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Abstract: Electronic devices and circuits with negative differential resistance (NDR) are widely
used in oscillators, memory devices, frequency multipliers, mixers, etc. Such devices and circuits
usually have an N-, S-, or Λ-type current-voltage characteristics. In the known NDR devices and
circuits, it is practically impossible to increase the negative resistance without changing the type or
the dimensions of transistors. Moreover, some of them have three terminals assuming two power
supplies. In this paper, a new NDR circuit that comprises a combination of a field effect transistor
(FET) and a simple bipolar junction transistor (BJT) current mirror (CM) with multiple outputs is
proposed. A distinctive feature of the proposed circuit is the ability to change the magnitude of
the NDR by increasing the number of outputs in the CM. Mathematical expressions are derived to
calculate the threshold currents and voltages of the N-type current-voltage characteristics for various
types of FET. The calculated current and voltage thresholds are compared with the simulation results.
The possible applications of the proposed NDR circuit for designing single-frequency oscillators and
voltage-controlled oscillators (VCO) are considered. The designed NDR VCO has a very low level
of phase noise and has one of the best values of a standard figure of merit (FOM) among recently
published VCOs. The effectiveness of the proposed oscillators is confirmed by the simulation results
and the implemented prototype.

Keywords: negative differential resistance; current-voltage characteristics; multiple simple current
mirror; threshold voltage; oscillator; voltage-controlled oscillator

1. Introduction

Nowadays, negative differential resistance devices and circuits are widely used in oscillators,
memory, frequency dividers, and multiplier circuits [1–5]. The presence of negative resistance in
an electrical circuit makes it possible not to dissipate electrical energy in the form of heat, but to
generate electrical power, even if it has only two terminals and not three as in transistors. There are
two types of negative resistance, namely, differential and static. Sometimes NDR is also called
negative dynamic resistance. The NDR is the first derivative of the voltage relative to the current
at the operating point. The current-voltage characteristics with NDR region can be created in
two ways. The first way involves the use of special electronic devices, such as a Gunn diode,
a tunnel diode, three-terminal graphene NDR devices [6], and others. In the second way, the
current-voltage characteristics with NDR region are created artificially with the help of special
electronic circuits. However, the known NDR electronic circuits have some disadvantages that
limit their use. Let us consider the well-known electronic circuits with NDR. The studies [7,8]
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considered the NDR circuit based on complementary metal-oxide-semiconductor (CMOS) NDR
inverters requiring two power supplies. Thus, to create the current-voltage characteristics with NDR
region three terminals should be used. The study [9] considered an electronic oscillator based on a
bipolar junction transistor (BJT)-metal-oxide-semiconductor field-effect transistor (MOSFET) structure
with Λ-type current-voltage characteristics and two power supplies. The study [10] considered an
NDR circuit composing three resistors and two BJT. The N-type current-voltage characteristics are
achieved by selecting the appropriate resistor values. The study [11] considered a special connection of
a BJT with a junction gate field-effect transistor (JFET) that has N-type current-voltage characteristics.
However, this circuit is subject to thermal runaway, which makes it difficult to use the circuit in
practice. The study [12] considered a novel sinusoidal NDR VCO for very high frequency band.
The VCO circuit comprises a JFET in combination with a P–channel metal-oxide-semiconductor (MOS)
improved Wilson current mirror (CM). The study [13] considered a new NDR circuit, which uses a FET
and BJT transistors to create the S-type current-voltage characteristics. The study [14] considered a
systematic method to design NDR circuits comprising two transistors and resistors only. The study [15]
considered a comparison of five proposed NDR VCOs for microwave applications. The NDR
circuits include a gallium-arsenide transistor and different BJT CMs. The study [16] considered
a novel voltage-controlled NDR device, using complementary silicon-on-insulator four-gate transistors.
The work experimentally demonstrated new circuits for the inductor-capacitor (LC) oscillator and
Schmitt trigger based on the proposed NDR device. The study [17] considered a novel multiple NDR
device with an ultra-high peak-to-valley current ratio by combining tunnel diode with a conventional
MOSFET. The study [18] proposed complement double-peak NDR devices by combining tunnel diode
with conventional CMOS and its compact five-state latch circuit by introducing standard ternary
inverter. The study [19] considered four novel NDR circuits based on the combination of the standard
n-channel MOS transistors and silicon-germanium heterojunction bipolar transistor (HBT). Depending
on the design parameters, the proposed circuits can exhibit Λ- or N-type current-voltage characteristics.
The study [20] considered a tri-valued memory circuit based on two cascoded MOS-BJT-NDR devices
that can show the NDR current-voltage characteristic by adjusting the MOS transistor parameters.
The study [21] considered a three-terminal voltage controlled Λ-type negative resistance MOSFET
structure using the merged integrated circuit of a NELS (n-channel enhancement mode with load
operated at saturation) inverter and an n-channel enhancement MOS driver.

