, the modeling errors should be carefully considered [36–38].

In this paper, we focus our attention on the applicability of the widely used straight-ray forward
model in our Bayesian inversion framework. We first briefly summarize the basic idea of the Bayesian
inversion method and formulation of the straight-ray model, then evaluate the modeling error and
computational efficiency of the forward simulator, followed by a detailed analysis of the impact of the
modeling error and model structure constraint on the inversion results, and conclude with a summary
of the main findings.

2. Methodology

The crosshole GPR measurement can be described by the following equation

ỹ = f (m) + e, (1)
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where the forward operator f (·) simulates the physical relation between model parameters, m and
measurement crosshole GPR data, ỹ and e contains varies sources of errors including measurement
error and modeling deficiencies. In this study the model parameters signify the 2D discretized
relative permittivity values of the subsurface media. The measurement data are either GPR
waveforms or first-arrival traveltimes. The forward functions f (·) that we use are a FDTD solver of
Maxwell’s equations that simulates GPR waveforms and a straight-ray forward kernel that simulates
first-arrival traveltimes.

In probabilistic inversion, the model parameters, m can be derived from measurement GPR data,
ỹ using Bayes theorem

p(m|ỹ) = kp(m)L(m|ỹ), (2)

where p(m|ỹ) denotes the posterior distribution of model parameters, p(m) describes prior knowledge
of m before carrying out crosshole GPR measurement, and L(m|ỹ) is the likelihood function that
summarizes the distance between simulated and measurement data. The normalization constant k
ensures the posterior distribution integrates to unity.

In the absence of detailed information about the model structure, a uniform distribution is
often used as non-informative prior. Another strategy is to include a smooth constraint in the prior
distribution to reduce model complexity and stabilize the solution [39]. Following the study of
Rosas-Carbajal et al. [40], the model constraint can be defined using a normal distribution

p(m) =
1

(2πλ2)
Rx+Rz

exp
(

1
2λ2

(
mT

(
WT

x Wx + WT
z Wz

)
m
))

, (3)

where Wx and Wz denote the first difference operators in the horizontal and vertical directions with
rank Rx and Rz, respectively, and λ the standard deviations of model gradients in the horizontal and
vertical directions. For numerical stability we work with the following logarithmic form

log (p(m)) = −(Rx + Rz) log
(

2πλ2
)
− 1

2λ2

(
mT

(
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x Wx + WT
z Wz

)
m
)

. (4)

If we assume the measurement errors to be independent and identically distributed following
a normal distribution with mean zero and standard deviation σ, the likelihood function takes the form

L(m|d) = 1
(
√

2πσ)N
exp

(
−1

2

N

∑
i=1

( fi(m)− di)
2

σ2

)
, (5)

where N signifies the total number of crosshole GPR measurements, and i denotes the i-th measurement.
The log-likelihood function can then be given by

l(m|d) = −N
2

log(2π)− N
2

log(σ2)− 1
2

σ−2
N

∑
i=1

( fi(m)− di)
2 . (6)

The third term on the right-hand side of Equation (6) measures the distance between simulated
and observed GPR data. Thus the value of the log-likelihood function evaluates how well the forward
model fits the observed data given a set of model parameters. The Gaussian likelihood function
allows for homoscedastic and heteroscedastic measurement errors, and is widely used when the error
residuals are normally distributed [2,29,41,42]. When it comes up with non-Gaussian error residual
distributions, other forms of likelihood functions need to be constructed. For example the generalized
likelihood function (GLF) proposed by Schoups and Vrugt allows for the treatment of nontraditional
error residual distributions [43].

