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Abstract: Knowledge of the subsurface structure not only provides useful information on lunar
geology, but it also can quantify the potential lunar resources for human beings. The dual-frequency
lunar penetrating radar (LPR) aboard the Yutu rover offers a Special opportunity to understand
the subsurface structure to a depth of several hundreds of meters using a low-frequency channel
(channel 1), as well as layer near-surface stratigraphic structure of the regolith using high-frequency
observations (channel 2). The channel 1 data of the LPR has a very low signal-to-noise ratio. However,
the extraction of weak signals from the data represents a problem worth exploring. In this article,
we propose a weak signal extraction method in view of local correlation to analyze the LPR CH-1
data, to facilitate a study of the lunar regolith structure. First, we build a pre-processing workflow to
increase the signal-to-noise ratio (SNR). Second, we apply the K-L transform to separate the horizontal
signal and then use the seislet transform (ST) to reserve the continuous signal. Then, the local
correlation map is calculated using the two denoising results and a time–space dependent weighting
operator is constructed to suppress the noise residuals. The weak signal after noise suppression may
provide a new reference for subsequent data interpretation. Finally, in combination with the regional
geology and previous research, we provide some speculative interpretations of the LPR CH-1 data.

Keywords: lunar penetrating radar; local correlation; SNR; K-L transform; seislet transform

1. Introduction

Chang’E-3 (CE-3) landed at 340.4875 ◦E, 44.1189 ◦N on the Moon on 14 December 2013, in a
new region in the largest basin that had not been explored before, that is, the Mare Imbrium [1].
The dual-frequency lunar penetrating radar (LPR) aboard the Yutu Rover provides a special opportunity
to understand the subsurface structure to a depth of several hundreds of meters from the low-frequency
channel (CH-1, 60 MHz). This also includes mapping the layer near-surface stratigraphic structure of
the regolith from the high-frequency channel (CH-2A and CH-2B, 500 MHz) [2].

The LPR data processing process and its preliminary results were first proposed by the National
Astronomical Observatories (NAOC) [3]. Preliminary analysis of the LPR observations, especially
observations from CH-1, showed more than nine subsurface layers from the surface to a depth of
~360 m [1]. The 114-m-long profile measurement of the onboard lunar penetrating radar measured the
thickness of the lunar weathering layer at approximately 5 m and detected three basement basalt units
with depths of 195, 215, and 345 m. The radar measurements show that other methods underestimate
the thickness of the global lunar regolith layer, and it shows the large volume after the last volcanic
eruption [4]. Fa et al., Lai et al., and Zhang et al. speculated on the near surface structure by processing
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the raw CH-2B data [5–7]. Meanwhile, Dong et al. and Zhang et al. calculated the parameters of the
regolith [8,9].

Owing to the complex environment of moon acquisition, the LPR data, especially the CH-1 data,
contains various types of noise. Useful weak signals that are distorted by this noise are difficult to
identify, thereby limiting the subsequent data interpretation [10,11]. Moreover, the observable signals
(3700 and 5800 ns) were proven to be false signals caused by the instrumentation [11]. To take full
advantage of the CH-1 data, we focused on highlighting the weak signals to study the lunar structure.
Previous researches indicate that the terrain of the LPR coverage is relatively flat [1], so the target
signal is a horizontal signal with a certain continuity.

Regarding the LPR CH-1 data, there are still a lot of noise residuals in the denoised section owing
to the high noise level. Liu et al. proposed a stacking method using local correlation to solve the
problem of noise residuals in the seismic stack profile. The basic principle of the local correlation
denoising method is to preprocess the common-midpoint (CMP) gathers by the conventional denoising
method, and calculate the local correlation coefficients of the CMP gathers before and after denoising.
They assume that the local correlation coefficient of the effective signal is much larger than the noise,
and based on this difference, construct a time-space variable weight operator to suppress the noise
represented by the small coefficient before stack. Local correlation [12] is a typical local attribute
used to measure the local similarity of two signals. It has been utilized in several seismic signal
processing fields, such as image contrast [13,14], time-frequency analysis [15], and random noise
attenuation [16,17].

