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Abstract: In this paper, the dynamics-based high-performance robot motion control technology
has been mainly studied, and the overall structure is controlled via dynamics forward, given the
nonlinearity, strong coupling and time-variability of robots. Considering the unavailability of precise
robot model parameters and the uncertain disturbance in real operation, we put forward an active
disturbance rejection control (ADRC) strategy based on dynamic feedforward, aiming to improve
the control robustness and combining the simple structure, strong anti- disturbance ability, and no
restriction from the control model of ADRC. Given the multi-joint coupling of robots, controlled
decoupling is conducted by using dynamic characteristics. The ADRC cascade control structure
and algorithm based on dynamic feedforward have been studied and the closed-loop stability of
the system is investigated by analyzing the system dynamic linearization compensation and the
anti-disturbance ability of the extended state observer. Experiments have shown the new strategy
is more robust over uncertain disturbance than the conventional proportional-integral-derivative
control strategy.

Keywords: industrial robots; active disturbance rejection control; dynamic feedforward; cascade
control structure; closed-loop stability

1. Introduction

Industrial robot systems are featured with nonlinearity, strong coupling and multivariate
time-variability [1]. High-quality motion control refers to high-speed and high-precision motion control,
that is the robot in the high-speed motion process, can have fast dynamics response, high tracking
accuracy, smooth start and stop stage. Although the robot ontology parameters are fixed, the changing
load and uncertain disturbances can affect the robustness of the control, and even significant mechanical
vibration. Moreover, the control systems during high-speed motion are largely challenged by the severe
multi-joint torque coupling, large inertia change and significant nonlinear effect. The attitude variation
stable refers to the robot maintaining a smooth, non-jitter throughout the movement. The stability
index needs to be determined by the actual requirements, such as in the air blade grinding process the
trajectory error is required to be less than 0.05 mm. To keep the position and attitude variation stable
and achieve high-quality motion control, researchers have to first solve the nonlinear time-variability
due to the characteristics of robots. Namely, the control system should provide real-time control
characteristics that match with the dynamics of robots and the multi-source disturbance characteristics,
thereby achieving multi-joint nonlinear decoupling control.
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The conventional proportional-integral-derivative (PID) controllers are structurally simple and
achievable, but demand high power consumption for large-inertia changes and can ensure only
local stability. The main reason is that this control strategy is usually applicable to linear stationary
systems, and its conservative control parameters limit the gain bandwidth and thereby affect dynamic
characteristics, leading to large delayed errors. Moreover, the large inertia variation may cause
vibration in the system and destroy the stability. Thus, this strategy does not meet the requirement of
robot systems for nonlinear time-variability. Later, nonlinear PID [2], blur PID [3] and neural network
PID [4,5] controllers have been put forward and relatively outperform traditional PID controllers.
These new strategies match with the nonlinear time-variability of robot systems by similarly optimizing
the PID structure and improving its performance, but they are little dependent on the information of
dynamics models and thus fail to meet the requirements of multi-joint high-quality motion control.

To promote further the motion performances of robots and solve the nonlinear time-variability
and multi-source disturbance of robots, researchers have proposed finer nonlinear control algorithms,
such as adaptive control, robust control and active disturbance rejection control (ADRC).

The adaptive control algorithms, which are structurally diverse, essentially extract the information
of system states from closed-loop error feedback models, and regulate the control parameters via
adaptive algorithms, so as to compensate the time-variability of the systems [6]. However, adaptive
control has a strict requirement for real-time performance and is too complex to be realized, and its
parameter mutations often destroy the overall stability; the parameter convergence is dependent
on sufficient continual excitation, which is unachievable in real life. Thus, the system robustness of
adaptive control should also be considered. For this reason, robust adaptive controlling algorithms
have been put forward, which adopt the modified adaptive rate to make the system robust to the
nonparametric uncertain disturbance in the models [7,8]. Typically, Hu et al. theoretically verified
the two merits of comprehensive adaptive control and robust control of adaptive robust control [9,10].
However, adaptive robust control algorithms are yet based on the system feedback status, and control
movement through the estimation of system characteristics, which raise the requirements for the
amount and timeliness of state information. In fact, no enough state information can be acquired in
advance at the initial stage, which leads to severe control lag and heavy following errors. Moreover,
its structural complexity and diversity complicate practical applications.

