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Abstract: For multiple-antenna systems, the technologies of joint symbol and channel parameter
estimation have been developed in recent works. However, existing technologies have a number of
problems, such as performance degradation and the large cost of prior information. In this paper,
a tensor space-time coding scheme in multiple-antenna systems was considered. This scheme allowed
spreading, multiplexing, and allocating information symbols associated with multiple transmitted
data streams. We showed that the received signal was formulated as a third-order tensor satisfying
a Tucker-2 model, and then a robust semi-blind receiver was developed based on the optimized
Levenberg–Marquardt (LM) algorithm. Under the assumption that the instantaneous channel state
information (CSI) is unknown at the receiving end, the proposed semi-blind receiver jointly estimates
the information symbol and channel parameters efficiently. The proposed receiver had a better
estimation performance compared with existing semi-blind receivers, and still performed well when
the channel became strongly correlated. Moreover, the proposed semi-blind receiver could be
extended to the multi-user massive multiple-input multiple-output (MIMO) system for joint symbol
and channel estimation. Computer simulation results were shown to demonstrate the effectiveness of
the proposed receiver.

Keywords: multiple-antenna systems; third-order tensor; Tucker-2 model; semi-blind receiver;
optimized LM algorithm

1. Introduction

Multiple-antenna techniques are well known to provide spatial diversity and multiplexing
gains [1–3]. Over the last few decades, the benefits of multiple-antenna communications have been
verified in both theory and practice. On the other hand, tensor-based signaling approaches that
utilize several signal dimensions such as time, space, and code, are seen as good technologies
for improving the information transmission rate and enhancing communication reliability [4–6].
Against this background, the problem of joint symbol and channel estimation is resolved by using
tensor-based signaling approaches, and a number of semi-blind or blind receivers have been proposed
for multiple-input multiple-output (MIMO) systems.

A parallel factor (PARAFAC) [7] based receiver is proposed in [8] by using the Khatri–Rao
space-time (KRST) coding scheme, which can achieve a flexible tradeoff between error performance
and transmission efficiency. In [9], the authors extend the KRST coding scheme by using the
linear constellation precoding, and then developing several semi-blind receivers. These semi-blind
receivers allow a joint symbol and channel estimation without requiring pilot sequences for the
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instantaneous channel state information (CSI) acquisition. In [10], the authors develop a new
tensor-based receiver in MIMO relay systems for channel estimation by using PARAFAC analysis.
A low complexity PARAFAC-based channel estimation scheme for non-regenerative MIMO relay
systems is developed in [11]. In [12], a novel semi-blind receiver is derived using a multiple KRST
coding scheme for joint symbol and channel estimation. More recently, a nested PARAFAC-based
receiver for cooperative MIMO communications is proposed in [13], and three-step and double
two-step alternating least squares (ALS) algorithms are proposed to fit the nested PARAFAC model for
estimating system parameters. For millimeter wave (mmWave) massive MIMO systems, a PARAFAC
decomposition-based algorithm is developed in [14] to jointly estimate channel parameters of multiple
users. In [15], the algorithm in [14] is extended to mmWave MIMO orthogonal frequency division
multiplexing (MIMO-OFDM) systems for channel estimation, and Cramér–Rao bound (CRB) results
for channel parameters are also derived. Considering the channel estimation issue in the presence
of pilot contamination for multi-cell massive MIMO systems, a new PARAFAC-based approach is
proposed in [16] to jointly estimate directions of arrival, fading coefficients, and delays. Although
these works [8–16] consider different design approaches, their common feature is using the PARAFAC
model, which needs to know the first column or row of one loading matrix to eliminate scaling
ambiguity. Furthermore, the ALS algorithm used in these receivers exhibits a convergence problem
when ill-conditioned factor matrices exist [17].

In contrast to the ALS algorithm, the Levenberg–Marquardt (LM) algorithm updates all the
parameters to be estimated at the same time. The LM algorithm is successfully used to fit some tensor
models, adapt to collinearity problems, and provide quadratic convergence [18–20]. A LM algorithm
is first proposed for fitting PARAFAC model in [18]. In [19], the authors present a LM algorithm to the
decomposition of the Block Component Model (BCM) in the uplink of a wideband direct-sequence
code-division multiple access (DS-CDMA) systems. Recently, a LM algorithm was developed in [20]
to jointly estimate information symbol and channel matrices for a generalized PARATUCK2 model.
As an iterative algorithm, the LM algorithm is also sensitive to initialization. Thus, the optimization of
the initial value is important to improve the performance of the LM algorithm.

In [21], a tensor-based space-coding scheme using PARATUCK2 model is developed. For the
PARATUCK2 model, the number of channel uses can be different from one transmitted data stream to
another. In [22], a generalized PARATUCK2 model is proposed by exploiting a tensor space-time (TST)
coding. Recently, a Kronecker product least squares (KPLS) receiver is proposed in [23] to estimate the
symbol and channel matrices. More recently, it is shown in [24] that a KPLS receiver can be extended
to all the tensor-based systems. Although the KPLS receiver is a non-iterative and low-complexity
solution, it needs the related core tensor unfolding to be right-invertible, which is a relatively harsh
condition in signal design.

Inspired by [21] and [22], we considered a simple tensor space-time coding scheme for
multiple-antenna systems, along with an efficient receiver. The allocation factor and the space-time
code factor in the TST coding scheme in [22] are independent, while the allocation factor in our coding
scheme is also a three-dimensional space-time code factor. Thanks to the special structure of the
proposed coding scheme, the received signal can be constructed as a Tucker-2 model [25,26], which
has uniqueness property under some suitable conditions. Then, a robust semi-blind receiver based
on optimized LM algorithm is presented for joint channel and symbol estimation. Uniqueness and
identifiability issues for the constructed Tucker-2 model are also discussed in this paper. Compared
with existing receivers, the proposed receiver has a better estimation performance. Moreover,
the proposed semi-blind receiver can be extended to the multi-user massive MIMO system. For the
low-rank channel,the proposed receiver still has good performance for joint symbol and channel
estimation even in the shorter length of code and information symbol, and larger number of
data streams.