In this paper, we proposed a weak signal extraction method based on local correlation to deal
with the LPR CH-1 data, and then we studied the structure of the lunar regolith. To extract these
weak signals, we chose the K-L transform and seislet transform (ST) to process the LPR data. The K-L
transform [18] can decompose 2D signals into sub-signals corresponding to a series of eigenvalues,
which represent the strength of the horizontal coherence. It is often used to extract coherent signals or
to eliminate random noise from the 2D seismic data [19]. The ST [20] is a sparse transform, which can
utilize the local dip information to map signals into subsets with different frequencies and dips. After
the transformation process, the continuous signal can be highlighted based on this property. Therefore,
it is applicable to random noise suppression [21], deblending [22], and data reconstruction [23,24].
First, we built a pre-processing workflow to improve the signal-to-noise ratio (SNR). Second, we
applied the K-L transform to reserve the horizontal signal, and the ST to reserve continuous signal,
respectively. Then, the local correlation map was calculated using the two denoising results and a
time–space dependent weighting operator was constructed to suppress the noise residuals. The weak
signal after noise suppression can provide a new reference for subsequent data interpretation. Finally,
combining with the regional geology and previous research, particularly on LPR data, we provide
some speculative interpretations of the LPR CH-1 data.

2. Methods

2.1. Data Preprocessing

The lunar penetrating radar (LPR) track extends 114.8 m (Figure 1) near to Sinus Iridum.
Two bottom sides of the top board of the moon rover mount two CH1 antennas respectively. The
bottom board of the lunar rover mount the CH2 antenna. Each of the CH-1 antennas is mounted in a
tubular radome. The monopole antenna has a radome for support and protection. The radome has
a length of 1150 mm and a diameter of 12 mm. The spacing between the transmitting antenna and
the receiving antenna is about 800 mm. In order to generate pulse waves to propagate along with
the antenna without reflection, the Wu-King impedance loading method is used to load the antenna
through a continuous resistance load from the feed point to the end of the antenna. In practice, it
is usually difficult to generate a continuous distribution of resistance load. Therefore, a piecewise
loading method which called concentrated resistive loading is usually used (Figure 2b).
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The CH-2 transceiver antenna is mounted at the bottom of the lunar rover, which is approximately
30 cm from the ground. We can see the structure of the antenna from Figure 2c. The CH-2 antenna has
three antenna elements. The antenna elements are arranged side by side in a metal back cavity which
is divided into three separate cavities. One of the components is used to transmit EM waves, while the
other two are used to receive EM waves [2].

In this section, the data preprocessing effects of the LPR CH-1 data are reported. As the focus is
the subsurface structure, the CH-1 data was selected. Based on the acquisition parameters, the actual
situation, and the data quality, an LPR data preprocessing flow was designed (Figure 3). The CH-1
image (an output of Figure 3) was accessible after data preprocessing.

Owing to various types of electromagnetic waves in lunar space, the complex terrain on the
moon, and the harsh environment, LPR data has a low signal-to-noise ratio (SNR). In the shallow
part (Figure 4, red box) of the pre-processed CH-1 data, there were several harsh horizontal noises.
Irrespective of whether we used the averaging tracks or the sliding filter, etc., the noise could not be
effectively eliminated and, therefore, it affected the extraction of useful information from the data.
In the deep part, two obvious events were found at 3700 ns and 5800 ns (blue arrows). Regrettably,
Li et al. proved that these were distortions from the instrumentation [11]. In summary, the CH-1 data
of the LPR had a very low signal-to-noise ratio, raising the problem of how to extract the weak signals
from the deep part.
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was rebooted.
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2.2. Weak Signal Extraction Method Based on Local Correlation

The acquired field data could be considered as a collection of signals and noise. Noise attenuation
involves suppressing the noise as much as possible while preserving the signal. However, the denoising
effect is limited by the incompleteness of the denoising assumption and the close amplitude of the
weak signal and noise. Therefore, for most denoising methods, the choice of denoising parameters is a
trade-off between signal preservation and noise attenuation. To preserve the weak signal and simplify
parameter selection, we introduced local correlation to the LPR data processing. First, we reviewed the
definition of local correlation [12]. The global correlation coefficients γ between two signals ai and bi
can be defined as