It should be noted that in the reviewed NDR devices and circuits there is practically no possibility
of increasing the negative resistance without changing the type of transistors or the dimensions of
transistors. Moreover, some devices and circuits have three terminals assuming two power supplies.
These circumstances significantly reduce the range of possible applications of NDR devices and circuits.
For example, negative resistance may not be sufficient to start-up the oscillator circuit [22]. This paper
proposes a new NDR circuit based on a FET in conjunction with multiple simple CMs, in which the
magnitude of the negative resistance is easily controlled by changing the number of CM outputs.
Description, mathematical and numerical modeling of the NDR circuit is given. The proposed NDR
electronic circuit can be used in designing an oscillator, a VCO, an amplifier, etc. The most promising
applications are related to generating ultrahigh-frequency signals with low phase noise.

2. Circuit Operation

Figure 1a shows the proposed NDR circuit, which consists of two bias resistors Ra and Rb,
a FET (Q0) and simple CM with n− 1 outputs (collectors of transistors Q2, Qn). We further assume
that transistors Q1, Qn are matched. Figure 1b shows the current-voltage characteristics of the NDR
circuit where the total current I0 is a function of the power supply voltage Vxy. The steepness of the
current-voltage characteristic between points β and γ depends on the number of outputs of the CM.
Curve 1 corresponds to the one output of the CM, i.e., only transistors Q1 and Q2 are used. In this
particular case, the differential resistance between points β and γ is positive, and the circuit does not
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have an NDR region. When choosing the appropriate transistors, the circuit can have the NDR region
even with one CM output.Electronics 2019, 8, x FOR PEER REVIEW 3 of 19 
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Figure 1. (a) Negative differential resistance circuit with multiple simple current mirror; (b) N-type
current-voltage characteristics of the circuit.

As can be seen in Figure 1b, with an increase in the number of the CM outputs to two and further
to four, the differential resistance becomes negative and the slope of the characteristic in the NDR
region increases.

The current-voltage characteristics in Figure 1b include four regions, respectively, between points 0
and Vα, Vα and Vβ, Vβ and Vγ, and Vγ and ∞. The NDR region is located between points Vβ and Vγ.

Let’s look at the general principle of the circuit operation. When voltage Vxy varies from 0 to Vα,
all transistors in the circuit are OFF. At the supply voltage Vα, all transistors are turning ON, and, up to
the voltage Vβ, the current I1 rises, and the total current I0 also increases. The current I2 is a mirrored
copy of I1, and it behaves like I1.When the supply voltage is Vβ, the current I1 reaches a maximum,
which also corresponds to the maximum of the total current I0. When the voltage Vxy changes from Vβ

to Vγ, the current I1 decreases due to an increase in the negative voltage between the gate and the source
of the transistor Q0. At the same time, an increase in current Ib does not cover this decrease in current
I1. As a result, the total current I0 decreases up to the voltage Vγ, at which the voltage between the gate
and the source of the transistor Q0 reaches a pinch-off voltage and Q0 is turning OFF, and, consequently,
the transistors Q1, Qn also turning OFF. When the supply voltage is higher than Vγ, the total current I0

is entirely determined by the voltage Vxy and the resistances of Ra and Rb. Therefore, in the interval
(Vγ, ∞) differential resistance of the current-voltage characteristics is positive.