The organization of this paper is as follows. Section 2 presents a brief overview of the Tucker
model. In Section 3, the system model is presented and the associated tensor signal model is formulated.
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Section 4 briefly reviews the receiver with the ALS algorithm and describes the proposed semi-blind
receiver based on the optimized LM algorithm. Section 5 extends the proposed semi-blind receiver
to multi-user massive MIMO systems for joint symbol and channel estimation. In Section 6, some
simulation results are shown to demonstrate the performance of our semi-blind receiver. Conclusions
are drawn in Section 7.

Notation: Scalars, vectors, matrices, and tensors are denoted by lower-case letters (a, b, · · ·),
boldface lower-case letters (a, b, · · ·), boldface capitals (A, B, · · ·), and underlined boldface capitals
(A, B, · · ·), respectively. AT , AH , A−1, and A† represent transpose, conjugate transpose, inverse, and
Moore–Penrose pseudo-inverse of the matrix A, respectively. ‖A‖F denotes the Frobenius norm of A.
IM denotes the M×M identity matrix. The operator vec (·) stacks the columns of its matrix argument
to a vector, while unvec (·) represents the inverse vectorization operation. The Kronecker matrix
product is denoted by ⊗. The term Di (A) corresponds the diagonal matrix out of the i-th row of A.

2. Tucker Model

This section first presents a brief overview of the Tucker model, and then focuses on the Tucker-2
model used in this work. For an Nth-order tensor T ∈ CI1×···×IN , a Tucker-N model or Tucker model
is defined in the following scalar form as [26]:

ti1,...,iN =
R1

∑
r1=1
· · ·

RN

∑
rN=1

gr1,...,rN

(
a(1)i1,r1

× · · · × a(N)
iN ,rN

)
=

R1

∑
r1=1
· · ·

RN

∑
rN=1

gr1,...,rN

N

∏
n=1

a(n)in ,rn

(1)

where in = 1, . . . , In for n = 1, . . . , N, a(n)in ,rn
and gr1,...,rN stand for typical elements of the matrix

factor A(n) ∈ CIn×Rn and the core tensor G ∈ CR1×···×RN , respectively. Using the mode-n product
representation, the model (1) can be written as:

T = G×1A(1)×2A(2)×3 · · · ×NA(N)

= G×N
n=1 A(n)

(2)

where G×nA(n) denotes the mode-n product of G and A(n) along the Nth mode, gives a tensor W of
dimensions R1 × · · · × Rn−1 × In × Rn+1 × · · · × RN such that:

wr1,...,rn−1,in ,rn+1,...,rN =
Rn

∑
rn=1

a(n)in ,rn
gr1,...,rn−1,rn ,rn+1,...,rN (3)

where wr1,...,rn−1,in ,rn+1,...,rN is a typical element of the tensor W. It has been known that the Tucker model
is not essentially unique [26], which restricts its application. Their matrix factors can be only determined
up to nonsingular transformations characterized by nonsingular matrices. However, some low-order
Tucker models with special structures are unique up to permutation and/or scaling ambiguities.

Assuming N = 3 and A(3) = II3 for the third-order tensor T ∈ CI1×I2×I3 , we have:

ti1,i2,i3 =
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

gr1,r2,r3

3

∏
n=1

a(n)in ,rn

=
R1

∑
r1=1

R2

∑
r2=1

gr1,r2,i3 a(1)i1,r1
a(2)i2,r2

.

(4)
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This model is called Tucker-2 model or Tucker-(2, 3) model, and is widely applied in data analysis
and parameter estimation [4]. A(1) and A(2) are the two loading matrices, and G is the core tensor.
In the same way, such a model can be written in terms of mode-n product as:

T = G×1A(1)×2A(2)×3II3

= G×2
n=1 A(n).

(5)

3. System Model

Consider a multiple-antenna system with MS transmit antennas and MD receive antennas as
shown in Figure 1. hmD ,mS represents the channel coefficient between the mS-th transmit antenna and
the mD-th receive antenna ( mS = 1, . . . , MS, mD = 1, . . . , MD). sn,r represents the n-th symbol of the
r-th data stream (n = 1, . . . , N, r = 1, . . . , R), with each data stream being formed of N information
symbols. Each symbol sn,r is coded by a three-dimensional space-time code bmS ,r,p (p = 1, . . . , P),
whose dimensions are the numbers of transmit antennas, data streams, and chips, respectively. We then
define the antenna-to-slot allocation factor qp,mS , which is 0 or 1. Both the transmitter and the receiver
know these factors bmS ,r,p and qp,mS .

Antenna-to-
slot 

allocation

S
Three-

dimensional
spreading

.

.

.

.

.

.

.

.

.

H

Joint 
symbol

and
channel 

estimation 

Received
signal
tensor

.

.

.

Ŝ

Ĥ

S
M

1
1

P

1

R D
M

1
Transmitter Receiver

Figure 1. Block-diagram of the system model.

The signal transmitted from mS-th transmit antenna, during the n-th symbol period of the p-th
chip, is given by:

xmS ,n,p =
R

∑
r=1

qp,mS bmS ,r,psn,r (6)

where sn,r and qp,mS are (n, r)-th and (p, mS)-th elements of signal matrix S ∈ CN×R and the
antenna-to-slot allocation matrix Q ∈ CP×MS , respectively. xmS ,n,p and bmS ,r,p are typical elements
of the transmitted signal tensor X ∈ CMS×N×P and the coding tensor B ∈ CMS×R×P, respectively.
The elements in B are chosen as e

√
−1ς

/
2π , where ς is taken from random uniformly distributed

pseudorandom numbers. In our tensor coding scheme, the number of transmitted data streams is not
restricted to be equal to that of transmit antennas, and the data streams can be allocated to an arbitrary
set of transmitted antennas. Without considering the allocation of stream-to-slot, the coding scheme
in [21] can be regarded as a special case of our tensor coding scheme with a fixed two-dimensional
space-time code.
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Assuming Rayleigh flat fading channels, then the discrete-time baseband signal at the mD-th
receive antenna can be written as:

ymD ,n,p =
MS

∑
mS=1

hmD ,mS xmS ,n,p + vmD ,n,p

=
MS

∑
mS=1

R

∑
r=1

hmD ,mS qp,mS bmS ,r,psn,r + vmD ,n,p

(7)

where hmD ,mS is the (mD, mS)-th element of channel matrix H ∈ CMD×MS , ymD ,n,p and vmD ,n,p

are typical elements of the received signal tensor Y ∈ CMD×N×P and the noise tensor V ∈
CMD×N×P, respectively.