γ =

N∑
i=1

aibi√
N∑

i=1
a2

i b2
i

, (1)

where N is the number of signal elements. To measure the similarity between the two signals in a local
way, the local correlation coefficients can be defined using a sliding window:

γw(t) =

t+w/2∑
i=t−w/2

aibi√
t+w/2∑

i=t−w/2
a2

i

t+w/2∑
i=t−w/2

b2
i

, (2)

where w is the size of the sliding window.
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Fomel redefines the local correlation in a smoother way [12]. Based on linear algebra theory,
Equation (1) can be rewritten as

γ2 = γ1γ2 (3)

where γ1 and γ2 are obtained by solving the optimization problem in the least squares sense:

γ1 = arg min
γ1
‖a− γ1b‖22 = (aTa)

−1
(aTb), (4)

γ2 = arg min
γ2
‖a− γ2b‖22 = (bTb)

−1
(bTa), (5)

where a,b is the vector form of ai,bi. Meanwhile, A and B are written as two diagonal matrices
where the main diagonal elements are a and b, respectively. Then, this is followed by containing a
shaping regularization [20]. The optimization problem in the least squares sense can then be modified
as follows:

c1 =
[
λ2

1I + Sm(ATA− λ2
1I)

]−1
SmATb, (6)

c2 =
[
λ2

2I + Sm(BTB− λ2
2I)

]−1
SmBTa, (7)

where c1, c2 are the vector form of γ1 and γ2 Sm is a function for smoothness promotion; λ1 and λ2 are
the two stable parameters used in the process of inversion to accelerate the convergence speed. We can
select λ1 and λ2 as follows:

λ1 = ‖ATA‖2, (8)

λ2 = ‖BTB‖2. (9)

The basic idea of our methods is extracting the weak useful signals based on the local correlation
difference between signal and noise. The local correlation is calculated by two different denoising
results, therefore the selection of denoising methods is the key to our method. We select the denoising
methods based on the LPR CH-1 data and previous researches [1]. From Figure 3, the observable useful
signals indicate that the terrain of the LPR coverage is relatively flat, so the target signal is a horizontal
signal with a certain continuity. To highlight the different characteristics of CH-1 data (horizontal and
continuity), we chose the K-L transform (Appendix A) and ST (Appendix B) to process the LPR data.
To preserve the deep weak signals, the ability to suppress noise was limited. Since the assumptions of
different denoising methods are different, we considered that the noise residuals corresponding to the
denoising results were different. Based on the similarity difference, a time–space dependent weighting
operator [24] was proposed to extract weak signals and suppress noise residuals:

W(t, x) =


1 cn,s(t, x) > v2

γn,s(t, x) − v1

v2 − v1
v1 ≤ cn,s(t, x) ≤ v2

0 cn,s(t, x) < v1

, (10)

where cn,s(t, x) is the local correlation map, and v1, v2 are the thresholds that divide the local correlation
map into three parts (Figure 5). v1 defines the pure noise section, where the weighting operator W will
remove the entire section. v2 defines the purely useful signal section, where the weighting operator
W will preserve the entire signal. When the local correlation coefficient is in the range of v1 to v2,
the weak signal and noise are combined in that section, and the threshold function varies in a weighted
length manner.
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Note that v1, v2 controls the degree of signal extraction. To extract all the detectable useful events
and attenuate some noise, we determine v1, v2 based on the average of similarity coefficients in pure
noise section and purely signal section. The pure signal section covers the first few events, which have
large and apparent similarity coefficients. And pure signal section covers the last few detectable events,
which have small similarity coefficients.

We utilized the weighting operator on the two denoising results (DKL and DST), and then stacked
the weighted outputs to obtain the extracted signal D:

D =
W(DKL) + W(DST)

2
. (11)

The specific workflow was as shown:

1. Use the K-L transform to highlight horizontal signals,
2. Use the ST to highlight continuous signals,
3. Calculate the local correlation map based on the two pre-denoised results, and then construct the

weighting operator,
4. Utilize the operator to extract signals with high similarity,
5. Stack the signal sections extracted from the denoising results.

The proposed method extracted weak signals using the similarity difference between signals and
noise. Therefore, the choice of denoising parameters was more elegant, which avoided weak signal
damage. Moreover, this method could take advantage of different denoising methods to improve the
final weak signal extraction results.

