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1. Introduction

Power electronics technology is still an emerging technology, and it has found its way into many
applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles
(EVs), biomedical devices, and small appliances such as laptop chargers. In the near future, electrical
energy will be provided and handled by power electronics and consumed through power electronics;
this not only will intensify the role of power electronic technology in power conversion processes, but
also implies that power systems are undergoing a paradigm shift, from centralized distribution to
distributed generation. Today, more than 1000 gigawatts (GW) renewables (photovoltaic (PV) and
wind) have been installed, all of which are handled by power electronics technology. However, areas
such as energy saving and electrification transportation are booming, creating a huge market not only
for power devices but also for packaging technology and power converter design. Some of the driving
forces of the technology are their cost, volume, weight, functionality as well as reliability. At the
moment, the technology is seeing a change from being purely silicon-based to being built upon wide
bandgap (WBG) technology, such as silicon carbide (SiC) and gallium nitride (GaN), which demands a
completely new paradigm in power converter design and layout, as those devices can operate at least
an order of magnitude faster.

The main aim of this Special Issue was to seek high-quality submissions that highlight and
address recent breakthroughs over the whole range of emerging applications of power electronics,
the harmonic and electromagnetic interference (EMI) issues of the devices and system levels, as also
discussed in [1–4], robust and reliable power electronics technologies, including fault prognosis and
diagnosis techniques [5–7], the stability of grid-connected converters [8,9], and the smart control of
power electronics for devices, microgrids and at system levels [10–13].

2. The Present Special Issue

This special issue with 49 published articles has gained a great deal of attention from both academia
and industry, clearly showing the growth in significance of “Applications of Power Electronics” in the
current research and development arena. The accepted articles cover broad topics in the field of power
electronics, and they are categorized into seven different focus areas:

T1: Fault Diagnosis, Reliability and Condition Monitoring [14–17];
T2: Modeling, Control and Design of Power Electronic Converters [18–25];
T3: Electrical Machines, Drives and Traction Systems [26–34];
T4: Distributed Power Generation and e-Grid [35–46];
T5: Emerging Power Electronic Technologies (Pulsed Power, Energy Storage, Others) [47–51];
T6: Energy Access and Micro-Grids [52–56];
T7: Wireless Power Transfer Systems [57–62].
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2.1. Fault Diagnosis, Reliability and Condition Monitoring (T1)

In order to extend overall system lifetimes, fault diagnosis, fault-tolerant control and health
management systems are of significant importance, and these have been one of the major focus areas
in the power electronics field in the last decades. Open circuit fault diagnosis and the fault tolerance
control of three-phase active rectifiers as an inherent stage of many power electronics applications have
been addressed in [14]. For induction motors, an automatic fault diagnosis system under a transient
situation is developed in [15] and a fault-tolerant control strategy for five-phase induction motors under
four and three-phase operation is addressed in [16]. Lastly, in [17], a review is provided on a health
management system for lithium-ion batteries with a specific focus on electric vehicle applications.

2.2. Modeling, Control and Design of Power Electronic Converters (T2)

In [18], a synchronous reference frame control design methodology is provided for shunt power
filters, while the sliding mode control and one-cycle controller design and stability performance of a
class-D amplifier and boost power factor correction are discussed in [19,20], respectively.

Performance evaluation and the improvement of a dual active bridge converter as one of the
suitable topologies for isolated power converters are discussed in [21,22]. Lastly, digital control
techniques for voltage source inverters in renewable energy applications are summarized in [23].

Hardware-in-the-loop (HIL) techniques are identified as effective methods for validation of
power converter and/or its controller prior to full system implementation. In [24], two different HIL
implementation methods suitable for nonlinear control methods are addressed, while the application
of FPGA for HIL implementation and its limitations are discussed in [25].

2.3. Electrical Machines, Drives and Traction Systems (T3)

With the continuous cost reduction of power semiconductor devices, and due to be controllability
of power electronics-based systems, more and more motor-driven applications are being equipped
with power electronics. Thereby, there is a focus on improving the performance and stability of motor
drive systems through control, utilizing multi-phase motors and the proper modeling of motors over a
wide range of loading conditions. A robust control with auto-tuned closed loop control is discussed
in [26]. In [27], a comparative analysis of different control structures in improving the performance
of dual three-phase permanent magnet synchronous motors (PMSM) is addressed. Extending the
Kalman filter-based sliding mode control of a parallel-connected two five-phase PMSM drive system is
explained in [28]. Since a slim DC-link drive provides a compact drive system, improving the motor
drive performance and control stability through modulation and active damping is proposed in [29].
Utilizing composite active vector modulation in improving a direct torque control scheme for PMSM is
introduced in [30]. Lastly, the suitability of utilizing a line starter PMSM for industrial applications
from the efficiency point of view is discussed in [31].

The knowledge of motor behavior through proper modeling plays an important role for motor
drive system design and control. The frequency-dependent behavior of an induction motor’s equivalent
inductance and its importance on the output current ripple and total harmonic distortion (THD) is
analyzed in [32]. In [33], 3D finite element analysis (FEA) is used to analyze the profile effect of various
magnet shapes in axial flux PM motors to obtain higher efficiency. Finally, a series active filter design
based on a hybrid modular multi-level converter (MMC) suitable for traction systems is introduced
and analyzed in [34].