3.1. Constructed Tucker-2 Model

Let us define cmS ,r,p = qp,mS bmS ,r,p, where cmS ,r,p is the typical element of the compound tensor
C ∈ CMS×R×P. So Equation (7) can be written as:

ymD ,n,p =
MS

∑
mS=1

R

∑
r=1

hmD ,mS cmS ,r,psn,r + vmD ,n,p. (8)

By comparing Equation (4) with Equation (8), the received signal tensor Y ∈ CMD×N×P of
noiseless signals satisfies a Tucker-2 model , with the following correspondences:(

G, A(1), A(2)
)
⇔ (C, H, S) (9)

(I1, I2, R1, R2, I3)⇔ (MD, N, MS, R, P) . (10)

Using the mode-n product representation, the model (8) can be written as:

Y = C×1H×2S + V (11)

where S and H represent the two loading matrices, and C is the core tensor.
Let us define Y··p ∈ CMD×N , B··p ∈ CMS×R, C··p ∈ CMS×R and V··p ∈ CMD×N as the p-th matrix

slice of Y ∈ CMD×N×P, B ∈ CMS×R×P, C ∈ CMS×R×P, and V ∈ CMD×N×P, respectively. We have
C··p = Dp (Q)B··p. By defining Y1 =

[
YT
··1, . . . , YT

··P
]T ∈ CPMD×N , Y2 = [Y··1, . . . , Y··P]

T ∈ CPN×MD ,
Y3 = [vec (Y··1) , . . . , vec (Y··P)] ∈ CMD N×P, and Y4 =

[
vec
(
YT
··1
)

, . . . , vec
(
YT
··P
)]
∈ CNMD×P, we can

obtain four compact forms of the Tucker-2 model (11):

Y1 = (IP ⊗H) F1ST + V1 (12)

Y2 = (IP ⊗ S) F2HT + V2 (13)

Y3 = (S⊗H) F3 + V3 (14)

Y4 = (H⊗ S) F4 + V4 (15)



Electronics 2019, 8, 550 6 of 22

with,

F1 =
[
BT
··1D1 (Q) , . . . , BT

··PDP (Q)
]T

F2 = [D1 (Q)B··1, . . . , DP (Q)B··P]
T

F3 = [vec (D1 (Q)B··1) , . . . , vec (DP (Q)B··P)]

F4 =
[
vec
(

BT
··1D1 (Q)

)
, . . . , vec

(
BT
··PDP (Q)

)] (16)

and,

V1 =
[
VT
··1, . . . , VT

··P

]T

V2 = [V··1, . . . , V··P]
T

V3 = [vec (V··1) , . . . , vec (V··P)]

V4 =
[
vec
(

VT
··1

)
, . . . , vec

(
VT
··P

)]
.

(17)

In this paper, two following assumptions are satisfied.
(a) The antenna-to-slot allocation matrix Q does not have an all-zero column. This means that at

least one transmit antenna is used during each time slot;
(b) Both the transmitter and receiver know the allocation matrix Q and the coding tensor B.

3.2. Uniqueness Issue

Due to the loading matrices factors being unique up to nonsingular matrices, the generalized
Tucker-2 model is not essentially unique. This consequence can be verified by using the property of
the mode-n product:

C×1H×2S=C×1

(
HΘHΘ−1

H

)
×2

(
SΘSΘ−1

S

)
=C×1Θ−1

H ×2Θ−1
S ×1 (HΘH)×2 (SΘS)

(18)

where the noise tensor V has been omitted for convenience of notation, ΘS ∈ CR×R and ΘH ∈ CMS×MS

are nonsingular matrices.
It is shown that applying the uniqueness theorem of the Tucker model in [25], if the core tensor C

is known, then S and H are unique to a scaling ambiguity, i.e.,

(S, H) =
(

S̄Θ
−1
S , H̄Θ

−1
H

)
(19)

where S̄ and H̄ are alternative solutions for S and H, respectively, ΘS = βIR and ΘH=
(
1
/

β
)

IMS .
Consequently, the priori knowledge of only one symbol is enough to resolve this scaling ambiguity
factor β. Compared to the PARAFAC model used in existing receivers, the constructed Tucker-2 model
only needs a priori knowledge of one symbol to eliminate the scaling ambiguity. Therefore, our scheme
has higher spectral efficiency.

3.3. Identifiability Conditions

The identifiability for the constructed Tucker-2 model is an assignable problem for recovering the
parameters to be estimated. In this paper, it is directly linked to the estimation of the signal matrix
S and channel matrix H from the received signal tensor Y. Conditions of parameter identifiability is
given in the following theorem.
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Theorem 1. (Sufficient Conditions): Assuming that H has independent and identically distributed (i.i.d.)
entries, and S has a full column rank. P1 denotes the number of nonzero elements in Q. Then sufficient
conditions for identifiability of signal matrix S and channel matrix H are:

P1 > R and min (MD, R) > MS. (20)

Proof of Theorem 1. From Equation (12) and Equation (13), necessary and sufficient conditions for
identifiability of S and H requires that (IP ⊗H) F1 and (IP ⊗ S) F2 have a full column rank, i.e.

Rank ((IP ⊗H) F1) = R (21)

Rank ((IP ⊗ S) F2) = MS. (22)

Under the assumptions in Theorem 1 that H has i.i.d. entries, MD > MS can ensure H has a
full column rank. Since IP and H have a full column-rank, then IP ⊗H has a full column rank, i.e.,
Rank (IP ⊗H) = PMS. Therefore, Equation (21) is satisfied if F1 has a full column rank. We rewrite F1

from Equation (15) as:

F1 = diag
(

vec
(

QT
))

B1 (23)

where B1 =
[
BT
··1, . . . , BT

··P
]T . Due to B1 being a specially constructed matrix with different generators,

any two rows (or two columns) of B1 are linearly independent. If the number of non-zero rows of F1 is
greater than or equal to the number of columns of F1 (i.e. P1 > R), then F1 is full column rank. Thus,
MD > MS and P1 > R can ensure that condition (21) is satisfied.