3. Simulated Data Test

Figure 6 demonstrates the workflow of the proposed method. As mentioned above, the target
weak signal is the horizontal signal with a certain continuity. Therefore, we present a noisy horizontal
signal to test the effectiveness of the proposed method. The signal (Figure 6a) contains five events with
different slowness, i.e., (0, 0, 3,−4,−2) · 10−5 and we add Gaussian random noise to obtain s noisy signal
(Figure 6b). Then we calculated the local correlation map (Figure 6e) between the two pre-denoised
results (Figure 6c,d) and built the local correlation based weighting operator with v1 = 0.1, v2 = 0.4.,
and Figure 6f was the final result. The weak signal (60 ns) was distorted by noise. Both the K-L
transform and ST suppressed some of the noise, but we still observed noise residuals in the denoised
section. The local correlation map indicated the similarity difference between noise residuals and weak



Electronics 2019, 8, 573 8 of 16

signals. Noise residuals were well attenuated by the weighting operator. To quantitatively compare
the effects of weak signal extraction, we calculated the SNR of the denoising result:

SNR = 10 log10

‖dsignal‖
2
2

‖dnoisy − ddenoise‖
2
2

, (12)

where dnoisy is the noisy signal, and dsignal, ddenoise are the signal section and denoised
section, respectively.
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Table 1 shows the signal-to-noise ratio obtained by the four processing methods. As is well known,
a larger SNR value indicates a stronger signal. Therefore, the local correlation algorithm used in this
paper can obtain a better signal to noise ratio.

Table 1. Comparison of the signal-to-noise ratio (SNR).

Data Noisy Data K-L ST Proposed Method

SNR −9.02 8.42 6.32 15.13

4. Results

In this section, we applied the K-L transform and ST to pre-denoise the LPR CH-1 data. Then we
calculated the local correlation map between the two denoised results and built the weighting operator.
After thresholding using the weighting operator, we stacked the two processed datasets to highlight
the weak signal. Finally, we interpreted the processed LPR data. In the interpretation, we extracted
two layers of the paleoregolith which separated the covered basalts in different periods.

Figure 7 shows the pre-denoised results using the K-L transform and ST. From Figure 7, we
observe that the residuals in the denoised sections were quite different, which showed the different
advantages of denoising methods.
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Figure 8 shows the final extracted signal using our method. Besides the extracted weak signal,
the false signals (3700 and 5800 ns) were also extracted. The reason was the large amplitude and
high continuity in the noisy section, which showed the effectiveness of signal extraction using local
correlation. Note that the selection of denoising methods varies with the target signal. For example, to
extract signals from random noise, we can select the f-x deconvolution, median filter, bandpass filter, etc.
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Furthermore, we also observed some suspected signals in Figure 8a,b, especially in the ranges
4950–5300 ns and 7750–8100 ns. Figure 9 shows the zoomed section of the two suspected signals.
The two extracted signals denoted the large similarity in the local correlation map, which meant that
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After the time–depth conversion, Figure 10 shows the result of the data. Except for the false signals
(3700 and 5800 ns), we also extracted two layers of weak reflection at ~290 m and ~450 m. According to
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the formation mechanism of the mare [25,26], the Mare Imbrium is covered by basalts during different
historical periods. After each basalt layer was covered, during that time interval, ancient regolith was
formed, due to the impact of various meteorites. Based on the two weakly reflected events that we
extracted from the CH-1 data, we explained these two layers (Figure 11). During the formation of Mare
Imbrium, two layers of the paleoregolith at 290 m and 450 m were formed. The thickness of both is
about 10 m.Electronics 2019, 8, x FOR PEER REVIEW 12 of 18 
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5. Discussions

Xiao et al. show that at least nine underground horizons can be determined by LPR data and
comprehensive geological interpretation, indicating that the area has undergone complex geological
processes, since the Imbrian is compositionally distinct from the Apollo and Luna landing site [1].
Zhang et al. reveal the in situ spectral reflectance and elemental analysis of the lunar soil at the landing
site. The young basalt can be from the mantle reservoir rich in ilmenite and then assimilated by 10-20%
of the last residual melt in the lunar magma ocean [4]. Yuan et al. interpret as different period lava flow
sequences deposited on the lunar surface. The most probable directions of these flows were inferred
from layer depths, thicknesses, and other geological information. Moreover, the apparent Imbrian
paleoregolith homogeneity in the profile supports the suggestion of a quiescent period of lunar surface
evolution. Similar subsurface structures are found at the NASA Apollo landing sites, indicating that
the cause and time of formation of the imaged phenomena may be similar between the two distant
regions [27].