ADRC [11], put forward in 1989, has been theoretically verified and continually
improved [12–15]. ADRC mainly consists of an extended state observer (ESO), a tracking differentiator
(TD) and error feedback control laws, and focuses on solving the uncertain external disturbance.
ADRC controllers are structurally simple, efficient and excellent at anti-interference, and have been
applied into industrial robot control [16,17]. The anti-disturbance core of ADRC controllers is
dependent on ESO and largely affected by the unknown disturbance amplitude. If the whole dynamic
characteristics of robots are estimated and compensated by regarding them as systematic disturbance,
the fast convergence and systematic stability of ESO cannot be ensured, which limit the use of ADRC.
The advanced control algorithms above have modestly improved the control performance of robots,
but are unable to really describe the dynamic characteristics of robots and thus are limited in use.
Nevertheless, along with the development of electronic technique and computer science recently,
the controlling algorithms based on dynamic models have gained growing attention and are considered
as the most efficient way to enhance the dynamic characteristics and tracking precision of robots.
Their aims are to compensate according to the dynamic characteristics of robots and thereby simplify
the complex robot system into a controllable system, such as decoupling it into a linear time-invariant
system [18].

Generally, there are two schemes of model-based control: (1) Robot dynamic feedback
compensation control (Figure 1a) and robot dynamic feedforward control (Figure 1b). For the first
structure, when the dynamic model is precise enough, it can well solve the nonlinear time-variability
of robots through feedback compensation, and reduces the power consumption in regulation, due to
external feedback loop errors, improving the dynamic response and following the performance of
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controllers. However, it faces three difficulties. (1) No precise model parameters can be acquired, due
to the load variation and sampling/computation errors. (2) This control structure raises the requirement
for computation timeliness and has to overcome the time restraint of the torque loop control algorithm.
(3) The real-time information of joint acceleration is needed, but in fact, the high-order differential
signals are low-qualified, due to the magnifying effect of differential noise. Thus, model-based dynamic
compensation control strategies are difficult to implement in practice.
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Figure 1. Model-based control structure. (a) dynamic feedback compensation; (b) dynamic feedforward.

Different from the first structure, the dynamic feedforward model inputs the expected joint
movement order and offers the far-higher-quality signals than the sampled values. Moreover, despite
the complexity of dynamic computation, the problem of dynamic feedforward timeliness can be solved
through pre-storing or setting background programs, which are favorable for the implementation of
control algorithms. Its ideas are to rapidly compensate the system characteristics through a precise
dynamic model and thus to precisely control the movement. In fact, however, due to the diversity of
model parameters and the severe effects of external loading and interference, the model parameters
are hard to acquire precisely, which reduce the feedforward control performance. For this reason,
an observer is usually used to pre-estimate and compensate for the uncertain disturbance, which would
improve the robustness of feedforward controllers. The model uncertain disturbance observer is
usually based on the construction of a system model, but a complicated robot system involves the
computation of robot forward dynamics, which interfere with the timeliness of motion control. For this
reason and regarding the simple structure, strong robustness and no constraint from the control model
of ADRC, we put forward an ADRC strategy based on dynamic feedforward.

As for the nonlinearity and strong coupling time-variability of robots, we use dynamic feedforward
compensation and uncertainty disturbance compensation into multi-joint control decoupling, or namely
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to regard the joints as independent control units. To reduce the order of disturbance observation
and improve the observation precision, we study the ADRC cascade control structure and algorithm
based on dynamic feedforward. We analyze the system dynamic linearization compensation and the
anti-disturbance ability of ESO, and the stability of closed-loop systems. On this basis, the robot ADRC
based on dynamic feedforward has been realized.

2. Robot System Decoupling Control

2.1. Analysis of System Disturbance Compensation

The basic ways of multi-joint decoupling control are to use dynamic feedforward compensation
and uncertainty disturbance compensation. To solve disturbance via ADRC, we had to clarify the input,
output, relative order number and disturbance compensation of the controlled system. According to
the dynamic feedforward control structure, the current instruction is the input and the motor rolling
angle is the output of the system. For the motor, the robot dynamic characteristics can be regarded as a
result of the motor output torque τm overcoming friction torque τm f and inertia torque (in Figure 2):

τm = Jm
..
qm + τml + τm f , (1)

where
Jm = diag(Jm1, Jm2, · · · , Jmn), (2)

is the rotary inertia of the motor shaft;
..
qm is the angular acceleration of the motor shaft; τml is the

loaded torque vector of the motor to overcome the joint dynamic characteristics, including joint inertia
torque, friction torque, gravity torque and joint loading. To build the relation between motor input
current Iq and output position qm, firstly, we had the machinery transmission relation ηi to express the
gear kinematic relations at both ends:

Λ = diag(1/η1, 1/η2, · · · 1/ηn)

q = Λqm,
.
q = Λ

.
qm,

..
q = Λ

..
qm

τml = Λτ
, (3)

where q,
.
q,

..
q express the kinestate of robot joints, τ is the output torque vector at the joint end:

τ = M(q)
..
q + V(q,

.
q)

.
q + G(q) + F(q,

.
q) + τload, (4)

where M(q) is the inertia matrix of Joints; V(q,
.
q) is the centrifugal force and Coriolis force vectors; G(q),

F(q,
.
q) and τload are the gravitational torque, friction torque, joint loading torque vectors, respectively.