Since S has a full column rank, we can deduce that Rank (IP ⊗ S) = PR. Thus, condition (22) is
satisfied if F2 has a full column rank. We rewrite F2 from Equation (16) as:

F2 = BT
2 QP (24)

where B2 = blk [B··1, . . . , B··P] and QP = [D1 (Q) , . . . , DP (Q)]T . Recall that Q does not have an
all-zero column, which means that QP has a full column rank. We have that F2 is full column rank
if B2 is full row rank. Since B2 has the block diagonal structure and B··p has different generators,
R > MS ensures that B2 has full row rank. Therefore, R > MS can ensure that condition (22) is satisfied.
This ends the proof.

Remark 1. The conditions in Theorem 1 is sufficient but not necessary for parameter identifiability. Sufficient
condition (21) and condition (22) also concern the ALS algorithm. In fact, identifiability of signal and channel
parameters is possible in our simulation results when MS > R. Necessary conditions for parameter identifiability
is based on the dimensions of (IP ⊗H) F1 and (IP ⊗ S) F2. If the channel matrix H does not have a full column
or row rank, i.e., L < min (MS, MD), where L is the rank of the channel matrix H. Thus, identifiability
conditions of Theorem 1 are no longer applicable because of the low-rank property of H. However, we can also
deduce identifiability conditions based on Equations (21) and (22), i.e., necessary and sufficient conditions for
identifiability of S and H requires that (IP ⊗H) F1 and (IP ⊗ S) F2 have full column rank. For this case, we
will do further analysis in Section 5.

4. Semi-Blind Receiver

The ALS algorithm is a classical solution for fitting tensor models. However, it is well known
that the ALS algorithm exhibits a convergence problem when collinearity is present in one or more
modes [27,28]. The LM algorithm is successfully used to fit the PARAFAC and PARATUCK2 models,
adapted to collinearity problems, and provide quadratic convergence [19,20]. As an iterative algorithm,
the LM algorithm is also sensitive to initialization. Thus, the optimization of the initial value is
important to improving the performance of the LM algorithm.
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In this section, a novel semi-blind receiver based on the optimized LM algorithm is developed for
joint symbol and channel estimation. The basic principle of the optimized LM algorithm is to first resort
to a LSK approximation problem [29,30], based on the singular value decomposition (SVD) of rank-1
matrix to initialize the symbol and channel matrices, and then update these two matrices at the same
time in each iteration. Finally, the modified singular value projection (SVP) based algorithm [31,32] is
used to further improve the performance of channel estimation.

The proposed optimal initialization method is based on the Kronecker least squares algorithm,
which exploits SVD-based rank-one approximations to get an initial estimation of S and H from their
Kronecker matrix product.

By post-multiplying Equation (14) with F†
3, we get Z =

(
Ŝ(0) ⊗ Ĥ(0)

)
= Y3F†

3 ∈ CNMD×RMS ,

where Ŝ(0) and Ĥ(0) are initial estimates of S and H. According to the Theorem 2.1 in [29], we have:

∥∥∥Z− Ŝ(0) ⊗ Ĥ(0)
∥∥∥2

F
=

∥∥∥∥Ξ− vec
(

Ĥ(0)
) (

vec
(

Ŝ(0)
))T

∥∥∥∥2

F
(25)

where Ξ = unvec(∆) ∈ CMD MS×NR is a rank-one matrix, and ∆ ∈ CNMD RMS×1 is, given that:

∆ =



vec(Z(1 : MD, 1 : MS))

...

vec(Z((N − 1)MD + 1 : NMD, 1 : MS))

...

vec(Z(1 : MD, (R− 1)MS + 1 : RMS))

...

vec(Z((N − 1)MD + 1 : NMD, (R− 1)MS + 1 : RMS))



(26)

In this case, the Kronecker product matrix Z has been rearranged into a rank-one matrix Ξ.
Applying SVD to the rank-one matrix Ξ, the vectors vec

(
Ŝ(0)

)
and vec

(
Ĥ(0)

)
can be estimated

by using a rank-one approximation method, i.e., by computing its largest singular value and the
corresponding left and right singular vectors. Ŝ(0) and Ĥ(0) are determined up to a scaling factor,
which can be removed by setting s1,1 = 1 as in [27,30]. The detailed process is shown below.

By applying SVD to the rank-one matrix Ξ, we have:

Ξ = UΣVH (27)

where Σ ∈ CMD MS×NR is a diagonal matrix containing singular values of Ξ, U ∈ CMD MS×MD MS and
V ∈ CNR×NR are unitary matrices. Using the rank-one approximation of Ξ, we have:

Ξ ≈ U·1σ1VH
·1 (28)

where σ·1 is the largest singular value, and U·1 and V·1 are the corresponding left and right singular
vectors. Thus, vectors vec

(
Ŝ(0)

)
and vec

(
Ĥ(0)

)
can be estimated as:

vec
(

Ŝ(0)
)
= αV∗·1, vec

(
Ĥ(0)

)
=

σ1

α
U·1 (29)

where α is the scalar factor. vec
(

Ŝ(0)
)

and vec
(

Ĥ(0)
)

are determined up to this scalar factor.
In practical communication systems, this scalar factor α can be removed by setting s1,1 = 1. Thus,
the value α in this paper is equal to 1

v∗1.1
when s1,1 = 1. Note that we can also choose Equation (14) to

implement the above optimal initialization procedure.
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Define a parameter vector stacking all the unknowns as:

u =
[
uT

S , uT
H

]T
∈ CQ×1 (30)

where uS = vec
(
ST) ∈ CNR×1, uH = vec

(
HT) ∈ CMD MS×1, and Q = NR + MD MS. The cost

function to be minimized is given by:

φ (u) =
1
2

MD

∑
mD=1

N

∑
n=1

P

∑
p=1

∣∣ỹmD ,n,p (u)− ymD ,n,p
∣∣2

=
1
2

L

∑
l=1
|zl (u)|2 =

1
2

zH (u) z (u)

(31)

where ỹmD ,n,p (u) is the typical element of the tensor Ỹ (u) ∈ CMD×N×P, which denotes the output
tensor in absence of noise. z (u) = vec

(
Ỹ (u)

)
− vec (Y) = ỹ (u)− y ∈ CNPMD×1 denotes the vector

of residuals and L = NPMD.
Let the J ∈ CL×Q be the Jacobian matrix of z (u) with respect to u, and g be the gradient of φ (u)

with respect to u. J and g are respectively defined by:

Jl,q = ∂zl (u)
/

∂uq = ∂ỹl (u)
/

∂uq (32)

g = ∂φ (u)
/

∂u = JH (u) z (u) . (33)

The optimized LM algorithm consists in optimizing u(0), and estimating u(i+1) at the (i + 1)-th
iteration from u(i) at the i-th iteration via u(i+1) = u(i) + ∆u(i). The step ∆u(i) ∈ CNPMD×1 is updated
by solving the following modified normal equations:

(
J(i)

H
J(i) + λ(i)IQ

)
∆u(i) = − g(i) (34)

where λ(i) is the damping parameter to ensure that ∆u(i) is a descent direction. The whole procedure
of the optimized LM algorithm used in our semi-blind receiver is listed in Algorithm 1.