It should be noted that the above-mentioned layer judgment is performed under the condition
that the CH-1 data is reliable and true. However, Li et al.’s paper tries to solve this controversy by
carefully analyzing and comparing the data collected by the Yutu rover on the moon and the LPR
prototype of the CE-3 lunar rover model installed on the ground. This analysis shows that deep radar
features previously attributed to lunar shallow stratum are not true reflectors, but rather they may be
signal artifacts produced by the system and their electromagnetic interaction with metal rover [11].

Based on the local correlation method, we extracted two layers of weak reflection at ~290 m and
~450 m. According to the formation mechanism of the mare, after each basalt layer was covered,
during that time interval, ancient regolith was formed, due to the impact of various meteorites. During
the formation of Mare Imbrium, two layers of the paleoregolith at 290 m and 450 m were formed.
The thickness of both is about 10 m.

Our result avoids the extracted events mentioned by Li et al. And we propose two new weakly
reflective layers after Xiao et al. These two new reflective layers enhance the deep utilization of CH-1
data to some extent.

The proposed method is based on the assumption that the noise residuals by different denoising
methods are orthogonal which have a small value of local correlation coefficients, and useful signals
are just the opposite. The local correlation-based methods not only can deal with random noise, but
also coherent noise [28]. Due to the complex moon acquisition conditions, the LPR data contains
various types of noise. Strong noise adaptability makes the proposed method more promising in LPR
data processing.

Another advantage of the proposed method is balancing the advantages of different denoising
methods, even the conventional methods. And the most important step of our method is the selection of
denoising method. The choices of denoising method are determined by the target signal characteristics.
For CH-1 data, the denoising method which highlights horizontal and continuous signal is selected.
Furthermore, the useful signals in CH-2 data are interfered by rocks caused diffraction noise [7], the dip
filtering methods are more applicable, such as a f-k filter.

6. Conclusions

In this paper, we proposed a weak signal extraction method based on local correlation to deal with
LPR CH-1 data, and then we studied the structure of the lunar regolith. First, we built a pre-processing
workflow to improve the signal-to-noise ratio (SNR). Second, we applied the K-L transform to reserve
horizontal signals, and the ST to reserve continuous signals, respectively. Then, the local correlation
map was calculated according to the two denoising results, and a time–space dependent weighting
operator was constructed to suppress the noise residuals. The weak signal after noise suppression can
provide a new reference for subsequent data interpretation. Finally, combining with previous research
and the LPR data, we provided some speculative interpretations of the LPR CH-1 data.
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Except for the false signals, we extracted two layers of weak reflection at ~290 m and ~450 m.
According to the formation mechanism of the mare, the two layers are explained from the two weakly
reflected events. During the formation of Mare Imbrium, two layers of paleoregolith at 290 m and
450 m were formed. The thickness both was about 10 m.

These results provide valuable information to understand the reflections of LPR data, and they
offer a reference for future lunar missions.
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The following abbreviations are used in this manuscript:

LPR lunar penetrating radar
CH-1 channel 1
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ST seislet transform
NAOC National Astronomical Observatories in China
SNR signal-to-noise ratio
CE-3 Chang’E-3
EM Electromagnetic
CMP common-midpoint

Appendix A Review of the K-L Transform

To perform the K-L transform on 2D data X with N traces and M samples, we first need to find the
transformation matrix L. The row vector of L is composed of the eigenvectors of the covariance matrix of X [18].
The estimated covariance matrix U of the data matrix X can be expressed by:

U ≈ XXT. (A1)

Let L = (l1, l2, . . . , lN), where l1, l2, . . . , lN are N eigenvectors of U, then the forward K-L transform can be
expressed as:

h j(t) =
N∑

i=1

li jxi(t), (A2)

where x(t), h(t) is the vector of input and output and i, j = 1, 2, . . . , N. The K-L forward transform can be written
as a matrix form:

ψ = LTX, (A3)

and the details are shown as
h11 h12 · · · h1M
h21 h22 · · · h2M

...
...