2.4. Distributed Power Generation and e-Grid (T4)

Photovoltaic (PV) applications, as they utilize renewable energy resources to reduce the carbon
footprint, are being employed more and more for distributed power generation. Applying the
power electronics technique for PV application is the main focus in [35–37], covering different design
aspects. While [35] addresses the practical implementation of a three-level boost converter using FPGA,
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in [36], the importance of using wide band-gap devices such as silicon carbide (SiC) to achieve better
performance and power density is addressed. Lastly, the application of a modular multi-level converter
(MMC) based on a cascaded connection is described in [37] for PV applications. The application
and optimal design of MMC is further extended in [38] for high voltage direct current (HVDC)
systems. Another design aspect which has attracted attention is efficiency. In [39], the possibility
of improving voltage source converter efficiency through optimal switching frequency selection is
discussed. In [40], a new technique to improve power converter efficiency by reducing the switching
count for a distribution static compensator (DSTATCOM) and induction motor drive applications
is addressed.

With the high penetration of power electronic systems, another aspect that again is attracting
increased attention is the mitigation and control of the harmonics and EMI noise emissions of power
converters. In [41], the utilization of an online selective harmonic elimination (SHE) method and
particle swarm optimization to reduce harmonics is addressed, while in [42], a comprehensive review
on control strategies for mitigating the dead-time effect on power converters to improve the total
harmonic distortion of output waveforms is presented. With respect to EMI, modeling and proper
EMI filter design in order to comply with international standards, which is of high importance, is
addressed in [43,44]. Furthermore, applying active spectral shaping can maintain the generated EMI
noise while reducing the size of an EMI filter in an effective method presented in [45]. Finally, applying
optimization techniques for EMI filter design that not only increase the converter power density but
also can make the design process automatic (reducing the time-to-market, to name one benefit) is
addressed in [46].

2.5. Emerging Power Electronic Technologies (Pulsed Power, Energy Storage, Others) (T5)

In this sub-topic, the first article addresses the 10 kV high-frequency switching power supply
known as a pulsed power supply for plasma generation [47]. In this article, a pulsed power supply is
developed for water purification.

As the second focus of this sub-topic in the energy storage area, four articles were accepted and
published. The first one provides a review of the electrical circuit modeling of double layer capacitors
for energy storage [48]. The reduction of battery cell inconsistency using a composite equalizer to
improve overall system performance is addressed in [49]. Improvements of state-of-charge (SoC)
estimation using optimization and proper filtering methods are introduced in [50]. Lastly, a review
and future challenges of SoC estimation for lithium–ion batteries are provided in [51].

2.6. Energy Access and Micro-Grids (T6)

Five articles have been accepted in the area of microgrids. In all of these articles, innovative
control strategies have been proposed for AC, DC and hybrid AC–DC microgrids. In [52], a harmonic
linearization technique has been deployed to analyze the stability of the AC microgrid in the sequence
domain. Focusing more on the higher-level control, an innovative switching control strategy has
been developed for EV charging stations to minimize their effect on the performance of a hybrid
microgrid system in [53]. In [54], a power electronic converter interface has been used to allow
for the variable-speed operation of hydro-pumped energy storage. On the grid side, this achieved
better frequency and voltage regulation compared to scenarios without power electronic interfaces.
An islanding mechanism has been proposed for renewable-based microgrids in [55], while an accurate
load-sharing even in the presence of faulty communication links was developed for DC microgrids
in [56].

2.7. Wireless Power Transfer Systems (T7)

Wireless power transfer (WPT) has emerged as an innovative technology to simplify the charging
process, and this is the focus of the last four articles. The importance of synchronization in mitigating
power oscillations and ensuring system stability is introduced in [57]. In [58], WPT system efficiency
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improvement and size reduction is considered by adding a single-switch boost stage at the secondary
side, while in [59], the possibility of efficiency improvement using a current-fed inverter is discussed.
The simulation modeling of an induction power transfer (IPT) as a replica of a 2-kW IPT charger for an
electric vehicle battery charger is addressed in [60,61]. Lastly, in [62], a comprehensive review of WPT
system topologies, structures and EMI diagnostics is presented.

3. Concluding Remarks

Although the 21st century can be identified as the golden age of power electronics applications,
more in-depth research and development still need to be carried out in this area in order to accelerate the
deployment of power electronics applications. This requires further improvements in the areas of power
converter reliability, control stability and efficiency, and also the proper modeling of the system itself
as well as the system around the application. Furthermore, providing electromagnetic compatibility
at both the device level and system level is necessary to ensure interoperability and compatibility,
which can be a challenging issue with WBG-based power electronic systems, as mentioned in the
Introduction. In addition, the interactions among multitude power converters and the presence of
non-ideal conditions, which may lead to instability issues, especially in distributed generation systems,
call for further investigation. Combined multi-disciplinary efforts from both academia and industry
are essential to provide a brighter future for power electronics applications and enable smarter and
carbon-free future power grids.
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