Due to the partitioned structure of u, the Jacobian matrix J can be written as J = [JuS , JuH ], where
JuS ∈ CNPMD×NR and JuH ∈ CNPMD×MD MS are respectively given by:

JuS = IN ⊗ ((IP ⊗H) F1) (35)

JuH = Π
(
IMD ⊗ ((IP ⊗ S) F2)

)
. (36)

The permutation matrix Π ∈ CNPMD×MD PN is given by:

Π =
MD

∑
mD=1

N

∑
n=1

e(N)
n

(
e(MD)

mD

)T
⊗ IP ⊗ e(MD)

mD

(
e(N)

n

)T
(37)

where e(N)
n and e(MD)

mD are the n-th and mD-th column vectors of the identity matrices IN and
IMD , respectively.
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Algorithm 1 The optimized LM algorithm
First stage:
• Compute the LS estimate of Z: Z = Y3 (F3)

†;
• Rearrange Z to a rank-one matrix Ξ;
• Apply the SVD on Ξ: SVD (Ξ) = UΣVH ;
• Calculate initialization matrices S(0) and H(0) :
S(0) = unvec

(
V∗·1
/

v∗1,1

)
, H(0) = unvec

(
σ1U·1v∗1,1

)
.

Second stage :

Initialization: Initialize u(0) =
[
uT

Ŝ(0) , uT
Ĥ(0)

]T
, λ(0) = max

(
diag

(
J(0)HJ(0)

))
and τ = 2; set ε = 10−5

and i = 1;
while

∣∣∣φ (u(i)
)
− φ

(
u(i−1)

)∣∣∣/∣∣∣φ (u(i)
)∣∣∣ > ε do

Step 1. Compute J(i)
H

J(i) and g(i) respectively;
Step 2. Compute ∆u(i):

∆u(i) = −
(

J(i)
H

J(i) + λ(i)IQ

)−1
g(i);

Step 3. Update u(i+1): u(i+1) = u(i) + ∆u(i);

Step 4. Calculate the gain rate α: α =
φ(u(i+1)) - φ(u(i))

δ(i)
, where δ(i) =

(
J(i)∆u(i)

)H
z
(

u(i)
)

+
1

2‖J(i)∆u(i)‖2
F

;

Step 5. Update λ : If α > 0, u(i+1) is ture, and set λ(i+1) = λ(i) max
(

1− (2α− 1)3, 1/3
)

and τ = 2.

Otherwise, u(i+1) is invalid, and set λ(i+1) = τλ(i) and τ ← 2τ;
Step 6. i← i + 1;
end
Acquire S(∞) and H(∞): S(∞) =

(
unvec

(
u(∞)

S

))T
, H(∞) =

(
unvec

(
u(∞)

H

))T
.

Compute H(∞)
new: If L < min (MS, MD), H(∞)

new = SVP
(

H(∞)
)

. Otherwise, H(∞)
new = H(∞).

Remove the scaling ambiguity: Ŝ( f inal) = Ŝ(∞)

ŝ(∞)
1,1

, Ĥ( f inal) = ŝ(∞)
1,1 H(∞)

new.

We can then build the blocks of JHJ as follows:

JHJ =

 JH
uS

JuS JH
uS

JuH(
JH

uS
JuH

)H
JH

uH
JuH

 (38)

The terms JH
uS

JuS , JH
uH

JuH and JH
uS

JuH can be respectively written as:

JH
uS

JuS = IN ⊗
(

FH
1

(
IP ⊗HHH

)
F1

)
(39)

JH
uH

JuH = IMD ⊗
(

FH
2

(
IP ⊗ SHS

)
F2

)
(40)

JH
uS

JuH = (IN ⊗ (IP ⊗H) F1)
HΠ

(
IMD ⊗ (IP ⊗ S) F2

)
. (41)

Similarly, the partitioned structure of u allows us to write g as the concatenation of the following
two gradients:

g =

[
∂φ (u)

/
∂uS

∂φ (u)
/

∂uH

]
=

[
guS

guH

]
(42)
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where guS ∈ CNR×1 and guH ∈ CMD MS×1 are respectively given by:

guS = JH
uS

JuS uS − JH
uS

y (43)

guH = JH
uH

JuH uH − JH
uH

y. (44)

In Algorithm 1, the estimated matrix H(∞) is projected onto a low rank estimated matrix H(∞)
new by

the SVP based algorithm when L < min (MS, MD). Here H(∞)
new is calculated as H(∞)

new = SVP
(

H(∞)
)
=

L
∑

l=1
βlU

(C)
·l

(
V(C)
·l

)H
, where βl denotes the l-th largest singular value of H(∞), U(C)

·l and V(C)
·l are the

corresponding left and right singular vectors. The overall complexity of the optimized LM algorithm
mainly depends on the per-iteration complexity and the numbers of iterations. The per-iteration
complexity of this algorithm can be estimated as O

(
(NR + MD MS)

3
)

. Since the antenna-to-slot
allocation matrix and the coding tensor are fixed and known at the receiver, the convergence of the
optimized LM algorithm is usually achieved in only a few iterations. The average number of iterations
for the optimized LM algorithm will be further analyzed in Section 6.