Let us determine the coordinates of points α, β, and γ. In the first region of the current-voltage
characteristics, between points 0 and Vα, all transistors are OFF, and the overall current depends on
the resistor values Ra and Rb, and power supply voltage Vxy.

I0 =
Vxy

Ra + Rb
. (1)

The threshold voltage Vα is determined by applying Kirchhoff’s voltage law (KVL) equation to
the circuit of Figure 1a when transistor Q0 is turning ON and VDS0 = 0, where VDS0 is the drain-source
voltage of Q0.

Vα = VEB + IaRa, (2)
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where VEB is the emitter-base voltage of transistors
(
Q1, Qn

)
and Ia is the current through resistor Ra.

Since at voltage Vα the current Ia is equal to I0, then Equation (2) transforms to the following form:

Vα =
VEB(Ra + Rb)

Rb
. (3)

Combining (1) and (3), we obtain:

Iα =
VEB
Rb

. (4)

When voltage Vxy a little exceeds Vα transistors Q1, Qn are turning ON, and transistor Q0 starts to
operate in the triode region where:

VDS0 < VGS0 + VP0, (5)

where VGS0 and VP0 are, respectively, the gate-source and pinch-off voltage of Q0.
By applying KVL from +Vxy to ground, we get:

Vxy = VEB + VDS0 + IaRa. (6)

From (6) we find current Ia as follows:

Ia =
Vxy −VEB −VDS0

Ra
(7)

As it follows from the circuit of Figure 1a:

Ib = Ia − I1. (8)

Substituting (7) to (8) gives:

Ib =
Vxy −VEB −VDS0

Ra
− I1. (9)

Applying KVL around the loop (Rb, Q0, Q1), we obtain:

− IbRb + VDS0 + VEB = 0. (10)

Substituting (9) into (10) and performing some mathematical transformations, we get:

VDS0 =
RbVxy

Ra + Rb
− I1(Ra‖Rb)−VEB. (11)

The gate-source voltage of transistor Q0 is given by:

VGS0 = −IaRa. (12)

Voltage VGS0 we obtain by combining (7), (11), and (12) and performing necessary transformations.

VGS0 = −
RaVxy

Ra + Rb
− I1(Ra‖Rb). (13)

Substituting VDS0 from (11) to (7), we determine that:

Ia =
Vxy

Ra + Rb
+

I1Rb
Ra + Rb

. (14)
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We find the current I0 by applying Kirchhoff’s current law (KCL) to the node y in the circuit of
Figure 1a.

I0 = Ia + (n− 1)I2. (15)

By substitution of (14) into (15), we obtain general equation for the circuit total current.

I0 = (n− 1)I2 +
I1Rb

Ra + Rb
+

Vxy

Ra + Rb
. (16)

Since the current I2 is close to the reference current I1, we can assume that I2 ≈ I1. In this case
Equation (16) transforms into the following form:

I0 ≈ I1

(
n− 1 +

Rb
Ra + Rb

)
+

Vxy

Ra + Rb
. (17)

The slope of the current-voltage characteristics in the region of negative resistance is determined
by the first derivative of the current I0 with respect to the voltage Vxy.

dI0

dVxy
≈
(

n− 1 +
Rb

Ra + Rb

)
dI1

dVxy
+

1
Ra + Rb

. (18)

As can be seen from (18), the slope is indeed proportional to the number of outputs of the
current-mirror n. Therefore, by changing n, it is possible to reduce or increase the slope of the
current-voltage characteristics between the voltage thresholds Vβ and Vγ.

Substituting (11) and (13) into (5), we find that when transistor Q0 operates in the triode mode,
the following relationship holds between the supply voltage Vxy and the voltages VEB and VP0:

Vxy < VEB −VP0. (19)

When voltage Vxy increases more, FET Q0 reaches the saturation region where:

VDS0 ≥ VGS0 + VP0. (20)

The threshold voltage Vβ is reached at the boundary between the triode and the saturation region
of transistor Q0, i.e., when:

VDS0 = VGS0 + VP0. (21)

Substituting (11) and (13) into (21), we obtain the threshold voltage Vβ.

