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Abstract: Microwave tomography is an effective technique to estimate material distribution, where
inverse scattering analysis is performed on the assumption that accurate information on the incident
field is known for a measurement curve as well as in the target region. In reality, however, the
information may often be unobtainable due to multiple scattering between the transmitting antenna
and the target object, or existence of unwanted waves and obstacles. In this paper, a method to
extract information on incident fields from measured total field data is proposed. The validity of
the proposed method is verified on 2D TMz problems, where a cylindrical, a square, and an L-shape
homogeneous object are employed as a target object. Furthermore, it is shown that the method is
available even when there are unwanted obstacles outside the measurement curve.

Keywords: incident field; inverse scattering; total field data; unwanted obstacles and waves

1. Introduction

Microwave tomography based on inverse scattering analysis is a promising technology for
nondestructive testing, medical imaging, and geophysical exploration, among others. Inverse
scattering algorithms such as the distorted Born iterative method [1], Newton-Kantorovich method [2],
gradient-based method [3,4], contrast source method [5], and the Levenberg-Marquardt method [6]
have been investigated and introduced into various applications. These methods usually assume that
explicit information on an incident wave is known in the estimated domain, including target objects, as
well as on a measurement curve. However, the information on an incident field is unobtainable in many
cases. For example, the target object may be unremovable from the region of interest. Furthermore,
in some cases, it is necessary to consider the effect of multiple scattering between the source and the
target object, or the existence of unwanted waves and obstacles outside the measurement curve.

On the other hand, it is easier to measure information on total field, sum of incident, and
scattered field. An inverse-scattering-analysis technique, using only measured total field data, has
been developed [7,8]. This method is based on the field equivalence principle. The equivalent surface
electric and magnetic currents on a closed measurement curve surrounding the target region are
determined from total electric and magnetic fields. Consequently, the interior equivalent problem
expressed by integral expression for total field can be set up, and the incident field is retrieved from
the equivalent field represented in the integral form using the equivalent surface currents.

In this paper, a simpler method based on a new idea is proposed. For a two-dimensional problem,
the incoming wave from the exterior of the measurement curve can be expressed in terms of Bessel
functions inside the measurement curve, while the outgoing wave scattered by target objects can
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be expanded in terms of Hankel functions. Using total electric and magnetic field information on
the measurement curve, linear equations with respect to unknown expansion coefficients can be
formulated. We can obtain expansion coefficients by solving the linear equations, and then computing
the incoming wave, which contains the field generated by the impressed source, unknown waves,
and scattered waves by unwanted obstacles outside the measurement curve and is the incident wave
toward the targets.

The validity of the proposed method is demonstrated in 2D inverse scattering problems, where
each of the three different shape objects (circular, square, and L-shape) is employed as a target object.
Furthermore, it is shown that the method is effectual even if there are unwanted obstacles in the
exterior of the measurement curve.

2. Formulation and Method for Extracting Information on the Incident Field

Figure 1 shows an image of the main issues addressed in this paper. A target object is located
in the free space with permittivity ε0 and permeability µ0. The entire space is divided into two
regions—interior region Ωi and exterior region Ωe—by a closed measurement curve C of radius R. The
object is located in Ωi, while the impressed source, unwanted obstacles, and sources of unnecessary
waves are placed in Ωe, as shown in Figure 1. We seek to extract the incident field (incoming wave) in
region Ωi from the data of total electric and magnetic fields measured along the curve C; the inverse
scattering problem can then be analyzed in the usual way.
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Figure 1. Image of the main issues addressed here. 

2.1. Expansion of Electromagnetic Field by Bessel and Hankel Functions 

It is assumed that the object is illuminated by TMz wave (Ez, Hφ), where Ez and Hφ denote the 
electric field and the magnetic field in the cylindrical coordinate (ρ, φ, z), respectively. As is well 
known, the incident wave inc

zE  in Ωi can be expressed in terms of Bessel functions Jn as follows [9]: 
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2.1. Expansion of Electromagnetic Field by Bessel and Hankel Functions

It is assumed that the object is illuminated by TMz wave (Ez, Hϕ), where Ez and Hϕ denote the
electric field and the magnetic field in the cylindrical coordinate (ρ, ϕ, z), respectively. As is well
known, the incident wave Einc

z in Ωi can be expressed in terms of Bessel functions Jn as follows [9]:

Einc
z (ρ, ϕ) =

∞

∑
n=−∞

αn Jn(k0ρ) ejnϕ (ρ ≤ R), (1)

where αn is the expansion coefficient, k0 = ω
√

ε0µ0 is the free-space wavenumber with angular
frequency ω, and j denotes the imaginary unit. On the other hand, the scattered wave Esc

z propagating
toward the outside of C can be expanded by Hankel functions of the second kind H(2)

n as follows:

Esc
z (ρ, ϕ) =

∞

∑
n=−∞

βnH(2)
n (k0ρ) ejnϕ (ρ ≥ R), (2)

where βn is the expansion coefficient.
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Using (1) and (2), and the following equation:

Hϕ(ρ, ϕ) =
1

jωµ0

∂Ez(ρ, ϕ)

∂ρ
, (3)

the incident magnetic field Hinc
ϕ and scattered field Hsc

ϕ are, respectively,

Hinc
ϕ (ρ, ϕ) =

1
jη0

∞

∑
n=−∞

αn J′n(k0ρ) ejnϕ (ρ ≤ R), (4)

Hsc
ϕ (ρ, ϕ) =

1
jη0

∞

∑
n=−∞

βn H′n
(2)

(k0ρ) ejnϕ (ρ ≥ R), (5)

where η0 =
√

µ0/ε0 denotes the wave impedance in the free space, and the derivatives of Bessel and
Hankel functions are calculated by:

J′n(k0ρ) =
∂Jn(z)

∂z

∣∣∣∣
z=k0ρ

=
1
2
{Jn−1(k0ρ)− Jn+1(k0ρ)}, (6)

H′n
(2)

(k0ρ) =
∂H(2)

n (z)
∂z

∣∣∣∣∣
z=k0ρ

=
1
2

{
H(2)

n−1(k0ρ)− H(2)
n+1(k0ρ)

}
. (7)

The unknown expansion coefficients αn and βn can be obtained by integrating the fields along the
measurement curve C or by solving a matrix equation with respect to the coefficients described in the
following subsections.

2.2. Determining the Expansion Coefficents by Integral

Total field measured at point (R, ϕ) on curve C can be expressed by the sum of incident and
scattered field as follows: {

Etot
z (R, ϕ) = Einc

z (R, ϕ) + Esc
z (R, ϕ)

Htot
ϕ (R, ϕ) = Hinc

ϕ (R, ϕ) + Hsc
ϕ (R, ϕ)

. (8)

Substituting (1), (2), (4) and (5) into (8), the equation with unknown variables αn, βn can be derived as
follows: 

∞
∑

n=−∞
αn Jn(k0R) ejnϕ +

∞
∑

n=−∞
βnH(2)

n (k0R) ejnϕ = Etot
z (R, ϕ)

∞
∑

n=−∞
αn J′n(k0R) ejnϕ +

∞
∑

n=−∞
βnH′n

(2)(k0R) ejnϕ = jη0Htot
ϕ (R, ϕ)

. (9)

Multiplying (9) by e−jmϕ and integrating over [0, 2π] with respect to ϕ, we obtain:{
αn Jn(k0R) + βn H(2)

n (k0R) = 1
2π

∫ 2π
0 Etot

z (R, ϕ) e−jnϕdϕ

αn J′n(k0R) + βn H′n
(2)(k0R) = jη0

2π

∫ 2π
0 Htot

ϕ (R, ϕ) e−jnϕdϕ
. (10)

Here, the following orthogonality relations:

∫ 2π

0
ejnϕe−jmϕdϕ =

{
2π (n = m)

0 (n 6= m)
(11)

are used for the formulation of (10). By solving (10) and using the formula of cylindrical functions that
Jn(z)H′n

(2)(z)− J′n(z)H(2)
n (z) = 2/jπz, the unknown coefficients are formulated as follows:

αn =
k0R

4

[
j H′n

(2)(k0R)
∫ 2π

0
Etot

z (R, ϕ) e−jnϕdϕ + η0 H(2)
n (k0R)

∫ 2π

0
Htot

ϕ (R, ϕ) e−jnϕdϕ

]
(12)
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βn = − k0R
4

[
j J′n(k0R)