5. Extension to Multi-User Massive Mimo Systems

In the following section, we show that the developed algorithm can be applied to multi-user
massive MIMO systems with hybrid precoding architecture for joint symbol and channel estimation.
We consider a fully-connected hybrid precoding architecture, which is the typical model of massive
MIMO systems. The base station communicates with M users simultaneously, and each mobile station
is equipped with MD antennas. The base station is equipped with MS antennas and MRF independent
radio frequency chains to transmit R streams for MD receive antennas in each mobile station. In the
considered downlink system, each symbol sn,r is coded by a three-dimensional baseband code b(M)

mRF ,r,p
followed by a radio frequency code emS ,mRF in the base station. At the m-th (m = 1, . . . , M) mobile
station, the discrete-time baseband signal at the mD-th receive antenna is written as:

y(m)
mD ,n,p =

MS

∑
mS=1

MRF

∑
mRF=1

R

∑
r=1

h(m)
mD ,mS qp,mS emS ,mRF bmRF ,r,psn,r + v(m)

mD ,n,p (45)

where emS ,mRF and h(m)
mD ,mS are (mS, mRF)-th and (mD, mS)-th elements of the radio frequency precoder

matrix E ∈ CMS×MRF and the massive MIMO channel matrix H(m) ∈ CMD×MS , respectively. y(m)
mD ,n,p

is the typical element of the received signal tensor Y(m) ∈ CMD×N×P. Then Equation (45) can be
rewritten as:

y(m)
mD ,n,p =

MS

∑
mS=1

R

∑
r=1

h(m)
mD ,mS cmS ,r,psn,r + v(m)

mD ,n,p (46)

where,

cmS ,r,p =
MRF

∑
mRF=1

qp,mS emS ,mRF bmRF ,r,p (47)

Following [33,34], we also adopt a geometric channel model with Lm scatterers between the base
station and the m-th mobile station, Lm = 1, . . . , LM. Under this model, the channel matrix H(m) is
expressed as:

H(m) =
Lm

∑
l=1

α
(m)
l ΛMS

(
θ
(m)
l

)
ΛBS

(
φ
(m)
l

)
aMS

(
θ
(m)
l

)
aH

BS

(
φ
(m)
l

)
(48)
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where α
(m)
l denotes the complex gain of l-th path, θ

(m)
l , and φ

(m)
l are l-th ’s azimuth angles of arrival

and departure (AoAs/AoDs) of the mobile station and base station, respectively. ΛMS

(
θ
(m)
l

)
and

ΛBS

(
φ
(m)
l

)
are receive and transmit antenna array at a specific AoA and AoD, respectively. Finally,

aBS

(
φ
(m)
l

)
and aMS

(
θ
(m)
l

)
are the steering vectors at the base station and mobile station, respectively.

If uniform linear arrays are considered, the steering vectors aBS

(
φ
(m)
l

)
and aMS

(
θ
(m)
l

)
are respectively

given by:

aBS

(
φ
(m)
l

)
= 1

MS
[1, ej 2π

λ d sin φ
(m)
l , · · · , ej 2π

λ d(MS−1) sin φ
(m)
l ]T (49)

aMS

(
θ
(m)
l

)
= 1

MD
[1, ej 2π

λ d sin θ
(m)
l , · · · , ej 2π

λ d(MD−1) sin θ
(m)
l ]T (50)

where λ denotes the signal wavelength, and d is the distance between two neighboring
antenna elements.

Similar to the analysis of Section 3.1, the received signal tensor Y(m) of noiseless signal also
satisfies the Tucker-2 model, and the proposed algorithm in Section 4 remains suitable for joint symbol
and channel estimation at each mobile station. However, two points are important to note here. First,
identifiability conditions of Theorem 1 are no longer applicable because of the low-rank property of
H(m). However, we can deduce new identifiability conditions based on Equations (21) and (22), i.e.,
necessary and sufficient conditions for identifiability of S and H(m) require that

(
IP ⊗H(m)

)
F1 and

(IP ⊗ S) F2 have full column rank. For convenience of analysis, we assume that the antenna-to-slot
allocation matrix is all-ones matrix. Then, we have the following theorem.

Theorem 2. Assuming that the path gains of the low-rank channel H(m) are Rayleigh distributed, and N and
R are large enough. Then sufficient conditions for identifiability of H(m) and S are:

P > max
(

R
Lm

,
MS
N

,
MS
R

)
(51)

Proof of Theorem 2. The channel model H(m) is expressed as Equation (48). The rank of H(m) is Lm,
and the path gains of the H(m) are Rayleigh distributed. F1 is a full rank matrix, which contains
different generators. Consequently, min (PMD, PLm, PMS) > R ensures that (IP ⊗H) F1 have full
column rank. Since H(m) is a low-rank, i.e., Lm < min (MS, MD), P > R

Lm
can ensure (IP ⊗H) F1 has

the full column rank. Since N and R are large enough, and S has the random nature, the rank of S is
equal to N or R. Moreover, F2 is also a full rank matrix because of its special structure. We deduce
that (IP ⊗ S) F2 is full column rank if min (PN, PR) > MS, i.e., P > max

(
MS
N , MS

R

)
. Therefore,

condition (51) can ensure identifiability of H(m) and S. This ends the proof of Theorem 2.

Second, the low-rank property of the mmWave massive MIMO channel should be exploited.
Due to very limited scattering of the mmWave channel and larger quantities of transmitting and
receiving antennas, Lm is usually less than MS and MD. Different from the conventional MIMO channel
matrix that usually has full column or row rank, the rank of the mmWave massive MIMO channel
matrix is much smaller than its dimension. This is called ‘low-rank property’ of the mmWave massive
MIMO channel matrix. Therefore, the final part of the proposed Algorithm 1 takes advantage of this
low-rank constraint rank

(
H(m)

)
6 Lm to further improve the estimation accuracy of the channel.