Vβ = VEB −VP0. (22)

We determine the threshold current Iβ by substitution of (22) into (17).

Iβ ≈ I1

(
n− 1 +

Rb
Ra + Rb

)
+

VEB −VP0

Ra + Rb
. (23)

As can be seen in Figure 1b, the slope of the current-voltage characteristics in the regions (0, Vα)

and (Vγ, ∞) is the same. It means that at the voltage threshold Vγ the FET Q0 is OFF and I1 = 0.
Transistor Q0 is turning OFF when VGS0 = VP0. Substituting VP0 instead of VGS0 into (13) and solving
the obtained equation with respect to Vxy, we get:

Vxy = Vγ = −
(

1 +
Rb
Ra

)
VP0. (24)
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The threshold current Iγ we find by substituting Vxy from (24) into (1).

Iγ =
|VP0|

Ra
. (25)

As can be seen from (11), (13), (14), (16), (17), and (23), to calculate the currents and voltages
related to the thresholds of the circuit current-voltage characteristics, it is necessary to know the
current I1. Modeling the current I1 depends on the type of FET Q0. Transistor Q0 can be an N-channel
JFET, metal-semiconductor field-effect transistor (MESFET), high-electron-mobility transistor (HEMT),
or pseudomorphic high-electron-mobility transistor (PHEMT). In the voltage region (Vβ, Vγ) transistor
Q0 operates in the saturation mode. Therefore, we should model the current I1 for the case when Q0

operates in the saturation mode.
As is well known, the operation of a JFET in the saturation mode is quite good described by the

Shockley equation [23].
Substituting VGS0 from (13) to the Shockley equation gives:

I1 = IDSS

(
1 +

AVxy + BI1

VP0

)2
, (26)

where IDSS is the saturation drain-source current at zero gate–source voltage, A and B are determined
as follows:

A = Ra/(Ra + Rb), B = Ra‖Rb.

Solving (26) with respect to current I1, we obtain the following quadratic equation:

IDSSB2

V2
P0

I2
1 +

[
2IDSS

(
1 +

AVxy

VP0

)
B

VP0
− 1
]

I1 + IDSS

(
1 +

AVxy

VP0

)2
= 0. (27)

Equation (27) has two positive roots. The acceptable root is the value of the current I1 that is less
than IDSS.

Figure 2a shows the dependence of the drain current I1 versus power supply voltage Vxy in
the interval (Vβ, Vγ) when BF245B is used as a JFET Q0 and Positive-Negative-Positive (PNP) BJT
transistors BFT92W are used in the CM. Assume that Ra = 0.5 kΩ, Rb = 2 kΩ, and n = 5, i.e., the CM
has four outputs. From the simulation program with integrated circuit emphasis (SPICE) model of the
selected JFET transistor follows that VP0 = −2.31 V and IDSS = 6 mA.
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Figure 2. (a) Dependence of the drain current I1 versus voltage Vxy; (b) Dependence of the total current
I0 versus voltage Vxy in the negative differential resistance region when n = 4 (curve 1), n = 5 (curve 2),
and n = 6 (curve 3).
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As can be seen in Figure 2a, in the NDR region the current I1 changes from 1.47 mA to 0. Figure 2b
shows the dependence of the total current I0 versus voltage Vxy in the NDR region when n = 4
(curve 1), n = 5 (curve 2), and n = 6 (curve 3).

The curves in Figure 2b were calculated using (17) and (27). As can be seen in Figure 2b, the total
current I0 increases by the same value with each increase in the number of the CM outputs. At the
same time, the threshold voltage Vγ shifts slightly to the right with increasing n.