In forward calculations the εr model is discretized in 2D Cartesian space and each grid value
defines a model parameter. This Cartesian parameterization would involve the inference of many
thousands of unknowns (2500 in this work), resulting in the inversion being a time-consuming
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task [44]. We therefore resort to a much more efficient parameterization strategy using the discrete
cosine transform (DCT) [30] defined by

B(p, q) = αpαq

P−1

∑
p=0

Q−1

∑
q=0

A(i, j) cos
(

π(2i + 1)p
2P

)
cos

(
π(2j + 1)q

2Q

)
, (7)

where A and B are the uniformly discretized model and its DCT-coefficient matrix with P rows and Q
columns. The counter i, j and p, q denote the row and column index of A and B, and coefficients αp

and αp are given by

αp =


1√
P

, p = 0√
2
P , 1 ≤ p ≤ P− 1,

(8)

and

αq =


1√
Q , q = 0√

2
Q , 1 ≤ q ≤ Q− 1.

(9)

The DCT approach has the advantage that it concentrates most spatial information of A into the
upper-left corner of B. Thus we can retain only a few lower-order DCT-coefficients without losing
significant information. Estimating the retained DCT-coefficients reduces the parameter dimensionality
dramatically and improves the computational efficiency.

Once the prior distribution and likelihood function have been defined, the main work left is to
derive the posterior distribution of model parameters. As the inverse problem is high-dimensional and
non-linear, it is practically very difficult to derive the posterior distribution analytically. We therefore
resort to MCMC simulation with the DREAM(ZS) algorithm to generate samples from the posterior
target distribution. The basic idea of MCMC simulation is a Markov chain that generates a trail move
from the current state mt−1 to a new state mt. This candidate point is accepted with probability known
as the Metropolis ratio [45]

pacc(mt−1 → mt) = min
[

1,
p(mt)

p(mt−1)

]
, (10)

where p(·) denotes the posterior probability. If the probability of the proposed model, p(mt) is greater
than that of the current state, p(mt−1), the chain moves to the new state. Otherwise it remains at its
current location. After many iterations, samples generated with the Markov chain are distributed to
the posterior target distribution. The DREAM(ZS) algorithm, which is an adaptive MCMC algorithm,
was designed to accelerate convergence for high-dimensional problems and details of this algorithm
can be found in [33,35,42,46].

3. Forward Modeling

The crosshole GPR method uses a transmitting and receiving antenna in two adjacent boreholes
and measures the EM properties in-between the two boreholes. The propagation of EM waves through
subsurface medium is governed by the Maxwell’s equations. For wave propagation in the (x, z) plane,
the Maxwell’s equations can be written in transverse electric (TE) mode

∂Ex

∂t
=

1
ε

(
∂Hy

∂z
− σEx

)
(11)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− σEz

)
(12)

∂Hy

∂t
=

1
µ

(
∂Ez

∂x
− ∂Ex

∂z

)
, (13)
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where Ex and Ez are the x and z components of the electric field, and Hy is the y component of the
magnetic field. ε represents the dielectric permittivity, σ denotes the conductivity, and µ signifies the
magnetic permeability.

In most cases Equations (11)–(13) cannot be solved analytically. Alternatively, we can use the
FDTD approach that discretizes the partial derivatives of Maxwell’s equations in space and time
using central differencing to provide numerical solutions. By FDTD modeling of crosshole GPR
measurement, full waveform as well as first-arrival traveltime data can be obtained as simulated data
in a inverse problem. This method generates GPR data with high precision, yet the FDTD calculation
is very time consuming, especially when the model is discretized with fine grid size.

To seek a more efficient forward simulator for crosshole GPR data, we turn our attention to
the most widely used straight-ray forward model [11]. This model simplifies the EM wave between
the source and receiver to a straight ray, l and calculates the first-arrival traveltime, t through the
raypath by

t =
∫

l
s(l) dl, (14)

where s denotes the slowness along the raypath. Under the low loss condition, s can be derived by
s =
√

εr/c, and c is the EM wave velocity in free space. To perform calculations the slowness filed can
be discretized into P×Q grid cells, and Equation (14) can be written as

t =
P×Q

∑
i=1

sili. (15)

To put N measured first-arrival traveltimes in the vector d and slowness in m, a series of equations
can be built in terms of matrix multiplication.

d = Gm, (16)

where G is a sparse matrix with N rows and P×Q columns, also called the forward kernel. Giving
a set of model parameters (slownesses), the first-arrival traveltimes can be calculated straightforward
using Equation (16).

The straight-ray model presented above has much higher computational efficiency compared
with the FDTD approach. However, because it simplifies EM wave propagation into a straight ray that
any scattering effects are neglected, the ray approximation may produce considerable modeling error
that bias inversion results.