6. Simulation Results and Discussion

We studied the performance of the proposed semi-blind receiver through numerical simulations.
The channel matrix H has independent and identically distributed (i.i.d.) complex Gaussian
entries with zero-mean and unit variance. The default values of the system parameters are set to
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MS = MD = 4, and the antenna-to-slot allocation matrix is all-ones matrix. Throughout the simulation,
the coding tensor C is known at the receiver. Quadrature phase-shift keying (QPSK) constellations are
used to modulate the transmitted symbols. All results are averaged over 10,000 independent Monte
Carlo simulations. As in [8,9], the signal-to-noise ratio (SNR) at the receiver is defined as:

SNR = 10log10

(∥∥Ỹ
∥∥2

F

/
‖V‖2

F

)
dB (52)

where Ỹ denotes the noise-free signal tensor (the tensor-of-interest) containing both symbol and
channel parameters. For each channel realization, the normalized mean square error (NMSE) for
different receivers is computed as

∥∥H− Ĥ
∥∥2

F

/
‖H‖2

F, where Ĥ is the estimation of H at convergence.
In the first example, we evaluate the convergence performance of the optimized LM algorithm,

which is used in our semi-blind receiver. We assume the system design parameters N = P = 5 and
R = 3. In Figure 2, the average value of the cost function is plotted versus the number of iterations,
for three SNR values. We observe from Figure 2 that for each SNR value, the cost function decreases as
the number of iterations increases until the algorithm converges. We can also see that for the same
number of iterations, the cost function decreases as SNR increases. The proposed algorithm needs
few iterations to converge. For instance, the optimized LM algorithm achieves convergence in about
10 iterations at the SNR of 20 dB.
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Figure 2. Cost function versus the number of iterations.

In the second example, we evaluated the estimation performance of the proposed semi-blind
receiver in terms of bit error rate (BER) and the NMSE of channel estimation. In particular, we compared
the PARAFAC-based receiver with KRST (P-KRST) coding scheme in [8] and the training-based receiver
with the space-time (TB-ST) coding scheme. For the TB-ST scheme, the symbol matrix is composed of
two parts as in [9], i.e., the training symbol matrix and the unknown data symbol matrix. Ntr denotes
the length of the channel training sequence in the TB-ST receiver.

The transmission rates for the proposed coding scheme and the KRST coding scheme are RN
PN = R

P
and MS N

PN = MS
P (data symbols per symbol period), respectively. However, the KRST coding scheme

needs to know the first column of signal matrix S to eliminate the scaling ambiguity, while the
proposed coding scheme only needs to know s1,1 to eliminate the scaling ambiguity. Thus, the efficient
transmission rates for the proposed coding scheme and the KRST coding scheme are RN−1

PN and
MS(N−1)

PN , respectively. To ensure a fair comparison, the proposed coding scheme and the KRST coding
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scheme should keep the same efficient transmission rate, i.e., N = MS−1
MS−R . Thus, the system design

parameters in this example are set equal to MS = 4, P = 7, and R = N = 3. For TB-ST coding
scheme, we divide P = Ptr + Pd, where blocks Ptr = 2 and Ptr = 5 are used for channel training and
data transmitting. Therefore, the length of the channel training sequence in the TB-ST receiver is
Ntr = Ptr N = 6.

The BER performance of different receivers versus SNR is shown in Figure 3. It can be seen
that the proposed semi-blind receiver outperforms the P-KRST and TB-ST receiver. The NMSE
performance of the different receivers is demonstrated in Figure 4. It can be seen from Figure 4 that the
P-KRST receiver has the best performance of channel estimation, and the proposed semi-blind receiver
yields a smaller NMSE compared with the TB-ST receiver. From [8], the per-iteration complexity
in the PARAFAC based receiver is O (MS MDPN). The complexity of the TB-ST scheme can be
estimated as O (Nr MS (MD + Nr) + RPMD (N + R)). The per-iteration complexity of the proposed
O-LM algorithm is given at the end of Section 4. The TB-ST scheme has the least computational
complexity due to the use of the channel training sequence. Due to the adoption of the simple KRST
coding scheme, the PARAFAC based receiver has lower complexity than that of the proposed receiver.
However, the TB-ST receiver requires a long channel training sequence, the PARAFAC-based receiver
needs to know the first column or row of the signal matrix to eliminate the scaling ambiguity, but the
proposed receiver only needs to know one symbol of the signal matrix.

In the third example, we evaluated and compared the performance of the traditional ALS (T-ALS)
and optimized LM (O-LM) algorithms. We assume the system design parameters N = P = L and
R = 5. Correlated MIMO channel is considered in this example, and the channel matrix H is modeled
as in [35], where ρ denotes the normalized correlation coefficient with magnitude |ρ| ≤ 1. We consider
ρ = 0 (non-correlation) and ρ = 0.8 (strong correlation), respectively. For each Monte Carlo run,
the T-ALS algorithm is initialized with ten different random matrices as in [20,36]. The estimation
performance is evaluated after selecting the best initialization, which is the one that results in the
minimum value of δ(j).
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Figure 3. Bit error rate (BER) performance of different receivers versus signal-to-noise ratio (SNR).

We observe from Figure 5 that the T-ALS and O-LM algorithms give a similar BER and NMSE
performance, which means that these two algorithms converge to the same point. For the right
subfigure of Figure 5, the NMSE of the T-ALS and O-LM algorithms is also shown in Table 1 for the
sake of comparison. We can also observe from Figure 5 that for these two algorithms, BER and NMSE
performance degrade when the channel becomes strongly correlated. The overall complexities of
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the O-LM algorithm and the ALS algorithm depend on the per-iteration complexity and the number
of iterations. The per-iteration complexity of the O-LM algorithm is higher than that of the T-ALS
algorithm. However, because of the robustness of the O-LM algorithm, the O-LM algorithm needs
fewer iterations compared with the T-ALS algorithm. Therefore, the proposed algorithm has lower
complexity compared with the existing T-ALS algorithm. The mean processing times required in
the T-ALS and O-LM algorithms are shown in Figure 6. We observe that the mean processing time
required in the O-LM algorithm is shorter than that of the T-ALS algorithm, especially when the
channel becomes strongly correlated. From Figure 6 we can also observe that the advantage of the
O-LM algorithm is obvious as L decreases from 8 to 7 compared with the T-ALS algorithm.
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Figure 4. Normalized mean square error (NMSE) performance of different receivers versus SNR.
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Figure 5. BER and NMSE performance of traditional alternating least squares (T-ALS) and O-LM
algorithms for different L and ρ.
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Figure 6. The mean processing times required in T-ALS and O-LM algorithms versus SNR.

Table 1. NMSE of the T-ALS and O-LM algorithms.