. . .
...

hN1 hN2 · · · hNM

 =


l11 l12 · · · l1N
l21 l22 · · · l2N
...

...
. . .

...
lN1 lN2 · · · lNN




x11 x12 · · · x1M
x21 x22 · · · x2M

...
...

. . .
...

xN1 xN2 · · · xNM

, (A4)

http://moon.bao.ac.cn
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where li j is the element of LT. Given that LT is an orthogonal matrix, the output h j(t) can be selected as a set of
orthogonal basis vectors. xi(t) can be expressed as

xi(t) =
N∑

j=1

l jih j(t), (A5)

where i, j = 1, 2, . . . , N. The matrix form of the K-L reverse transform can be written as

X = Lψ, (A6)

and the details are shown as
x11 x12 · · · x1M
x21 x22 · · · x2M

...
...

. . .
...

xN1 xN2 · · · xNM

 =


l11 l21 · · · lN1
l12 l22 · · · lN2
...

...
. . .

...
l1N l2N · · · lNN




h11 h12 · · · h1M
h21 h22 · · · h2M

...
...

. . .
...

hN1 hN2 · · · hNM

. (A7)

The reconstructed form of the first m principal components is

∼
xi(t) =

m∑
j=1

l jih j(t); m < N, (A8)

and the matrix form is
∼

x11
∼

x12 · · ·
∼

x1M
∼

x21
∼

x22 · · ·
∼

x2M
...

...
. . .

...
∼

xN1
∼

xN2 · · ·
∼

xNM

 =


l11 l21 · · · lm1
l12 l22 · · · lm2
...

...
. . .

...
l1N l2N · · · lmN




h11 h12 · · · h1M
h21 h22 · · · h2M

...
...

. . .
...

hm1 hm2 · · · hmM

. (A9)

According to the above equation, the horizontal signal is reconstructed with the first few principal components.

Appendix B Review of the ST

The wavelet-lifting scheme is defined based on the cross-correlation between even elements and odd
elements, and it calculates the difference r between the true odd elements and predicts the difference between even
elements [29]. In this scheme, the basic function of the ST is defined and the ST pairs [14] are described as follows:

r = o− P(e), (A10)

c = e + U(r), (A11)

e = c−U(r), (A12)

o = r + P(e), (A13)

where P denotes the prediction operator and U denotes the update operator. The difference between the true
trace and the predicted trace is represented by r, while c stands for a rough approximation of the dataset. The
prediction and update processes are accomplished through local slope estimation as in Reference [30]:

P(e)k = (P+
k (ek−1) + P−k (ek))/2, (A14)

U(r)k = (P+
k (rk−1) + P−k (rk))/4, (A15)

where P+
k and P−k are the event shifting operators based on the local slope for the corresponding trace.

For random noise attenuation based on the seislet transform, it can be achieved by forward transform, hard
thresholding, and the inverse transform. The threshold function is shown as

Thard{X}i j =

{∣∣∣Xi j
∣∣∣ · sgn(di j)

∣∣∣Xi j
∣∣∣ ≥ σ

0
∣∣∣Xi j

∣∣∣ < σ , (A16)

where σ is the threshold parameter.



Electronics 2019, 8, 573 15 of 16

References

1. Xiao, L.; Zhu, P.; Fang, G.; Xiao, Z.; Zou, Y.; Zhao, J.; Zhao, N.; Yuan, Y.; Qiao, L.; Zhang, X.; Zhang, H.; et al.
A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science 2015,
347, 1226–1234. [CrossRef] [PubMed]

2. Fang, G.; Zhou, B.; Ji, Y.; Zhang, Q.; Shen, S.; Li, Y.; Guan, H.; Tang, C.; Gao, Z.; Lu, W.; Ye, S.; et al. Lunar
Penetrating Radar onboard the Chang’e-3 mission. Res. Astron. Astrophys. 2014, 14, 1607–1622. [CrossRef]