Let us compare the calculated and simulated voltage and current thresholds for the circuit of
Figure 1a for the same data as in Figure 2. From the interactive SPICE simulation of transistor
BFT92W operation with the help of Multisim (ed. 14.1) follows that VEB = 0.52 V (at threshold α) and
VEB = 0.62 V (at threshold β). The results of calculations and SPICE simulations are shown in Table 1.

Table 1. Calculated and simulated threshold voltages and currents with junction gate field-effect
transistor (JFET).

Threshold Calculated Value Simulated Value Error %

Vα (V) 0.65 0.62 −4.8%

Iα (mA) 0.26 0.28 7.1%

Vβ (V) 2.93 2.89 −1.4%

Iβ (mA) 8.22 8.30 1%

Vγ (V) 11.60 11.05 −5.0%

Iγ (mA) 4.62 4.50 −2.7%

As can be seen in Table 1, the absolute relative error for the calculated voltage thresholds
of the NDR region does not exceed 5% and for current thresholds slightly exceed 2.5%. Such a
high accuracy of calculating voltage and current thresholds testifies on the adequacy of the derived
mathematical equations.

Let us now consider the case when Q0 is a GaAs transistor, i.e., MESFET, HEMT, or PHEMT.
We model the current of Q0 by the Statz nonlinear model, which has a high accuracy in the
approximation of the drain current [24].

Substituting VDS0 and VGS0 from (11) and (13) to the Statz model [24,25], we get the following
nonlinear equations in respect to the drain current I1:

δ(AVxy+BI1+VP0)
2

1−∆(AVxy+BI1+VP0)

[
1 + λ

(
CVxy − BI1 −VEB

)]{
1−

[
1− α

(
CVxy − BI1 −VEB

)
/3
]3}− I1 = 0,

for 0 < CVxy − BI1 −VEB < 3/α,

(28)

δ
(

AVxy + BI1 + VP0
)2

1− ∆
(

AVxy + BI1 + VP0
) [1 + λ

(
CVxy − BI1 −VEB

)]
− I1 = 0, for CVxy − BI1 −VEB ≥ 3/α, (29)

where α is the current saturation parameter, δ is the transistor transconductance, ∆ is the doping profile
parameter, λ is the channel length modulation coefficient, and C is determined as follows:

C = Rb/(Ra + Rb).

Let us again compare the calculated and simulated voltage and current thresholds for the circuit of
Figure 1a when a low noise PHEMT ATF-33143 is used as transistor Q0 and the same PNP transistors
BFT92W are used in the CM. From the SPICE model of ATF-33143 [26] follows that α = 4 [1/V],
δ = 0.48

[
A/V2

]
, ∆ = 0.8, λ = 0.09 [1/V], and VP0 = −0.95 [V]. The other circuit parameters have the

same values as in the previous example.
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To obtain the calculated values of the voltage and current thresholds, we solve Equations (28) and
(29) and use Equations (3), (4), and (22)–(25). The results of calculations and SPICE simulations with
the help of Multisim (ed. 14.1) are shown in Table 2.

Table 2. Calculated and simulated threshold voltages and currents with pseudomorphic
high-electron-mobility transistor (PHEMT).

Threshold Calculated Value Simulated Value Error %

Vα (V) 0.65 0.62 −4.8%

Iα (mA) 0.26 0.28 7.1%

Vβ (V) 1.57 1.71 8.2%

Iβ (mA) 7.18 6.92 −3.8%

Vγ (V) 4.75 4.73 −0.4%

Iγ (mA) 1.9 1.91 0.5%

As can be seen in Table 2, a good agreement exists between the theoretical and simulated values
of the current and voltage thresholds, which proves the validity of the derived equations.

3. Circuit Applications

3.1. LC Oscillator

Oscillators are one of the main elements in modern communication, control, and navigation
systems. Modern oscillators can be divided into two classes, namely oscillators with negative input
impedance and oscillators with NDR. A distinctive feature of the first-class oscillators is the presence
of a negative real part in the input impedance. Examples of such oscillators are numerous Colpitts,
Clapp, Hartley oscillator circuits, and their modifications [27–30], as well as cross-coupled CMOS
oscillators [31–34]. The second class of microwave oscillators supposes to use a tunnel diode or a Gunn
diode [35,36], which have an NDR region in the N-type current-voltage characteristics. The location
of the operating point in the NDR region leads to the creation of a negative resistance induced into
the contour of the LC tank to compensate for its losses. The circuit of Figure 1a can also be used for
designing an LC oscillator because it has an NDR region.