We now use a synthetic example to evaluate the performance of the straight-ray forward model
compared with its FDTD counterpart. As illustrated in Figure 1a, we create a 1.0 m × 1.0 m εr field as
the reference model, in which a 0.2 m × 0.2 m square-shaped target is simulated using εr = 12, higher
than εr = 9 for the surrounding medium. To simulate crosshole GPR measurements, the transmitting
and receiving antennas are placed on the left and right side of the model, marked with red dots and
black crosses, respectively. Multi-offset gathering (MOG) is used to collect data with step length of
0.02 m for both transmitting and receiving antennas. For each position of the transmitting antenna,
GPR data are recorded at all receiving antenna locations. This results in 51 × 51 transmitting-receiving
antenna pairs and a total number of 2601 crosshole GPR data.

We first discretize the reference model (Figure 1a) with grid size of 0.005 m × 0.005 m (fine-grid
model) and implement the 2D-FDTD solver (gprMax-2D developed by Giannopoulos [32]) to simulate
the crosshole GPR experiment and extract first-arrival traveltimes for the 51× 51 transmitting-receiving
antenna pairs. Other setups of the FDTD modeling include Ricker source wavelet with central frequency
of 500 MHz, time window of 20 ns, and perfectly matched layer (PML) boundary condition on each
side of the model. We take the first-arrival traveltimes calculated by the fine-grid FDTD modeling
as real data (plotted with red lines in Figure 2, assuming that no modeling error is accounted for in
this simulation.
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(a) εr εr(b)

Figure 1. (a) A synthetic relative permittivity model, and (b) reconstructed model using 256 (16 × 16)
discrete cosine transform (DCT)-coefficients. The red dots and black crosses mark the positions of
transmitting and receiving ground penetrating radar (GPR) antennas, respectively.

Figure 2. Simulated crosshole GPR first-arrival traveltimes using finite-difference time-domain (FDTD)
and straight-ray modeling.

We next investigate the modeling errors of the FDTD and straight-ray models with grid size of
0.02 m × 0.02 m (coarse-grid model), which is practical and computational affordable in Bayesian
inversion. The same settings except for grid size are used for the FDTD calculations, and the simulated
first-arrival traveltimes are depicted with black lines in Figure 2. Meanwhile, we use the straight-ray
forward model to generate first-arrival traveltimes, and show the data in Figure 2 with blue lines. It is
obvious that the crosshole GPR data simulated by the FDTD modeling (black lines) are much closer
to the real data (red lines) than those (blue lines) calculated by the straight-ray modeling. Thus the
straight-ray model suffers from bigger modeling errors compared with the FDTD counterpart.

We also consider the modeling errors caused by the DCT parameterization approach. In order
to do so, we create a DCT representation (Figure 1b) of the coarse-grid model (2500 grid cells) using
256 (16 × 16) lower order DCT-coefficients. Here we use the peak signal-to-noise ratio (PSNR) to
quantify the quality of parameter reduction, which is a common used tool in image compression [47].
PSNR is defined as

PSNR = 10 log

 max (A)2

1
PQ ∑P

i=1 ∑Q
j=1 (A(i, j)− B(i, j))2

 , (17)

where A and B are the εr matrix and its DCT realization, respectively. A larger PSNR value stands
for the smaller distortion of image reconstruction. For the above case, we use 256 DCT-coefficients to
recover the matrix with 2500 grid cells and derive the PSNR value of 35.12, well above the common
threshold in image compression, meaning that the reconstructed model preserves the structural details
with high fidelity [41].
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The green and pink dotted lines in Figure 2 show the first-arrival traveltimes calculated with the
DCT reconstructed model using the FDTD and straight-ray solvers, respectively. The lines almost
overlap with the data simulated using the full-parameter model, providing us with confidence that the
DCT approach can reduce the parameter dimensionality considerably without causing noteworthy
modeling errors.