3. Su, Y.; Fang, G.; Feng, J.; Xing, S.; Ji, Y.; Zhou, B.; Gao, Y.; Li, H.; Dai, S.; Xiao, Y.; Li, C. Data processing and
initial results of Chang’e-3. lunar penetrating radar. Res. Astron. Astrophys. 2014, 14, 1623–1632. [CrossRef]

4. Zhang, J.; Yang, W.; Hu, S.; Lin, Y.; Fang, G.; Li, C.; Peng, W.; Zhu, S.; He, Z.; Zhou, B.; Lin, H.; et al. Volcanic
history of the Imbrium basin: A close-up view from the lunar rover Yutu. Proc. Natl. Acad. Sci. USA 2015,
112, 5342–5348. [CrossRef] [PubMed]

5. Fa, W.; Zhu, M.; Liu, T.; Plescia, J. Regolith stratigraphy at the Chang’E-3 landing site as seen by lunar
penetrating radar. Geophys. Res. Lett. 2016, 42, 179–187. [CrossRef]

6. Lai, J.; Xu, Y.; Zhang, X.; Tang, Z. Structural analysis of lunar subsurface with Chang’E-3 lunar penetrating
radar. Planet. Space Sci. 2016, 120, 96–102. [CrossRef]

7. Zhang, L.; Zeng, Z.; Li, J.; Huang, L.; Huo, Z.; Zhang, J.; Huai, N. A Story of Regolith Told by Lunar
Penetrating Radar. Icarus 2019, 321, 148–160. [CrossRef]

8. Dong, Z.; Fang, G.; Ji, Y.; Gao, Y.; Wu, C.; Zhang, X. Parameters and structure of lunar regolith in Chang’E-3
landing area from lunar penetrating radar (LPR) data. Icarus 2016, 282, 40–46. [CrossRef]

9. Zhang, L.; Zeng, Z.; Li, J.; Huang, L.; Huo, Z.; Wang, K.; Zhang, J. Parameter Estimation of Lunar Regolith
from Lunar Penetrating Radar Data. Sensors 2018, 18, 2907. [CrossRef]

10. Gao, Y.; Dong, Z.; Fang, Y.; Ji, Y.; Zhou, B. The Processing and Analysis of Lunar Penetrating Radar Channel-1
Data from Chang’E-3. J. Radars 2016, 4, 518–526.

11. Li, C.; Xing, S.; Lauro, S.E.; Su, Y.; Dai, S.; Feng, J.; Cosciotti, B.; Di Paolo, F.; Mattei, E.; Xiao, Y.; Ding, C.
Pitfalls in GPR Data Interpretation: False Reflectors Detected in Lunar Radar Cross Sections by Chang’e-3.
IEEE Trans. Geosci. Remote Sens. 2017, 56, 99–199.

12. Fomel, S. Local seismic attributes. Geophysics 2007, 72, 29–33. [CrossRef]
13. Fomel, S. Shaping regularization in geophysical-estimation problems. Geophysics 2007, 24, 29–36. [CrossRef]
14. Liu, G.; Fomel, S.; Jin, L.; Chen, X. Stacking seismic data using local correlation. Geophysics 2009, 74, 43–48.

[CrossRef]
15. Liu, G.; Fomel, S.; Chen, X. Time-frequency characterization of seismic data using local attributes. Geophysics

2009, 76, 23–24. [CrossRef]
16. Chen, Y.; Jiao, S.; Ma, J.; Chen, H.; Zhou, Y.; Gan, S. Ground-roll noise attenuation using a simple and

effective approach based on local band-limited orthogonalization. IEEE Geosci. Remote Sens. Lett 2015, 12,
1–5. [CrossRef]

17. Chen, Y.; Fomel, S. Random noise attenuation using local signal-and-noise orthogonalization. Geophysics
2015, 80, 23–24. [CrossRef]

18. Wang, Z.; Zeng, Z.; Xue, J.; Liu, S. The Application of KL Transform to Remove Horizontal Coherent Noise in
GPR Record. J. Jiling Univ. 2005, 35, 127.