Combining with the electromagnetic torque equation:

τm = KmIq, (5)

where Km = diag(km1, km2, · · · kmn) is the torque constant matrix, Iq = [iq1, iq2, · · · , iqn]
T is the current

order vector, we can determine the motor shaft motion equation:

..
qm = Jm

−1(KmIq −Λτ − τm f ) (6)

Let f(q,
.
q, t) = −Jm

−1(Λτ+ τm f ), we have

..
qm = Jm

−1KmIq + f(q,
.
q, t). (7)

During ADRC construction, usually f(q,
.
q, t) is regarded as the comprehensive acceleration

disturbance of the system, including the dynamic characteristic disturbance of the robot and other
uncertain disturbances. In the high-speed large-inertia changing the movement of robots, the real
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change f(q,
.
q, t) is very large, and the large-amplitude disturbance variation may induce the slow

convergence or even instability of ESO, thereby leading to large following errors or even system
vibration. Thus, it needs to solve the problems to decrease the observed values of acceleration and
increase the robustness of ESO.
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The analysis showed there were two ways: (1) Designing stable ESO ensured it could effectively
predict all the dynamic disturbance; (2) fully utilizing the known theoretical dynamic models and
conducting uncertainty compensation would ensure ESO only observed the relatively small error part
except the model. The real output torque τ consists of the model-estimated torque τpre and torque
errors ∆τ.

τ = τpre + ∆τ. (8)

Based on this idea, starting from the motor end to the joint end, the real output torque τ can be
regarded as the disturbance of the output shaft from the motor, where τpre can be compensated by the
identification model, and the uncertainty except the model ∆τ can be observed by the ESO. We have:

B0 = Jm
−1Km

F1 = −Jm
−1Λτpre

F2 = −Jm
−1(Λ∆τ+ τm f )

F = F1 + F2

u = Iq

, (9)

where B0 is the system gain, and F1 is the theoretical disturbance related to a known dynamic model
and can be used into feedforward compensation; F2 is the uncertain acceleration disturbance except
for the model and can be observed via the ESO. Noticeably, F2 includes the joint torque errors,
which may contain minor time-variable acceleration component

..
qm that cannot be observed by ESO,

and, theoretically, the corresponding control current should be compensated. F can be considered as the
total disturbance of the motor system. Admittedly, the robot system is a second order multiple-input
multiple-output (MIMO) system, u is the real input of the controlled object or namely the current
control quantity of the motor driven system.

Let Λτpre be the theoretical output torque at the motor end, and Ipre be the corresponding drive
current, then:

Λτpre = KmIpre, F1 = −B0Ipre, (10)

Let
u f f = Ipre, U = B0u. (11)

Thereby the motor output state equation can be expressed as:
.

X1 = X2.
X2 = B0u + F1 + F2 = U + F
Y = X1

, (12)
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where U can be seen as the virtual control quantity of the system; Y is the output from the system.
The real inertia demand can be met by modifying the system gain B0:

B0 = Jm
−1Kmζ, (13)

where ζ is the diagonal matrix of the correction coefficient, ζi ≥ 1. Many simulation studies show
during ADRC control, the estimation demand of B0 is not high, and the relative error is within 30%,
and when it is higher, it does not affect the closed-loop control quality. Thus, ζ is usually considered as
constant in practical applications [19].

2.2. Robot System Decoupling

The decoupling of multi-joints could ease the difficulty of controlling. In the ADRC system,
the model part except the system-controlled quantity F is called the ‘dynamic coupling part’ and U is
called the ‘static coupling part’. In the MIMO system, the input and output relation of channel i is:

.
xi1 = xi2
.
xi2 = Ui + Fi
yi = xi1

. (14)

It is assumed Ui is the ‘virtual control quantity’ of channel i, then it and the output yi form a
single-input - single-output relation, or namely the controlled output yi and the controlled quantity
Ui of channel i can be completely decoupled: Fi is considered as the total disturbance of channel i,
including the acceleration disturbance of robot dynamics, and the uncertain disturbance except for the
model. Thereby, n ADRC controllers implemented in parallel between the control quantity U and the
output vector Y can control the multivariate system structure. The decoupling process is shown below
(Figure 3):
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The conversion relation between the real control quantity u and the virtual control quantity U is
shown as:

u = B0
−1U. (15)

Admittedly, B0 is reversible, time-variable and bounded, and in ADRC control, its required
estimation precision is not high. It should be noted the dynamic coupling part F during decoupling can
be considered as the total disturbance to be estimated and compensated, and its estimation precision
decides the control performance of ADRC. Due to the very large inertia change during robot movement,
the corresponding change of acceleration disturbance is also large, so it will intensify the burden on the
ESO if it is all observed by ESO. According to the torque feedforward compensated total disturbance,
only the unknown small amount is undertaken by ESO, which thereby largely reduces the burden
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on ESO and enhanced the system robustness. Then based on the principles of ADRC, we study the
structure and algorithm of independent motion controllers.