We now summarize the performances of FDTD and straight-ray forward models in Table 1.
As a benchmark, the error-free first-arrival traveltimes are created using the FDTD modeling
with fine-grid (0.005 m × 0.005 m) parameterization. With the coarse-grid (0.02 m × 0.02 m)
parameterization, the data simulated by the straight-ray modeling show a more than 7 times larger root
mean squared-error (RMSE) than that simulated by the FDTD modeling, indicating that the straight-ray
model may cause considerable modeling errors that bias the inversion result. With forward simulations
using the DCT reconstructed model, neglectable difference can be observed between the reconstructed
and full-parameter model, or, to be precise, the difference is less than 1% for both FDTD and straight-ray
models. This is an encouraging result that the use of DCT for dimensionality reduction causes no
further modeling errors. We also resort our attention to the computational requirements of the two
forward models. For a single forward simulation of the 51 × 51 first-arrival traveltimes, the FDTD
modeling takes about 9.5790 s while the straight-ray modeling uses only 0.0214 seconds, which is
roughly 450 times faster for one run (The computing time is tested on a computer with an i7-7700
CPU and 16 GB RAM). Therefore, the straight-ray forward model is computationally efficient thus can
help relieve CPU burden of the inversion work, whereas the side effect that it brings relatively high
modeling errors to data should be considered and treated carefully, and this will be addressed in the
next section.

Table 1. Performances of finite-difference time-domain (FDTD) and straight-ray forward simulators.

Forward Model Grid Size (m) Parameterization Number of Parameters RMSE (ns) Computing Time (s)

FDTD 0.005 × 0.005 Grid value 40,000 (200 × 200) 0 90.7318
FDTD 0.02 × 0.02 Grid value 2500 (50 × 50) 0.1373 9.5790
FDTD 0.02 × 0.02 Discrete cosine transform (DCT) 256 (16 × 16) 0.1364 9.5790

Straight-ray 0.02 × 0.02 Grid value 2500 (50 × 50) 1.0181 0.0214
Straight-ray 0.02 × 0.02 DCT 256 (16 × 16) 1.0172 0.0214

4. Inversion Results

In this section we investigate the use of the straight-ray forward model in our Bayesian inversion
framework. We first present the inversion results using the FDTD forward modeling with waveform
data, followed by a detailed analysis of the impact of the modeling error and model structure
constraint of the the straight-ray model on the inversion results, and conclude with a summary
of the model performances.

We take the synthetic relative permittivity model of Figure 1a as the reference model.
Measurement data (GPR waveforms and first-arrival traveltimes) are created by the fine-grid (0.005 m
× 0.005 m) FDTD modeling of 51 × 51 transmitting-receiving antenna pairs, and a total number of
2601 crosshole GPR observations are obtained. The simulated data are contaminated with artificial
white noise with standard deviations of 3% of the simulated data, which are 2.06 (in amplitude) for
waveform data and 0.24 ns for first-arrival traveltime data. These data serve as our measurement data
set, and are used to infer the relative permittivity values in the following inversion cases.

MCMC simulation with the DREAM(ZS) algorithm is employed to explore the posterior
distributions of model parameters (relative permittivity values). We use a Jeffreys prior (uniform
distribution in the log-transformed space) [48] for the relative permittivity values with the lower
and upper bound of 6 and 15, respectively, and implement the likelihood function in the form of
Equation (6). To maximize the computational efficiency, we run the DREAM(ZS) algorithm in parallel
by evaluating 4 Markov chains on different CPU-cores. We also set the number of crossover values to



Electronics 2019, 8, 630 8 of 17

20, and scaling factor of the jump rate 75% lower to raise the acceptance rate of proposals, while keep
all other settings the default values of the algorithm.

4.1. FDTD Model with Waveform Data

The first inversion starts with the FDTD forward model and waveform data. A coarse-grid
of 0.02 m × 0.02 m is used to discrete the model, resulting in a total of 50 × 50 = 2500 relative
permittivity values that need to be estimated. The DCT approach is used for dimensionality reduction
and different number of DCT-coefficients are tested. Figure 3 illustrates the inversion results using
64, 144 and 256 DCT-coefficients. For each case, the reconstructed posterior mean (left column) and
maximum a-posterior (MAP) estimations (middle column) of the relative permittivity fields appear
visually identical and both pinpoint correctly the higher εr area (target). With more DCT-coefficients,
the inversion resolution increases as the square-shape and sharp-boundary of the target become more
clear. Also, the RMSE values of the posterior models (right column) decrease as the number of the
DCT-coefficients increases, which means the larger number of the DCT-coefficients used the better
the posterior models fit the data. However, due to the modeling error caused by the coarse-grid
FDTD, the posterior RMSE values are greater than the measurement error (2.06 in amplitude) for all
three cases.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Bayesian inversion using FDTD forward modeling with waveform data. The three rows from
top to bottom involve the inversion results using (a–c) 64, (d–f) 144, and (g–i) 256 DCT-coefficients.
The left and middle columns display the posterior mean and maximum a-posterior (MAP) density
solutions of εr field, whereas the right column plots the histograms of the root mean squared-error
(RMSE) values of the posterior solutions.