Figure 3 shows an LC oscillator on the base of the proposed NDR circuit. The oscillator tank
circuit consists of an RF coil L and two series-connected capacitors C1 and C2. Small capacitor CF is a
feedback capacitor allowing to speed-up the oscillator start-up. Large capacitor C0 reduces the noise
level significantly at the nodes y, z, d, and s of the oscillator. This allows increasing the slope of the
noise skirt around the fundamental harmonic, which in-turn reduces the oscillator phase noise.
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3.1.1. Simulation Results

Let us perform a SPICE simulation of the proposed oscillator circuit with the help of Multisim
(ed. 14.1). Assume that n = 3, Ra = 0.15 kΩ, Rb = 1 kΩ, transistor Q0 is a PHEMT ATF-33143, and all
transistors in the CM are BFT92W. Figure 4 shows the simulated current-voltage characteristics. As
can be seen in Figure 4, the NDR region has the following voltage and current thresholds: Vβ = 1.58 V,
Iβ = 15 mA, Vγ = 7.26 V, and Iγ = 6.33 mA. We set the operating point at Vxy = 3.75 V and
I0 = 12.5 mA.
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The selected circuit components have the following values: L = 5 nH, C0 = 10 µF, and
C1 = C2 = 5 pF. Figure 5 shows the oscillator starting voltage waveforms at the output node y
for different values of the feedback capacitor CF. The frequency of oscillations is 1.096 GHz. We can
observe from Figure 5, that the oscillations reach the steady-state amplitude of 2.2 V at t = 130 ns and
2.4 V at t = 55 ns when CF = 5 pF and CF = 10 pF, respectively. Thus, an increase in the capacitance
CF leads to a significant reduction in the self-excitation time of the oscillator and an increase in the
amplitude of the steady-state oscillations.
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Figure 5. Oscillator start-up behavior at 𝐶 = 5 pF (a) and 𝐶 = 10 pF (b). Figure 5. Oscillator start-up behavior at CF = 5 pF (a) and CF = 10 pF (b).

Figure 6 shows the amplitude spectrum of the oscillated voltage for C0 = 1 nF and CF = 5 pF
(blue line) and C0 = 10 µF and CF = 10 pF (red line). As can be seen from comparison of two spectrums
in Figure 6, the noise skirt of the fundamental harmonic at the level of -80 dBm is significantly narrower
for larger values of capacitances C0 and CF. Moreover, the total harmonic distortion (THD) is 3.3% for
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C0 = 10 µF and CF = 10 pF and 3.7% for C0 = 1 nF and CF = 5 pF, i.e., larger capacitances C0 and CF
provide a smaller level of THD.Electronics 2019, 8, x FOR PEER REVIEW 10 of 19 
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CF = 10 pF (red line).

The decrease in the noise level of the oscillator output voltage in Figure 6 is explained by the fact
that with an increase in the capacitances C0 and CF, the simulated spectral density of noise decreases
significantly at the nodes y, z, d, and s of the oscillator circuit as shown in Figure 7. As can be seen
in Figure 7c, the most substantial decrease in noise spectral density occurs at the drain of transistor
Q0, i.e., just where there is a large capacitance C0. This observation confirms a similar conclusion
concerning the effect of capacitance on noise in CMOS LC oscillators [37].
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3.1.2. Oscillator Prototype Implementation

The oscillator circuit of Figure 3 was implemented using a JFET BF245B (NXP Semiconductors,
Eindhoven, Netherlands) as transistor Q0 and five transistors BFT92W (NXP Semiconductors,
Eindhoven, Netherlands) in the CM, i.e., n = 5. We selected the following component values:
Ra = 0.5 kΩ, Rb = 2 kΩ, C1 = C2 = 82 pF, CF = 2.2 pF, C0 = 0, and L = 330 nH.