19. Huo, Z.; Wang, M. The Application of KL Transform to Remove Direct Wave in Ground Penetrating Radar
Records. In Proceedings of the Fourth International Conference on Image and Graphics (ICIG 2007), Sichuan,
China, 22–24 August 2007. [CrossRef]

20. Fomel, S.; Liu, Y. Seislet transform and seislet frame. Geophysics 2010, 75, 25–38. [CrossRef]
21. Liu, Y.; Fomel, S.; Liu, C.; Wang, D.; Liu, L.; Feng, X. High-order seislet transform and its application of

random noise attenuation. Chin. J. Geophys. 2009, 52, 2142–2151.
22. Chen, Y.; Fomel, S.; Hu, J. Iterative deblending of simultaneous-source seismic data using seislet-domain

shaping regularization. Geophysics 2013, 79, 179–189. [CrossRef]
23. Liu, C.; Li, P.; Liu, Y.; Wang, D.; Feng, X.; Liu, D. Iterative data interpolation beyond aliasing using seislet

transform. Chinese J. Geophys. 2013, 56, 1619–1627.
24. Chen, Y.; Zhang, L.; Mo, L. Seismic data interpolation using nonlinear shaping regularization. J. Seism Explor

2015, 24, 327–342.

http://dx.doi.org/10.1126/science.1259866
http://www.ncbi.nlm.nih.gov/pubmed/25766228
http://dx.doi.org/10.1088/1674-4527/14/12/009
http://dx.doi.org/10.1088/1674-4527/14/12/010
http://dx.doi.org/10.1073/pnas.1503082112
http://www.ncbi.nlm.nih.gov/pubmed/25870265
http://dx.doi.org/10.1002/2015GL066537
http://dx.doi.org/10.1016/j.pss.2015.10.014
http://dx.doi.org/10.1016/j.icarus.2018.11.006
http://dx.doi.org/10.1016/j.icarus.2016.09.010
http://dx.doi.org/10.3390/s18092907
http://dx.doi.org/10.1190/1.2437573
http://dx.doi.org/10.1190/1.2433716
http://dx.doi.org/10.1190/1.3085643
http://dx.doi.org/10.1190/geo2010-0185.1
http://dx.doi.org/10.1109/LGRS.2015.2475280
http://dx.doi.org/10.1190/geo2014-0227.1
http://dx.doi.org/10.1109/ICIG.2007.173
http://dx.doi.org/10.1190/1.3380591
http://dx.doi.org/10.1190/geo2013-0449.1


Electronics 2019, 8, 573 16 of 16

25. Morgan, G.A.; Campbell, B.A.; Campbell, D.B.; Hawke, B.R. Investigating the stratigraphy of Mare Imbrium
flow emplacement with Earth-based radar. J. Geophys. Res.-Planets 2016, 121, 1498–1513. [CrossRef]

26. Heiken, G.H.; Vaniman, D.T.; French, B.M. Lunar Source Book: A Users Guide to the Moon; Cambridge University
Press: Cambridge, UK, 1991; p. 753.

27. Yuan, Y.; Zhu, P.; Zhao, N.; Xiao, L.; Garnero, E.; Xiao, Z.; Zhao, J.; Qiao, L. The 3D geological model around
Chang’E-3 landing site based on lunar penetrating radar Channel-1 data: 3D Geological model of CE-3
landing site. Geophys. Res. Lett 2017, 44, 13. [CrossRef]

28. Chen, Y.; Fomel, S. Random noise attenuation using local similarity. In SEG Technical Program Expanded
Abstracts 2014; Society of Exploration Geophysicists: Tulsa, OK, USA, 2014; pp. 4360–4365. [CrossRef]

29. Sweldens, W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput.
Harmon. Anal. 1996, 3, 186–200. [CrossRef]

30. Fomel, S. Applications of plane-wave destruction filters. Geophysics 2002, 67, 1946–1960. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/2016JE005041
http://dx.doi.org/10.1002/2017GL073589
http://dx.doi.org/10.1190/segam2014-0594.1
http://dx.doi.org/10.1006/acha.1996.0015
http://dx.doi.org/10.1190/1.1527095
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Data Preprocessing 
	Weak Signal Extraction Method Based on Local Correlation 

	Simulated Data Test 
	Results 
	Discussions 
	Conclusions 
	Review of the K-L Transform 
	Review of the ST 
	References