Figure 4 quantifies the impact of the number of DCT-coefficients on the inversion results.
By investing more DCT-coefficients, the RMSE values (Figure 4a) calculated using the posterior mean
(blue lines with triangle markers) and MAP (red lines with square markers) models decrease from
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3.65 to 2.54 that are in good agreement with the plots in Figure 3c,f,i, indicating the improvement of data
fit. The PSNR values (Figure 4b) of the posterior mean and MAP models increase from 27.1 to 29.8 with
the number of DCT-coefficients growing from 64 to 256, confirming the perspective stated in the visual
inspection that better reconstructed εr fields are obtained with more DCT-coefficients. Besides, all these
PSNR values that are greater than 27 demonstrate that high fidelity of the reconstructed εr fields is
achieved using the FDTD forward model and waveform data. We also monitor the required number of
model evaluations (ME) in Figure 4c for the DREAM(ZS) algorithm to declare convergence and a total of
26,000, 68,000 and 136,000 model evaluations are needed for the three cases. An approximately linearly
relation can be observed between the computational requirements and the number of DCT-coefficients.

(a) (b) (c)

Figure 4. Metrics of the Bayesian FDTD waveform inversion results as a function of the
number of discrete cosine transform (DCT)-coefficients (n-DCT): (a) Root mean squared-error
(RMSE), and (b) PSNR of the posterior mean and maximum a-posterior (MAP) model simulations,
and (c) required number of FDTD model evaluations (ME) to reach convergence.

4.2. Straight-Ray Model without Modeling Error Corrected

We now evaluate the use of the uncorrected straight-ray model in Bayesian inversion of crosshole
GPR first-arrival traveltime data with the same settings of model discretization and dimensionality
reduction as those of the FDTD model. The inversion results of using 64, 144 and 256 DCT-coefficients
are considered and displayed in the top (a–d), middle (e–h) and bottom (i–l) rows in Figure 5. It can
be seen from the posterior mean and MAP realizations (the first and second columns) that the use
of more DCT-coefficients deteriorates the inversion results. For the latter two cases using 144 and
256 DCT-coefficients, the posterior realizations exhibit significant variations that the target can no
longer be resolved correctly. We plot in the third column the simulated first-arrival traveltimes of
posterior models and the measurement data, and find the posterior models of the three cases fit
the measurement data equally well. Note that although the RMSE values of the posterior solutions
(the right column) are distributed very close to the measurement error (0.24 ns), the correct model
parameters are not found. That is, without modeling error accounted for, there exists a set of incorrect
parameters that can better match the measurement data than the true parameters do.

For a closer investigation of the inversion results, we see in Figure 6a,b that the RMSE values are
well around the measurement error, whereas the PSNR values are much smaller than those of the FDTD
model. These PSNR values are under the common threshold that the reconstructed εr fields hardly
resemble the reference model. With more DCT-coefficients, the RMSE values of the posterior mean and
MAP models increase while the PSNR values decrease, which means the use of more DCT-coefficients
cannot improve the inversion results. Also, the required number of model evaluations grows with
the number of DCT-coefficients. Compared with the FDTD model, ten times more model evaluations
are needed when using the uncorrected straight-ray model. Therefore, the modeling error caused by
the straight-ray model is remarkable and biases the inversion results considerably. Without modeling
error corrected, even if the measurement data can be fit nicely, the inverted εr fields differ greatly from
the true model.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Bayesian inversion using straight-ray forward modeling without modeling error corrected.
The three rows from top to bottom involve the inversion results using (a–d) 64, (e–h) 144, and (i–l)
256 DCT-coefficients. The first and second columns display the posterior mean and MAP density
solutions of εr field. The third column plots the measurement and posterior simulated first-arrival
traveltimes with the transmitting antenna located at 0.5 m depth at the left side of the model,
and 51 receiving antenna positions distributed equally from 0 to 1 m depth at the right side.
The measurement and simulated data are marked with red crosses (×) and blue stars (∗), respectively.
The right column depicts the histograms of the RMSE values of the posterior solutions.