3. Motion Controller Design and Stability Analysis

3.1. Design of Controller

The decoupled robot system is transformed into sive independent single-input single- output
(SISO) systems, degrees of freedom of which formed independent control channels. A computed
torque feedforward control strategy has been adopted to improve the control performance and stability
of ADRC. It should be noted the controlled object here is no longer the robot joint position, but is the
institution ontology and servo drivers under the torque mode (current mode).

The robot system is second order and usually has two choices in the ADRC structure: A second
order system structure (Figure 4) and a cascade system structure (Figure 5). In the second order
system, the control variable u (current) directly drives the output of displacement x1, without any
transitional loop, and the corresponding uniaxial servo feedforward control structure is shown in
Figure 4. This structure consists of two loops—a position loop and a current loop. The position loop
directly offers a current command to the current loop implemented in a motor driver. The current
feedforward path, as the main path, can offer the motor servo system with real-time theoretical current
corresponding to the movement command, while the real-time current errors have been observed by
ESO and regulated and compensated by the PID.
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Since the current loop bandwidth is large and the current order from the position loop should be
rapidly updated, the position order should be more refine and kept continuous, otherwise, the control
variable u would be discontinuous, thereby inducing systematic vibration.

In the structure of the ADRC cascade system, the control variable u (current) first drives the
intermediate variable x2 (velocity) and then x2 drives position x1, so as to control the target (Figure 6).
In real servo control, this structure is the most common. Its idea is similar to the back-stepping method
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of modern control theories: The complex nonlinear system is decomposed into a number of subsystems
(not larger than the system order); the difference is that back-stepping selects an appropriate Lyapunov
function for each subsystem, and builds an assistant virtual control variable, so as to compensate the
effects of uncertain factors and thereby loop-wise reverse back to the system control input. On the
contrary, through a first-order ADRC method, each loop of ADRC compensates uncertain disturbance
and regulates errors, avoiding the construction of Lyapunov function and being relatively simple.
Based on the ideas of ADRC cascade structure, we design an ADRC cascade controller based on inertia
feedforward (Figure 6).
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This ADRC feedforward controller is composed of a position loop and a velocity loop, and each
loop is based on the ADRC feedforward control technology. The interior velocity loop mainly produced
comprehensive current command u, which is u f f mainly supplied by the current feedforward path.
Then the acceleration corresponding to the uncertain errors is partially observed and compensated
by the ESO2 and partially regulated by the velocity error feedback control law. The ESO disturbance
observation and current feedforward can effectively reduce the power consumption, due to error
control, improving the system robustness and response speed. Similarly, the exterior position loop
mainly provides velocity order u1, which mainly consists of the position error feedback control law
output uv and the ESO1 velocity disturbance z12. Moreover, the loop bandwidth can be also improved
to some extent by the velocity feedforward method, which ensures the rapid response to the velocity
order. As for the feedback, TD has been used to acquire information about robot position and velocity,
and its estimation precision modestly affects the controller performance.

It should be noted in a cascade system, the movement change of the velocity loop is faster than the
position loop, which is decided by the physical properties of the controlled system. Thus, during digital
computation, the velocity loop and position loop are set at different sampling step sizes (sampling
period), so as to prevent the system from high-frequency vibration. Usually, the sampling period of
the position loop is set as an integral multiple of that of the velocity loop and is at the millisecond
level. Such setting of order density avoids the restraint of current bandwidth as faced by second order
systems. Moreover, to avoid overshoot and excessive noise in each loop control order, the amplitude
limiting, and low-pass filtering can be used, respectively. By combining the analyses of two control
structures, we can find that each stage of the cascade controller can be considered as a first order
system. Its preliminary design of control algorithm is shown below:
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• Basic function

f al(e,α, δ) =
{
|e|αsign(e), |e| > δ

e
δ1−α , |e| ≤ δ

; (16)

• Tracking differentiator [19]

f sg(x, d) = [sign(x + d) − sign(x− d)]/2
d = Rh0

2

a0 = h0 · x2

y = x1 + a0

a1 =
√

d(d + 8
∣∣∣y∣∣∣)

a2 = a0 + sign(y)(a1 − d)/2
a = (a0 + y) f sg(y, d) + a2(1− f sg(y, d))
f han(x1, x2, R, h0) = −R(a/d) f sg(a, d) −Rsign(a) · (1− f sg(a, d))

; (17)

• Differential state 
f h = f han(x1 − y, x2, r, h0)

x1 = x1 + h0 · x2

x2 = x2 + h0 · f h
. (18)

ADRC is divided into three parts. The first part is about arranging the transition process, which is
implemented in tracking differentiator, as in Equations (17) and (18), used to produce smooth instruction
curves and differential curves. The second part is the design of ESO, as the first three equations in
Equations (19) and (20), which are used to observe the disturbance in the corresponding loop.