Figure 8 shows the printed circuit board (PCB) assembly of the implemented NDR oscillator.
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Figure 9 shows the measured current-voltage characteristics of the implemented NDR oscillator.
The measured values of the threshold voltages in the NDR region are V∗β = 3 V and V∗γ = 12 V.
The calculation of the theoretical voltage thresholds by Equations (22) and (24) gives Vβ = 2.93 V and
Vγ = 11.55 V. As can be seen, there is a perfect agreement between the measured and theoretical
results. The dc operating point has the following coordinates: Vxy = 5.2 V and I0 = 7.6 mA.
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Figure 10 shows the photographs of the output voltage (a) and output power spectrum (b) of the
implemented oscillator. We used the HMO1002 oscilloscope (Rohde & Swartz, Munich, Germany)
and the HMS3000 spectrum analyzer (Rohde & Swartz, Munich, Germany) to measure the oscillator’s
output voltage in the time and frequency domain. To connect the oscillator output to oscilloscope and
spectrum analyzer, we used, respectively, RF probes HZ154 (Rohde & Swartz, Munich, Germany) and
P-20A (Auburn Technology Corporation, Wichita, Kansas, USA) with 20 dB attenuation. We can see
from Figure 10 that the frequency and the peak-to-peak amplitude of oscillations are 16.1 MHz and
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4.12 V, respectively. We can also observe in Figure 10b that the noise-floor power level is more than
75 dB below the fundamental harmonic power.Electronics 2019, 8, x FOR PEER REVIEW 12 of 19 
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3.2. LC Voltage Controlled Oscillator

Voltage-controlled oscillators are fundamental building units in modern phase-locked loop
synthesizers used in communication and navigation transceivers [38–40]. The NDR circuit of Figure 1a
can also be used to design an LC VCO. Figure 11 shows the proposed LC VCO with a controllable
slope of the NDR region. The varactor diodes VC1 and VC2 replace the capacitors C1 and C2 in the
circuit of Figure 3. The control voltage Vc is applied to cathodes of varactor diodes VC1 and VC2

providing a frequency tuning of the VCO. Resistor Rc isolates the variable power supply from the
VCO tank circuit.
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The SPICE simulation of the VCO circuit with the help of Multisim (ed. 14.1) was conducted
using varactor diodes ZC820 (Zetex) and the same transistors, inductor L, and resistors Ra and Rb as
in Section 3.1.1. We set the VCO circuit elements C0, CF, and Rc to 10 µF, 10 pF and 10 kΩ, respectively.
The control voltage Vc was varied from 1 to 25 V. Figures 12 and 13 show the VCO starting voltage
waveform (a) and steady-state voltage waveform (b) when Vc = 1 V and Vc = 25 V, respectively.
The oscillation frequency varied from 775 MHz (at Vc = 1 V) to 1.375 GHz (at Vc = 25 V). The THD is
4.6% at Vc = 1 V and 3.8% at Vc = 25 V.

From a comparison of voltage starting waveforms in Figures 12a and 13a, we can observe that
voltage oscillations reach the steady-state mode at 160 ns and 80 ns, respectively. In the steady state
operation mode, the voltage amplitude is around 2 V over the entire control voltage range.
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Figure 14 shows the tuning characteristic of the VCO. As can be seen in Figure 14, the simulated
VCO covers a wide frequency range. The ratio of the maximum VCO frequency to minimum exceeds 1.75.
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LC Voltage-Controlled Oscillator Performance

Let us compare the overall performance of the proposed NDR VCO with state of the art
VCOs. The conventional FOM is used to evaluate the overall performance of the designed VCO,
which includes phase noise at a particular frequency offset from the carrier PN(∆ f ), power dissipation
Pd, and the ratio of the carrier frequency fc to the frequency offset ∆ f for comparing VCOs operating
at different frequencies [41,42].