(a) (b) (c)

Figure 6. Metrics of the Bayesian inversion results as a function of the number of DCT-coefficients.
The straight-ray forward model is used without modeling error corrected. (a) RMSE, and (b) peak
signal-to-noise ratio (PSNR) of the posterior mean and MAP model simulations, and (c) required
number of model evaluations to reach convergence.

4.3. Straight-Ray Model with Modeling Error Corrected

To take into consideration the modeling error of the straight-ray simulator, we adopt the idea
in [38] that we first calculate an orthonormal basis for the modeling error using the fine-grid FDTD
and coarse-grid straight-ray solvers prior to the inversion work. Then in MCMC, we use this basis to
calculate the modeling error and subtract it from the residual the between simulated and measurement
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data before calculating the likelihood function.In this way the modeling error is isolated outside the
Bayesian inversion and no longer biases the inversion results.

Figure 7 plots the inversion results using the straight-ray forward model with modeling error
corrected. From the posterior mean and MAP realizations (the first and second columns) we can see
improvements compared with the previous cases using the uncorrected forward model that the target
can be identified in all three cases with 64, 144 and 256 DCT-coefficients. But like the uncorrected
model example, with more DCT-coefficients, the reconstructed posterior mean and MAP models suffer
from larger spatial variation that worsens the inversion results. It can be also seen that after modeling
error is corrected, the simulated data do not closely fit the observations (the third column) and the
RMSE values of the posterior solutions are much larger than the measurement error. This is because the
simulated data incorporate the measurement and modeling errors. With the modeling error accounted
for, the residuals between the simulated and measurement data need not to be minimized.

Figure 8 reveals similar patterns to those found in the uncorrected model example. The RMSE
values increase and the PSNR values decrease with the number of DCT-coefficients, indicating that the
use of more DCT-coefficients deteriorates the inversion results. Yet as a whole, the PSNR values derived
from corrected models (Figure 8b) are much larger than those of uncorrected models (Figure 6b),
demonstrating that the modeling error correction improves the inversion results considerably. Besides,
after modeling error correction, only less than one quarter of model evaluations are needed for the
parameters to reach convergence (Figure 8c), which improves the computational efficiency obviously.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Bayesian inversion using straight-ray forward modeling with modeling error corrected.
The three rows from top to bottom involve the inversion results using (a–d) 64, (e–h) 144, and (i–l)
256 DCT-coefficients. The first and second columns display the posterior mean and MAP density
solutions of εr field. The third column plots the measurement and posterior simulated first-arrival
traveltimes with the transmitting antenna located at 0.5 m depth at the left side of the model,
and 51 receiving antenna positions distributed equally from 0 to 1 m depth at the right side.
The measurement and simulated data are marked with red crosses (×) and blue stars (∗), respectively.
The right column depicts the histograms of the RMSE values of the posterior solutions.
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(a) (b) (c)

Figure 8. Metrics of the Bayesian inversion results as a function of the number of DCT-coefficients.
The straight-ray forward model is used and modeling error is corrected. (a) RMSE, and (b) peak
signal-to-noise ratio (PSNR) of the posterior mean and MAP model simulations, and (c) required
number of model evaluations to reach convergence.