∫ 2π

0
Etot

z (R, ϕ) e−jnϕdϕ + η0 Jn(k0R)
∫ 2π

0
Htot

ϕ (R, ϕ) e−jnϕdϕ

]
. (13)

2.3. Determining the Expansion Coefficents from Matrix Equation

The expansion coefficients can be also obtained by solving a simple set of linear equations based
on (9). If we approximate the sum of the infinite series of Bessel and Hankel functions by a sum of
finite 2N + 1 terms (N is a natural number) and measure the total field at M points on the curve C, then
(9) is reduced to:

N
∑

n=−N
αn Jn(k0R) ejnϕm +

N
∑

n=−N
βn H(2)

n (k0R) ejnϕm = Etot
z (R, ϕm)

N
∑

n=−N
αn J′n(k0R) ejnϕm +

N
∑

n=−N
βnH′n

(2)(k0R) ejnϕm = jη0Htot
ϕ (R, ϕm)

(m = 1, 2, . . . , M). (14)

The truncation number N can be determined from variation of Bessel function Jn(k0R) with respect
to order n, when the value k0R is constant. For the case of k0R = 6π, as shown in Figure 2, when n is
larger than 24, Jn(k0R) approaches to zero. In this case, it can be seen that N > 24 is appropriate.
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Figure 2. Variation of Bessel functions (R = 3λ, λ = 3 cm). 
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On the other hand, the angular coordinate of the m-th measurement point ϕm is determined by:

ϕm =
2πm

M
(m = 1, 2, . . . , M). (15)

When M = 2N + 1, the set of linear Equations (14) has a unique solution. If M > 2N + 1, αn and βn are
determined by the least-squares technique.

3. Inverse Scattering Problem

Figure 3 shows the geometrical configuration of the inverse scattering problem. We sought to
reconstruct the contrast function:

χ(r) = {εr(r)− 1} − j
σ(r)
ωε0

(16)

at point r = (x, y) in the square domain D, including unknown object, where εr and σ denote the relative
permittivity and conductivity, respectively. It is assumed that region Ωi is illuminated L times by
different sources located outside, and for each time the total fields are measured at M points on the
measurement curve C.
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The inverse scattering problem is reduced to an optimization problem, in which the following
cost functional is minimized:

F(χ) =
1
K

L

∑
l=1

M

∑
m=1

∣∣∣Ecal
l (robs

m , χ)− Eobs
l (robs

m )
∣∣∣ 2

, (17)

where K is the normalization factor:

K =
L

∑
l=1

M

∑
m=1

∣∣∣Eobs
l (robs

m )
∣∣∣ 2

, (18)

Eobs
l denotes the measured electric field, and robs

m denotes a measurement point. Total field Ecal
l is

derived by solving this integral equation:

Ecal
l (r, χ) = Einc

l (r) + k2
0

∫
Ωi

G(r, r′) χ(r′) Ecal
l (r′, χ) dr′ (r ∈ Ωi), (19)

where G(r, r′) denotes the Green function of the background medium, given by

G(r, r′) =
1
4j

H(2)
0
(
k0
∣∣r− r′

∣∣) (20)

with H(2)
0 the zero-order Hankel function of the second kind. We use the information on incident field

extracted from the measured total electric and magnetic fields for Einc
l (r), the first term on the right

side of (19).
The conjugate gradient method is used to minimize the functional F(χ). The gradient of F(χ) can

be formulated by the Frèchet differential of F(χ), and the gradient g(r) is found to be

g(r) = 2K−1Re

{
L

∑
l=1

M

∑
m=1

[
Ecal

l (robs
m , χ)− Eobs

l (robs
m )
]

Um(r, χ)∗Ecal
l (r, χ)∗

}
(r ∈ D), (21)

where * denotes the complex conjugate. Here, the function Um(r, χ) satisfies the following adjoint
equation:

Um(r, χ) = k2
0 G(r, robs

m ) + k2
0

∫
D

G(r, r′) χ(r′)Um(r′, χ) dr′ (r ∈ D). (22)

In this paper, the search for the direction vector is based on the Polak-Ribière-Polyak method [10],
and the step size for updating the contrast is determined by the golden section method [10]. The
total field and adjoint field are calculated by applying the method of moments (MoM) [11,12] to
integral equations.
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4. Results and Discussion