• Position loop control using first order ESO1

e = z11 − x1 , f e = f al(e, 0.5, h1)

z11 = z11 + h1(z12 − β01 · e + u1)

z12 = z12 + h1(−β02 · f e)
e1 = qm − z11

uv = β1 f al(e1, 0.5, 1.0)
u1 = uv − z12

; (19)

• Velocity loop control using first order ESO2

e = z21 − x2, f e = f al(e, 0.5, h2)

z21 = z21 + h2(z22 − β03 · e + b0ui − b0u f f )

z22 = z22 − h2β04 · f e
e2 = u1 − z21

ua = β2 f al(e2, 0.5, 1.0)
ui = ua − z22

um = ui/b0

u = um + u f f

; (20)

where h0, h1, h2 are the sampling step sizes of TD, position loop and velocity loop, respectively;
z11, z12 are the values of position and velocity disturbance observed by first-order ESO1,
respectively; z11, z12 are the values of velocity and acceleration ‘unknown disturbance’ observed
by first-order ESO2, respectively. The third part of ADRC is the feedback controller. The control
laws uv in Equation (19) and ui in Equation (20) adopt the simple P control laws combing basic
function fal(). When the controller structure has been determined, appropriate ESO and PID
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control laws could be designed/selected according to real situations, so as to improve the system
robustness. More details can be found in [11,12,15,19].

3.2. System Stability Analysis

The closed-loop stability is very significant for the application of ADRC. However, the nonlinear
structure of ADRC is very complex, and its stability verification is very complicated, which become
the concerns in ADRC theoretical research. Guo strictly verified the convergence of high-gain ESO in
nonlinear SISO systems mathematically and explored the convergence of nonlinear ESO in uncertain
MIMO systems [20]. He used the absolute theory to analyze the stability of the simplified first-order
ADRC closed-loop systems [21]. Zhao defined the convergence of ADRC controllers in SISO nonlinear
systems and built and verified the convergence conditions of ADRC [22]. For simplification, we will
analyze the necessary influence factors on system stability on the basis of system transformation, so as
to characterize system stability.

3.2.1. System Dynamic Compensation Linearization

The shafts in the decoupled robot system are mutually independent. A mono-joint system can be
described as a nonlinear system: 

.
x1 = x2
.
x2 = bu(t) + f (x,

.
x, t) +ω(x, t)

y = x1

, (21)

where f (x,
.
x, t) is the acceleration function corresponding to the theoretical model; ω(x, t) is the

comprehensive acceleration disturbance except for the model; b was the system gain; u(t) is the control
variable. The closed-loop controller is expected to have the following dynamic properties:

..
x = g(x,

.
x). (22)

When the theoretical model f (x,
.
x, t) has been known, the acceleration order could be compensated

by the feedforward way, and the disturbance part is compensated by the observation of ESO, or namely
z(t) ≈ ω(t). Then the system control quantity is:

u =
(u0 − z)

b
−

f
b

. (23)

At this moment, the closed-loop system became an integrator series system:

..
x ≈ u0(x,

.
x). (24)

Admittedly, the system disturbance is compensated by the real-time estimation, which would
forcefully transform the original nonlinear system into a classic linear system. Then an efficient error
feedback control law u0 (e.g., nonlinear PID control law) could be used to regulate the closed-loop
performance and stabilize the system. However, the premise is that the feedback from the closed-loop
control system could well estimate the uncertain disturbance and could promptly pre-estimate and
compensate for the acceleration disturbance to the system. Thus, ESO is a core component of ADRC,
and its convergence and anti-disturbance abilities directly affect the closed-loop performance and
stability of ADRC [23]. Here we further analyzed the anti-disturbance ability of ESO.

3.2.2. Anti-disturbance Ability of ESO

Lemma 1 [21]. For a first-order controlled object,

.
x = w(x, t) + u, (25)
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where x is a state variable; u is the controlled amount; w(x, t) is the bounded disturbance of the system,
and

∣∣∣w(x, t)
∣∣∣ ≤ ω0. When this system is treated with nonlinear state feedback:

u(x) = −k|x|αsign(x),α > 0, k > 0. (26)

The system state x under disturbance could rapidly converge to a small range of steady-state errors, then the
solution domain of the closed-loop system meets:

lim
t→∞
|x| ≤ (ω0/k)1/α. (27)

For an nth order nonlinear SISO system:{
x(n) = b0u(t) + f (x,

.
x, · · · , x(n−1), t) + w(t)

y = x(t)
, (28)

where f (·) is an unknown function; w(t) is the unknown disturbance; b0 is the system gain; u(t) is the system
input; y is the system output.