We now turn our attention to the impact of the number of DCT-coefficients. In the FDTD model
example, the use of more DCT-coefficients improves the inversion results, whereas in the straight-ray
model examples (both corrected and uncorrected), to increase the number of DCT-coefficients makes
the inversion results even worse. We know that the DCT approach reduces the model parameters
to a few DCT-coefficients. The more DCT-coefficients we use the higher the inversion resolution we
can achieve, meanwhile the more unknowns we need to infer from data. Consider the FDTD model
and the corrected straight-ray model, assuming that they both have no modeling errors, then the
difference between the two examples is the data they use. In this work the FDTD model works with
waveform data, while the straight-ray model works with first-arrival traveltime data. Although the
51 × 51 antenna pairs generate the same amount of waveform traces and first-arrival traveltimes,
the number of data used for the FDTD inversion is far more than that for the straight-ray inversion as
each trace contains hundreds of data points. In this work each trace contains 212 samples and a total
of 551,412 data points are used for the FDTD inversion, yet for the straight-ray inversion the number
of measurement first-arrival traveltimes is only 2601. Therefore, with the same amount of crosshole
GPR measurements, the waveform data are much more informative to estimate more DCT-coefficients
for a better description of the model structure, whereas the first-arrival traveltimes are insufficient and
only a limited number of DCT-coefficients can be estimated correctly.

The choice of the number of DCT-coefficients is a trade-off between spatial resolution and
uncertainty in the inversion results. In previous work we have introduced a method to determine
the number of DCT-coefficients by examining the similarity between the reference model and its
reduced order DCT representations [28]. If some structural features of the subsurface can be used
as prior information, a set of realizations can be generated from the training image (TI) and the
DCT-coefficients with the occurrence probabilities larger than the threshold are considered as unknown
model parameters in the inversion [49]. One should be also aware that when using the first-arrival
traveltimes as measurement data, the amount of data is always insufficient to infer a large number
of unknown model parameters, thus a relatively small number of DCT-coefficients should be used
for inversion.

4.4. Model Constraint

As a limited number of the first-arrival traveltime data is incapable of providing enough
knowledge about the relatively large number of DCT-coefficients, while to increase considerably the
amount of data is practically very expensive, we here learn the experience of deterministic inversion
that to use a regularization term to decrease the ill-posedness of the inversion problem. In the view
of the probabilistic inversion, the regularization term serves as the prior information that refines the
range of model parameters [40]. In this work, we impose a smooth constraint on the model structure
by including Equation (4) in the prior distribution. The regularization weight, λ scales how much
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weight is assigned to the regularization term, and here we simply use the optimal value (λopt = 0.0984)
calculated by maximizing the regularization term given the true model parameter values. Note that λ

can also be estimated together with model parameters in Bayesian inversion.
The inversion results using the corrected straight-ray forward model and constrained model

structure are shown in Figure 9. For all three cases using 64, 144 and 256 DCT-coefficients, the higher
permittivity area is clearly depicted in the posterior mean and MAP realizations, and they appear
no significant difference between each other. With modeling error accounted for, the simulated
first-arrival traveltimes no longer closely fit the measurement data and the RMSE values of the
posterior solutions are much larger than the measurement error. Note that with model constraint,
the variation of simulated data becomes more modest than that of the previous example (Figure 7).
This reflects a smooth variation of the model structure when the model constraint is applied in
the inversion.

As depicted in Figure 10, the RMSE and PSNR values almost remain unchanged with the number
of DCT-coefficients. This is because the regularization term reduces the model structure complexity
and stabilizes the solution of the inverse problem. It can be also seen in Figure 10b that the PSNR
values of the cases using different number of DCT-coefficients stay around 27.8, indicating relatively
high quality of the reconstructed models. The model constraint also decreases the required number
of model evaluations (Figure 10c) for the parameters to reach convergence to 60% of those using
an unconstrained model (Figure 8c).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. Bayesian inversion using straight-ray forward model with modeling error corrected and
smooth model structure constrained. The three rows from top to bottom involve the inversion results
using (a–d) 64, (e–h) 144, and (i–l) 256 DCT-coefficients. The first and second columns display the
posterior mean and MAP density solutions of εr field. The third column plots the measurement and
posterior simulated first-arrival traveltimes with the transmitting antenna located at 0.5 m depth at the
left side of the model, and 51 receiving antenna positions distributed equally from 0 to 1 m depth at the
right side. The measurement and simulated data are marked with red crosses (×) and blue stars (∗),
respectively. The right column depicts the histograms of the RMSE values of the posterior solutions.
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(a) (b) (c)

Figure 10. Metrics of the Bayesian inversion results as a function of the number of DCT-coefficients.
The straight-ray forward model is used with modeling error corrected and smooth model structure
constrained. (a) RMSE, and (b) PSNR of the posterior mean and MAP model simulations,
and (c) required number of model evaluations to reach convergence.