In this paper, we use a plane wave to illuminate the object:

Einc
z (x) = exp(−jk0x), (23)

The free-space wavelength is λ = 3 cm. The effectiveness of the proposed method is confirmed by
numerical examples with three types of lossless objects shown in Figure 4. The measurement data are
collected by numerical simulations based on MoM, where the region Ωi containing the target is divided
into small square cells with width of λ/30. The key point is how accurately can the information of the
incident field be extracted from the measured data of total fields. Therefore, noise-free data are used in
all numerical simulations:
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4.1. Accuracy of Extracted Incident Field

Figure 5 shows the real part of the incident wave extracted from measured data of total fields for
the case of a cylindrical object, as shown in Figure 4a. The values of the incident field Einc

z inside the
measurement curve were calculated by (1) with αn determined from the solution of linear Equation (14).
The results shown in Figure 5a–c have an error of±0.12 V/m,±0.08 V/m, and±0.04 V/m, respectively.
Here, the error means the difference between the real part of the extracted incident field Einc

z and that
of the reference (true) one Ẽinc

z , i.e., error = Re
[
Einc

z (ρ, ϕ)
]
−Re

[
Ẽinc

z (ρ, ϕ)
]
. The error of the imaginary

part of the incident electric field is almost the same variation as the real part. Figures 6 and 7 show the
distribution of incident field on x-axis and its error, respectively. The error is decreased by increasing
M, as shown in Figure 7.
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In the case of the square or L-shape object, the incident field is also successfully estimated by
setting M = 200, as shown in Figures 8–10.
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iterations are shown in Figure 11. The relative-permittivity distributions matching the original 
profile are obtained. Comparing (b) and (c), it can be seen that the proposed method is effectual in 
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4.2. Reconstruction of Target Object Using Extracted Incident Field

In this section, the performance of the proposed method is verified on inverse scattering problems,
where relative permittivity εr is estimated. From the results in the preceding Section 4.1, M is set to
200, and the cost functional F is evaluated on the measurement curve C of radius 3λ. The initial εr in
the reconstructed region is set to 2.0, i.e., initial contrast χ(0) = 1.0. It is assumed that we illuminate the
target with the plane wave:

Einc
l (x, y, θl) = exp{−jk0(x cos θl + y sin θl)} (24)

from L = 15 directions, where θl denotes the incident angle:

θl =
2πl

L
(l = 1, 2, . . . , L). (25)

The first example is a reconstruction of the cylindrical object. The reconstructed images after 50
iterations are shown in Figure 11. The relative-permittivity distributions matching the original profile
are obtained. Comparing (b) and (c), it can be seen that the proposed method is effectual in inverse
scattering analysis from measurement data of total fields. Next, Figures 12 and 13 show results for the
square and L-shape objects, respectively. Similarly, the target objects are successfully reconstructed
with and without information on incident field. The accuracy of the reconstructed relative permittivity
is evaluated by means of the root mean square reconstruction error (RMSE) defined by:

RMSE =

√√√√√√√√
S
∑

s=1
|εr(rs)− ε̃r(rs)|2

S
∑

s=1
|ε̃r(rs)|2

. (26)

where are εr and ε̃r are the reconstructed relative permittivity and the reference one, respectively. S
is the number of cells in reconstructed region D, as shown in Figure 3. Table 1 lists the RMSE. The
accuracy of reconstruction using the extracted incident field is almost comparable with that using the
true incident field.



Electronics 2019, 8, 417 9 of 11

Electronics 2018, 7, x FOR PEER REVIEW  8 of 11 

 

−3
x /λ

−2 −1 0 321

er
ro

r [
V

/m
]

0.15
0.10

0
0.05

−0.05
−0.10
−0.15

 
−3

x /λ
−2 −1 0 321

er
ro

r [
V

/m
]

0.15
0.10

0
0.05

−0.05
−0.10
−0.15

 
(a) (b) 

Figure 10. Error of incident field on x-axis (M = 200): (a) square target and (b) L-shape target. 