Let x1(t) = x(t), · · · , xn(t) = x(n−1)(t), xn+1(t) = a(t) = f (x,
.
x, · · · , x(n−1), t) + w(t), then the state

equation of the above system Σ1 becomes: 

.
x1 = x2

· · · · · ·
.
xn−1 = xn
.
xn = xn+1 + b0u
.
xn+1 = c(t)
y = x1

, (29)

where c(t) = d[a(t)]/dt. For the above system, we can build an nth order ESO system Σ2:

e = z1 − x1
.
z1 = z2 − g1(e)
· · · · · ·
.
zn = zn+1 − gn(e) + b0u
.
zn+1 = −gn+1(e)

. (30)

The state of system Σ1 is followed: z1 → x1, . . . zn → xn, zn+1 → xn+1 = a . Let δx1 = z1 − x1, · · · ,
δxn+1 = zn+1 − xn+1, then the following error system Σ3 can be determined.

δ
.
x1 = δx2 − g1(δx1)

. . .
δ

.
xn = δxn+1 − gn(δx1)

δ
.
xn+1 = −c(t) − gn+1(δx1)

, (31)

For a bounded variation c(t), we can select an appropriate nonlinear function gi(·) to make system Σ3

always stabilize at the origin and thereby make the state observation variable follow the system status. When the
controlled amount coefficient b is inaccurate, its estimated value b0 could be used, and the estimation errors
(b− b0u) is included in zn+1(t). Expression of gi(·) decides the anti-disturbance performance of ESO and is
unrelated to the system, but is only related to the changing rate c(t) of the comprehensive acceleration a(t) and
changing range. Thus, gi(·) could be built by using different forms of nonlinear function. Usually the following
function has been selected:

g(ε) = β0i f al(ε,αi, δi) (i = 1, 2, · · · , n + 1), (32)
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where β0i is the gain factor, and αi designed here meets 0 < αi ≤ 1, δi = δ ≥ 0. From the above equation, it is
the function f al(·) consisted of a small-range linear interval and a large-range |x|αsign(x). For convenience of
analysis, we set:

g(δx1) = β0i|δx1|
αsign(δx1). (33)

Then the error system Σ3 becomes:
δ

.
x1 = δx2 − β01|δx1|

α1sign(δx1)

. . .
δ

.
xn = δxn+1 − β0n|δx1|

αn sign(δx1)

δ
.
xn+1 = −c(t) − β0(n+1)|δx1|

αn−1sign(δx1)

. (34)

Let the changing function of the comprehensive acceleration c(t) be bounded and satisfy c(t) ≤ ω0;
according to the prerequisite of ESO convergence, when t→∞ , then δ

.
xi → 0 , and according to Lemma

1, the range of system steady-state error is:

lim
t→∞
|δx1| = lim

t→∞
|z1 − x1| < (ω0/β0(n+1))

1
αn+1

· · · · · ·

lim
t→∞
|δxn| = lim

t→∞
|zn − xn| < β0(n−1)(ω0/β0(n+1))

αn−1
αn+1

lim
t→∞

∣∣∣δxn+1
∣∣∣ = lim

t→∞

∣∣∣zn+1 − xn+1
∣∣∣ < β0n(ω0/β0(n+1))

αn
αn+1

. (35)

The right size of the above inequality presented the limits of steady-state errors in a
closed-loop system. Clearly, the anti-disturbance ability of ESO is decided by the parameter setting.

Let σ = β0i(ω0/β0(n+1))
αi

αn+1 , when β0(n+1) is large enough, the system steady-state error is very
small, but easily leads to vibration of ESO system. When 0 < αi < αi+1 < · · ·αn+1 < 1, we have
σ < β0i(ω0/β0(n+1)), indicating compared with linear feedback, the nonlinear feedback showed smaller
steady-state error and stronger following ability and anti-disturbance ability. Moreover, the high-order
system usually adopts a high-order ESO, but the amplitude ω0 of highest-order changing rate is very
large, leading to larger β0(n+1), which not only complicates the parameter adjustment, but also easily
makes the ESO unable to converge, or even the ADRC system unstable. Thus, ADRC systems at 3rd
order or above are usually decomposed by the time scale into cascade systems, while the ESO adopts
the low-order series form. Thereby, it is indicated a low-order cascade system contributes to improving
the anti-disturbance ability of ESO and thereby improves the stability of ADRC systems.