We conclude our numerical examples in Figure 11 with a bar chart that summarizes the
performance of different forward models in Bayesian inversion of crosshole GPR data. We use the
PSNR values (blue bars) of posterior mean models to evaluate the inversion accuracy, and the number
of model evaluations (orange bars) and computing time (gray bars) to measure the computational
efficiency. The FDTD model with waveform data has the merit of the highest inversion accuracy and
requires the least number of model evaluations among the examples, yet suffers from significantly
long computing time (90.47 h in this study) due to huge CPU demand of the FDTD modeling.
The straight-ray forward model, on the other hand, has the advantage of higher computational
efficiency. Although the required number of model evaluations are much larger than that of the
FDTD model, the inversion work takes far less computing time. However, due to modeling error,
the straight-ray model cannot reconstruct the εr field correctly and leads to a low PSNR value (11.76).
By correcting the modeling error and constraining the model structure, the PSNR value is increased
to 27.74 and the computing time is reduced to 0.43 h, which improves the inversion accuracy and
computational efficiency considerably.

29.84

11.76

24.26

27.74

136,000

1,720,000

480,000

288,000

90.47

2.56

0.71

0.43

FDTD Model

Straight-ray Model

Straight-ray Model

Modeling Error Corrected

Straight-ray Model

Modeling Error Corrected

Smooth Constrained

PSNR (mean model)

Model Evaluation

Computing Time (h)

Figure 11. Bar chart that summaries the goodness of reconstruction and computational efficiency of
different forward models in Bayesian inversion. 256 DCT-coefficients are used for inversion and the
PSNR values are calculated using the posterior mean models.

5. Conclusions

In Bayesian inversion of crosshole GPR data, the use of FDTD forward model with waveform data
can generate posterior realizations with high accuracy, yet thousands to millions of model evaluations
required by MCMC iterations are always computationally infeasible. We therefore in this paper turned
our attention to a computational efficient straight-ray forward model and evaluated the applicability
in the Bayesian inversion framework.
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Based on a reference relative permittivity model, we calculated the first-arrival traveltime data
using the FDTD and straight-ray solvers, respectively. With the same model grid size and measurement
setup, the straight-ray simulator ran 450 times faster than the FDTD simulator, whereas suffered from
more than 7 times larger modeling error. The DCT approach for dimensionality reduction was also
tested in the forward simulations. We found that the dimensionality reduction using DCT contributed
less than 1% to the modeling error.

We then performed Bayesian inversion of crosshole GPR first-arrival traveltime data with the
straight-ray forward model using a set of synthetic examples. First the modeling error was disregarded
and the straight-ray solver was used directly for forward calculations. In this case the measurement
data were nicely fitted, yet the posterior realizations were not able to resemble the main features
of the true model, and using more DCT-coefficients led to more unwanted artifacts in the posterior
realizations. With modeling error accounted for, although the simulated first-arrival traveltimes no
longer fit closely the measurement data, there were less unwanted features in the posterior realizations
and the main features of the true model can be identified correctly. However, again, the inversion
results became worse with an increased number of DCT-coefficients. Finally, we imposed a smooth
constraint on the model structure and improved the inversion results considerably. No apparent
unwanted features were observed in the posterior realizations and the number of DCT-coefficients had
no significant impact on the inversion results. By investigating the computing time and PSNR values
of the synthetic examples, we conclude that the use of the straight-ray forward model reduces the
computational burden remarkably, meanwhile, with the modeling error corrected and model structure
constrained, the inversion results are approximate to those of the FDTD model.

It should also be noted that the applicability of our inversion method is based on the evaluation
of the synthetic example involving a moderate degree of nonlinearity. When the inverse problem
is of a higher degree of nonlinearity, such as higher relative permittivity differences, larger object
dimensions or in the presence of multiple objects, the straight-ray model we use, which is a linear
model, might bias the inversion results. Future work will incorporate bending-ray based or artificial
neural network (ANN) based forward kernels in our inversion framework to improve the capability of
dealing with highly nonlinear inverse problems.
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