4.2. Reconstruction of Target Object Using Extracted Incident Field 

In this section, the performance of the proposed method is verified on inverse scattering 
problems, where relative permittivity εr is estimated. From the results in the preceding Subsection 
4.1, M is set to 200, and the cost functional F is evaluated on the measurement curve C of radius 3λ. 
The initial εr in the reconstructed region is set to 2.0, i.e., initial contrast χ(0) = 1.0. It is assumed that 
we illuminate the target with the plane wave: 

{ }= − +0( , , ) exp ( cos sin )inc
l l l lE x y θ jk x θ y θ  (24)

from L = 15 directions, where θl denotes the incident angle: 

= =2 ( 1,2,..., )l
πlθ l L
L

. (25)

The first example is a reconstruction of the cylindrical object. The reconstructed images after 50 
iterations are shown in Figure 11. The relative-permittivity distributions matching the original 
profile are obtained. Comparing (b) and (c), it can be seen that the proposed method is effectual in 
inverse scattering analysis from measurement data of total fields. Next, Figures 12 and 13 show 
results for the square and L-shape objects, respectively. Similarly, the target objects are successfully 
reconstructed with and without information on incident field. The accuracy of the reconstructed 
relative permittivity is evaluated by means of the root mean square reconstruction error (RMSE) 
defined by: 

S

r s r s
s

S

r s
s

ε ε

ε

=

=

−
=









2

1

2

1

( ) ( )
RMSE

( )

r r

r
. (26)

where are rε  and rε  are the reconstructed relative permittivity and the reference one, 
respectively. S is the number of cells in reconstructed region D, as shown in Figure 3. Table 1 lists 
the RMSE. The accuracy of reconstruction using the extracted incident field is almost comparable 
with that using the true incident field. 
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Figure 11. Reconstruction results for the cylindrical object after 50 iterations: (a) true image, (b)
reconstructed image using information on the exact incident field, and (c) reconstructed image using
information on the extracted incident field.
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Figure 13. Reconstruction results for the L-shape object after 50 iterations: (a) true image, (b) 
reconstructed image using information on the exact incident field, and (c) reconstructed image using 
information on the extracted incident field. 

Table 1. Reconstruction errors. 

Shape of 
target object 

RMSE (case with 
true incident field) 

RMSE (case with 
extracted incident field) 

cylinder 0.205 0.191 
square 0.186 0.187 

L-shape 0.244 0.245 

4.3. Inverse Scattering Analysis with Unwanted Obstacles 

Finally, the effectiveness of the proposed method is confirmed by a problem where there are 
unwanted obstacles. Figure 14 shows the geometry of the problem. There are two square obstacles 
outside the measurement curve C. Usually, it is necessary to include all obstacles in the 
computational domain of inverse scattering analysis, such that the computational domain is 
expanded to a much larger size, and lots of computing resources are exhausted. Using the proposed 
method, the incident wave, including the wave scattered by obstacles, are extracted from the data of 
total fields measured along the curve C. Therefore, there is no need to expand the computational 
domain and the resources can also be saved. Here, the measured total fields are obtained by 
simulation, in which the target object and obstacles are irradiated by the plane wave. 

Figure 15 shows the extraction results of the incident field where incident angle θl is zero. To 
confirm the accuracy of the extracted field, the total field derived from simulation, where the target 
object is removed and obstacles are included in the computational domain, is shown in Figure 15a. 
It can be seen that the incident field can be estimated even if there are unwanted obstacles outside 
the measurement curve. Figure 16 shows the reconstruction results. The relative-permittivity 

Figure 12. Reconstruction results for the square object after 50 iterations: (a) true image, (b)
reconstructed image using information on the exact incident field, and (c) reconstructed image using
information on the extracted incident field.

Electronics 2018, 7, x FOR PEER REVIEW  9 of 11 

 

Figure 11. Reconstruction results for the cylindrical object after 50 iterations: (a) true image, (b) 
reconstructed image using information on the exact incident field, and (c) reconstructed image using 
information on the extracted incident field. 

4.5

0.5

2.5

εr

x

y

 
(a) 

4.5

0.5

2.5

εr

x

y

 
(b) 

4.5

0.5

2.5

εr

x

y

 
(c) 

Figure 12. Reconstruction results for the square object after 50 iterations: (a) true image, (b) 
reconstructed image using information on the exact incident field, and (c) reconstructed image using 
information on the extracted incident field. 