SNR
(dB) 0 2 4 6 8 10 12 14 16 18 20 22 24

TALS,
L = 8,
ρ = 0

0.3917 0.2265 0.1348 0.0822 0.0514 0.0318 0.0199 0.0124 0.0077 0.0049 0.0030 0.0019 0.0012

O− LM,
L = 8,
ρ = 0

0.3900 0.2253 0.1355 0.0814 0.0503 0.0317 0.0198 0.0124 0.0077 0.0049 0.0030 0.0019 0.0012

TALS,
L = 8,
ρ = 0.8

0.5920 0.3113 0.1803 0.1079 0.0666 0.0407 0.0251 0.0156 0.0100 0.0061 0.0039 0.0024 0.0015

O− LM,
L = 8,
ρ = 0.8

0.5777 0.3090 0.1814 0.1078 0.0664 0.0404 0.0251 0.0161 0.0098 0.0062 0.0039 0.0024 0.0015

TALS,
L = 7,
ρ = 0.8

1.5305 0.6519 0.3055 0.1623 0.1004 0.0570 0.0360 0.0221 0.0139 0.0091 0.0051 0.0034 0.0021

O− LM,
L = 7,
ρ = 0.8

1.4047 0.6228 0.2849 0.1770 0.0952 0.0580 0.0354 0.0221 0.0136 0.0087 0.0055 0.0034 0.0021

In the fourth example, the influence of design parameters (P, R) for the proposed receiver is
studied. In the left subfigure of Figure 7, it can be seen that the BER decreases when P increases, which
expounds the performance gain brought by the time diversity. It can also be seen from this subfigure
that the BER increases as the number of data streams R increases. The impact of design parameters
(P, R) on the NMSE performance is shown in the right subfigure of Figure 7. As expected, we can
observe that the NMSE decreases linearly as a function of P, and increases as R increases. Hence,
appropriate values for the design parameters P and R can be selected according to requirements of the
system performance and transmission rate.

In the fifth example, we assume MS = 3, R = 4, and N = P = 8 for our semi-blind receiver.
The influence of the receive antenna was analyzed. We also compared the performance of our chosen
coding tensor (OCCT) B with the random coding tensor (RCT) whose entries are circularly-symmetric
Gaussian random variables. In Figure 8, it can be seen that both the BER and NMSE decrease when MD
increases, which expounds the performance gain brought by the receive diversity. We also observed
from Figure 8 that OCCT has a better performance than RCT. Although OCCT is suboptimal, this
choice has good symbol and channel identifiability properties, which is advantageous from a receiver
design viewpoint.
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Figure 7. BER and NMSE performance of the proposed receiver for different P and R.

Figure 8. Influence of the receive antenna and the coding tensor.

In the sixth example, we studied the estimation performance of two different transmission
schemes for our semi-blind receiver. The default values of the system parameters were set to MD = 5
and N = 6. In scheme 1, we assume MS = 2, R = 5, and P = 6. Three different antenna-to-slot
allocation matrices are given as follows:
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Q1 =



1 0

0 1

1 0

1 0

0 1

1 0


, Q2 =



0 1

1 1

1 0

0 1

1 1

1 0


, Q3 =



1 1

0 1

1 1

1 0

1 1

1 1


In scheme 2, we assume MS = 3, R = 3, and P = 7. Three different antenna-to-slot allocation matrixes
are given as follows:

Q4 =



1 0 0

1 0 0

1 0 1

1 0 0

0 1 0

0 1 0

1 0 1


, Q5 =



1 0 1

1 1 0

1 1 1

1 1 0

1 1 1

0 1 0

1 1 1


The BER and NMSE performance of the proposed receiver for different schemes is shown in

Figure 9. For scheme 1, the proposed receiver with Q2 has a better BER and NMSE performance than
that of the proposed receiver with Q1. The reason is that the allocation matrix Q2 provides a higher
transmit spatial diversity gain than the allocation matrix Q1. For the same reason, the allocation matrix
Q3 outperforms Q2, and the allocation matrix Q5 outperforms Q4. We also observe in Figure 9 that
scheme 2 has a better BER and NMSE performance than scheme 1. The reason is that scheme 2 can
provide a higher coding diversity than scheme 1. It is worth noting that scheme 1 has higher spectral
efficiency compared with scheme 2. The transmission rates for scheme 1 and scheme 2 are about 5/6
and 3/7 (data symbols per symbol period), respectively. In summary, a desired tradeoff between
estimation performance and transmission rate can be obtained by designing a suitable scheme.

Figure 9. Performances of the proposed receiver for different schemes.
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In final example, the multi-user massive MIMO system with a fully-connected hybrid precoding
architecture was considered, where MS = 48, M × MD = 6× 6, and Lm = 2 for all m = 1, . . . , M.
The carrier frequency of this system is set as 28 GHz [37], and d = λ/2. We assume that AoAs/AoDs
are uniformly distributed in [0, 2π]. For the considering multi-user massive MIMO system, we also
evaluate the estimation performance of the proposed receiver in terms of BER and NMSE of channel
estimation. It can be seen from Figures 10 and 11 that the BER and NMSE of the proposed semi-blind
receiver decrease as P and N increase, and increase as R increases. The increase of P will reduce the
transmission rate, but the increase or decrease of N has no effect on the transmission rate. That means
that we can improve the estimation performance of the proposed semi-blind receiver by increasing
N if the channel is constant over a long time interval before changing to another realization. We also
observed from Figures 10 and 11 that the proposed semi-blind receiver still has a good performance
for joint symbol and channel estimation even in a shorter length of code and information symbol, and
a larger number of data streams, i.e., P = 24, N = 6, and R = 12.
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Figure 10. BER performance of the proposed receiver for the multi-user massive multiple-input
multiple-output (MIMO) system.
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Figure 11. NMSE performance of the proposed receiver for the multi-user massive MIMO system.
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7. Conclusions

We have developed a robust semi-blind receiver combined with the Tucker-2 model in
multiple-antenna systems. The proposed receiver could jointly estimate the information symbol
and channel parameters. Compared with existing semi-blind receivers, the proposed one gave better
estimation performance, and had a higher spectral efficiency Moreover, the proposed semi-blind
receiver was also applicable to multi-user massive MIMO systems. Perspectives of this work include
an extension to relay-assisted massive MIMO systems by applying the antenna allocation matrix at
the relays. Since both the source-relay and the relay-destination channel matrices have low-rank
property, new identifiability conditions and efficient fitting algorithms will be deduced and developed,
respectively. Another perspective considers extending the proposed robust semi-blind receiver into
mmwave MIMO systems for joint channel parameter estimation, which includes AOAs, fading
coefficients and time delays [38,39].
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