4. Experimental Results and Analysis

To validate the effectiveness of the new control method, space arc trajectory follow-up experiments
were conducted in a six-degree-of-freedom robot platform, in which the 6R industrial robots
HSR-JR605-C (its parameters are in Table 1) were used. Cartesian space arc trajectory was selected.
The robot load was 3.6 kg, the initial attitude was q = [0,−π/2, 0, 0,π/2, 0]T; the space arc trajectory
was determined from the three space coordinates of the end-point P, where, A = [376.5, 0, 331],
B = [396.5, 20, 331], C = [416.5, 0, 331], and arc center O = [396.5, 20, 331] in mm, as shown in Figure 7.
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Table 1. Modified D-H parameters of Robot.

Joint i Link Twist αi (◦) Link Length ai (mm) Link Offset di (mm) Joint Angle

1 0 0 0 q1
2 −90 0 0 q2
3 0 360 0 q3
4 −90 90 376.5 q4
5 90 0 0 q5
6 −90 0 0 q6
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Figure 7. Experimental robot. (a) Robot end-point end P trajectory; (b) coordinate system.

Point P is accelerated and clockwise along an arc from point A to point C, and then returns
clockwise along from point C to point A. With the Cartesian space circular interpolation algorithm and
the inverse kinematics computation, we could determine the joint motion status order. The input of
this order is to convert the transmission ratio into motor end motion. It should be noted the on-line
computation of the inverse dynamic model is much time-consuming, which may affect the timeliness
of the controlled loops. Thus, here it is set as ‘background program’, and the computation memory
is pre-stored and extracted in real-time. To validate the superiority of the new control algorithm in
Figure 8, we select the commonly-used PI control algorithm as a comparison:
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Figure 8. Robot uniaxial PI controller.

Its control algorithm consists of:

• Differential state estimation 
f h = f han(x1 − y, x2, R, h0)

x1 = x1 + h0 · x2

x2 = x2 + h0 · f h
; (36)
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• Position loop control algorithm
e1 = qm − x1

e0 =
∫

e1dt
u1 = β0 f al(e0, 0.25, 1.0) + β1 f al(e1, 0.5, 1.0)

; (37)

• Velocity loop control algorithm{
e3 = u1 − x2, e2 =

∫
e3dt

u = β2 f al(e2, 0.25, 1.0) + β3 f al(e3, 0.5, 1.0)
. (38)

As for the indices of response speed and trajectory following precision, we investigate the
following trajectories of different joints in the joint coordinate system and the following trajectory
of the end-point position in the Cartesian coordinate system. To reasonably evaluate the controller
performance, we have to acquire accurate real-time robot joint position and attitude states and the
Cartesian coordinates of the end-point ends, and when the joint flexibility has been ignored and for
simplification, we recognize that the coder positional information directly reflected the joint positional
information. The end-point Cartesian coordinates were acquired from robot forward kinematics,
without any external measuring tool. Based on the semi-closed-loop control structure, we regulate the
parameters of the two controllers to optimize the following performance. The parameters of the two
controllers in Equations (15–20) and (36–38) are listed in Table 2.

Table 2. Robot controller parameters.

Electromechanical Parameters
Torque constant km = [0.354, 0.354, 0.283, 0.276, 0.276, 0.226] (Nm/A),

Gear ratio η = [81, 100, 80, 76.5, 81, 50], Motor shaft rotary inertia
Jm = [0.130, 0.130, 0.044, 0.027, 0.027, 0.005] (kgm2

× 10−3)

ADRC feedforward controller
(6-shafts)

TD R = 40, h0 = 0.0002

ESO

ESO1 : β01 = [500, 500, 500, 500, 500, 500]
β02 = [5000, 5000, 5000, 5000, 5000, 5000]

h1 = 0.002
ESO2 : β03 = [5000, 5000, 5000, 5000, 5000, 5000]

β04 = [50000, 50000, 45000, 40000, 40000, 40000]
h2 = 0.0002

b0 = Jm
−1kmζ, ζ = [0.950, 0.950, 0.980, 0.980, 0.980, 0.990]

P Position Loop: β1 = [400, 400, 350, 250, 200, 200]
Speed Loop: β2 = [5000, 5000, 4000, 4000, 4000, 4000]

δ = 1/ηkm δ = [0.03487, 0.02824, 0.04427, 0.04736, 0.04473, 0.08850]

PI controller
(6-shafts)

TD R = 40, h0 = 0.0002

PI
Position Loop:

β0 = [0, 0, 0, 0, 0, 0]
β1 = [1000, 1000, 800, 500, 500, 500]

Speed Loop:
β2 = [0, 0, 0, 0, 0, 0]

β3 = [10000, 10000, 8000, 8000, 5000, 5000]