4.7

0.3

2.5

εr

x

y

 
(a) 

4.7

0.3

2.5

ε r

x

y

 
(b) 

4.7

0.3

2.5

εr

x

y

 
(c) 

Figure 13. Reconstruction results for the L-shape object after 50 iterations: (a) true image, (b) 
reconstructed image using information on the exact incident field, and (c) reconstructed image using 
information on the extracted incident field. 

Table 1. Reconstruction errors. 

Shape of 
target object 

RMSE (case with 
true incident field) 

RMSE (case with 
extracted incident field) 

cylinder 0.205 0.191 
square 0.186 0.187 

L-shape 0.244 0.245 

4.3. Inverse Scattering Analysis with Unwanted Obstacles 

Finally, the effectiveness of the proposed method is confirmed by a problem where there are 
unwanted obstacles. Figure 14 shows the geometry of the problem. There are two square obstacles 
outside the measurement curve C. Usually, it is necessary to include all obstacles in the 
computational domain of inverse scattering analysis, such that the computational domain is 
expanded to a much larger size, and lots of computing resources are exhausted. Using the proposed 
method, the incident wave, including the wave scattered by obstacles, are extracted from the data of 
total fields measured along the curve C. Therefore, there is no need to expand the computational 
domain and the resources can also be saved. Here, the measured total fields are obtained by 
simulation, in which the target object and obstacles are irradiated by the plane wave. 

Figure 15 shows the extraction results of the incident field where incident angle θl is zero. To 
confirm the accuracy of the extracted field, the total field derived from simulation, where the target 
object is removed and obstacles are included in the computational domain, is shown in Figure 15a. 
It can be seen that the incident field can be estimated even if there are unwanted obstacles outside 
the measurement curve. Figure 16 shows the reconstruction results. The relative-permittivity 

Figure 13. Reconstruction results for the L-shape object after 50 iterations: (a) true image, (b)
reconstructed image using information on the exact incident field, and (c) reconstructed image using
information on the extracted incident field.

Table 1. Reconstruction errors.

Shape of Target Object RMSE (Case with True Incident Field) RMSE (Case with Extracted Incident Field)

cylinder 0.205 0.191
square 0.186 0.187

L-shape 0.244 0.245

4.3. Inverse Scattering Analysis with Unwanted Obstacles

Finally, the effectiveness of the proposed method is confirmed by a problem where there are
unwanted obstacles. Figure 14 shows the geometry of the problem. There are two square obstacles
outside the measurement curve C. Usually, it is necessary to include all obstacles in the computational
domain of inverse scattering analysis, such that the computational domain is expanded to a much
larger size, and lots of computing resources are exhausted. Using the proposed method, the incident
wave, including the wave scattered by obstacles, are extracted from the data of total fields measured
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along the curve C. Therefore, there is no need to expand the computational domain and the resources
can also be saved. Here, the measured total fields are obtained by simulation, in which the target object
and obstacles are irradiated by the plane wave.
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Figure 15 shows the extraction results of the incident field where incident angle θl is zero. To
confirm the accuracy of the extracted field, the total field derived from simulation, where the target
object is removed and obstacles are included in the computational domain, is shown in Figure 15a.
It can be seen that the incident field can be estimated even if there are unwanted obstacles outside the
measurement curve. Figure 16 shows the reconstruction results. The relative-permittivity distribution
of the target object is successfully reconstructed by the inversion algorithm with the proposed method.
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5. Conclusions

In this paper, a method for extracting incident field from the measured data of total electric
and magnetic fields has been proposed. The incident field can be easily estimated by means of
cylindrical-wave expansion. The extracted field has sufficient accuracy if enough information about
the total fields on the measurement curve is available.
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The proposed method has been applied to inverse scattering problems. Unknown objects are
successfully reconstructed by the developed method. Furthermore, it is shown that the proposed
method is effectual even if unwanted obstacles exist outside the measurement curve.

In this paper, many measurement points are required for field extraction. For practical application,
it is useful to reduce the measurement point. One of the approaches employed uses FFT and zero
padding techniques as data interpolation; this will be done in future research. In addition, we examined
only cases where the measurement curve was a circle. However, it could be of any other shape as
well or an open curve in actual problem. This examination can also be the focus of future work.
Furthermore, lossy case and influence of the measurement error will be investigated.
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