The servo periods of the position loop and the velocity loop were 2 ms and 200 µs, respectively,
and the sampling period was 200 µs. Let the angular velocity of the end-point P of the operating
arm resolving around the circle center O be w = 2, 4, 6, 8 (rad/s). The representative joint trajectory
follow-up results and end-point Cartesian trajectory follow-up results of joint 2 are shown in Figures 9–11.
The end-point trajectory follow-up results at different speeds are shown in Figure 12.
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The above figures show the PI controller and the ADRC controller based on dynamic feedforward
(or ADRC controller for short) both could stably follow the trajectory, but the following precision and
response speeds both differed. In the joint coordinate system, for the large-inertia joint 2, the trajectory
following error of the PI controller was very large (about 0.005 rad) (Figure 9b), which was higher than
that of the ADRC controller (Figure 9d). As for the response speed, the new controller also outperformed
the PI controller (Figure 9a,c). Clearly, the ADRC controller outperformed the PI controller in both
control precision and response speed, but the joint end-point following trajectory was more precise in
the Cartesian coordinate system (Figure 10). As for planar projection, the ADRC feedforward showed
control precision over the robot end-point end up to 0.015 mm (Figure 10c,d), which was far higher
than the PI controller (0.3 mm, Figure 11c,d). As for error distributions, the end-point following
error of the robot was very large upon the start-up, which was largely induced by the joint friction.
Firstly, the joint static friction after the start of movement was very large, which could not be rapidly
adjusted by a pure PI controller; secondly, due to the errors of the friction model, the static friction
at the time of mutation was hard to be monitored or compensated promptly. Admittedly, relative
to the PI controller, our new ADRC controller could well inhibit the friction uncertain disturbance,
and generally, was outstanding in terms of control precision and response speed. Moreover, at different
speeds, especially high speed (8 rad/s), the ADRC controller showed both high-quality trajectory
follow-up and robustness (Figure 12).

To verify the position repeatability of robot, we set the start/stop point A (376.5, 0, 331), and control
the robot end-point to perform a periodic circular motion to stop at point A for 20 times (w = 2 rad/s).

The end-point Cartesian coordinates (
¯
x,

¯
y and

¯
z in Table 3) were acquired from robot forward kinematics

based on the sampled information of encoders.
The ti and δ are expressed in Equations (39) and (40), respectively.

ti =

√
(x− x)2 + (y− y)2 + (z− z)2, (39)

where (x, y, z) = (376.5, 0, 331); i = 1, 2, 3, . . . , 20.

δ =

√√√√ n∑
i=1

(t− ti)
2

n− 1
, (40)

where t = 1
n

n∑
i=1

ti, n = 20.

It can be seen that the repetitive position accuracy is slightly higher than the trajectory following
accuracy. However, it should be noted that the actual repetitive position accuracy will be slightly worse
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because we acquire the end-point Cartesian coordinates from the encoders and theoretical calculation
based on robot forward kinematics.

Table 3. Position repeatability of robot end-point.

Samples x (mm) y (mm) z (mm) ti (mm)

1 376.505 0.004 331.008 0.010
2 376.497 0.002 331.001 0.003
3 376.495 −0.006 331.004 0.008
4 376.497 0.004 331.004 0.006
5 376.505 0.001 330.994 0.008
6 376.502 0.007 331.005 0.009
7 376.501 −0.005 331.002 0.005
8 376.503 −0.003 330.992 0.009
9 376.492 −0.004 331.003 0.009

10 376.494 −0.004 330.995 0.009
11 376.505 0.007 331.005 0.010
12 376.508 0.002 330.998 0.008
13 376.501 0.009 331.005 0.010
14 376.498 0.005 331.002 0.006
15 376.505 0.005 330.998 0.007
16 376.501 −0.004 330.995 0.006
17 376.502 0.003 331.006 0.007
18 376.503 0.01 330.999 0.010
19 376.498 −0.005 331.001 0.005
20 376.502 0.007 331.003 0.007

δ 0.0079 (mm)
3δ 0.0237 (mm)

5. Conclusions

To improve the robustness of the dynamic feedforward control system, we put forward an ADRC
strategy based on dynamic feedforward starting from the control perspective and combining the simple
structure, strong anti-interference ability and no restraint from the control model of ADRC.

(1) Together with the dynamic characteristics of robots, we analyze the system disturbance
compensation methods, and by regarding robots as motor output load, achieve multi-joint control
decoupling through dynamic characteristic compensation and uncertain disturbance compensation.

(2) As for the uniaxial independent systems after decoupling, we study the ADRC series control
structure and algorithm based on dynamic feedforward, and investigate the closed-loop stability by
analyzing the dynamic linearization compensation and ESO anti-disturbance ability.

(3) Space arc trajectory following experiments have been conducted to comprehensively evaluate
the 6-joint motion performances of robots. The ADRC controller based on dynamic feedforward
outperforms traditional PI controllers in terms of trajectory following precision and response speed,
and shows high values of practical engineering. It should be noted ADRC controllers are structurally
diverse, and this study just proves the high efficiency of the P control law. To further improve the
controller performance, other more advanced PD control law and ESO combination may be used,
which is not elaborated here.
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