FOM = PN(∆ f )− 20 log
(

fc

∆ f

)
+ 10 log

(
Pd

1 mW

)
. (30)

Table 3 presents the part numbers of the VCO elements. In the simulation, we used the VCO
circuit of Figure 11 when n = 2. The simulated values of the NDR threshold voltages are as follows:
Vβ = 2.84 V and Vγ = 20.7 V. The calculated thresholds are Vβ = 2.84 V and Vγ = 20.7 V. The selected
DC operating point has the following coordinates: Vxy = 6.5 V and I0 = 8.5 mA. Thus, the VCO power
dissipation is 55.25 mW. The control voltage Vc applied to the cathodes of the SMV1104-34 varactors
varied from 2 V to 6 V. The frequency tuning range is from 1.225 GHz to 1.620 GHz. Figure 15 shows
the dependence of the VCO phase noise versus ∆ f when Vc = 2 V. As can be seen in Figure 15, the use
of large C0 reduces phase noise for more than 20 dB in all range of offset frequencies. The low level of
the phase noise is also due to the use of a high-Q coil L [43]. In the tuning VCO range, the inductor
quality factor is varied from 50 to 60.

Table 3. Part numbers used in the designed voltage-controlled oscillator.

Circuit Elements Part Numbers

Transistor Q0 NE722S01

Transistors Q1, Qn MRF5211LT1

Inductor L 0201DS-3N3XJEU

Capacitor C0 C1608X5R1E105K

Capacitor CF C0603C0G1E030C

Varactors SMV1104-34

Resistor Ra ERJ1GEJ471

Resistor Rb ERJ2GEJ392
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Table 4 shows a comparison of the designed VCO with the VCOs in recently published studies in
terms of the FOM (30). As can be seen in Table 4, the designed NDR VCO has one of the best FOM.
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It should be noted that all previously published VCOs in Table 4, except [58,59], fabricated in CMOS or
BiCMOS technologies.

Table 4. Performance of designed VCO and some recently published VCOs.

VCO Frequency
GHz

Frequency
Offset MHz

Phase Noise
dBc/Hz

Power
Dissipation mW FOM dBc/Hz

[44] 1.61 0.1 −121 2.7 −202

[45] 2.5 1 −119.7 0.515 −190.3

[46] 11.58 1 −112.62 6 −198.6

[47] 8 1 −134.3 6.6 −204

[48] 2.7 0.1 −121.3 3.9 −204

[49] 3.6 1 −124 2.05 −192

[50] 15.57 1 −116.6 6 −192.7

[51] 2.4 1 −120 0.267 −193.3

[52] 2.4 1 −135.6 6.17 −195.3

[53] 12.67 1 −120.6 17.7 −190

[54] 1.94 1 −153 20 −205.7

[55] 2.38 3 −132.7 1 −190.7

[56] 2.4 1 −124 2.86 −187.25

[57] 7 1 −132 198 −185.9

[58] 7.9 1 −135 1456 −181.3

This work 1.225 0.1 −141.1 55.25 −205.4

Oscillators manufactured using MESFET, HEMT, and PHEMT have significantly lower FOM
values due to substantially higher power consumption [58,59]. However, as follows from Table 4,
the proposed NDR VCO can even compete with the best CMOS oscillators due to the low level of
phase noise and despite the significantly higher power consumption.

4. Discussion and Conclusions

There is a large number of electronic circuits [1–22], in which the current-voltage characteristics
have an NDR region. The basis of these circuits is formed by various combinations of BJT and FET.
Conventionally, the circuits with NDR can be classified into the following groups: circuits with
MOS transistors [7,8,16–18,21], circuits with BJT transistors [10,14], circuits with BJT and JFET [11–15],
circuits with JFET and MOS transistors [12,22], circuits with BJT and MOS transistors [9,20], and circuits
with BJT and HBT [19]. It should be noted that in the known NDR devices and circuits it is practically
impossible to change the angle of inclination of the current-voltage characteristics in the area of
negative resistance. Therefore, it is not possible to increase the NDR of the device or circuit without
changing the type or the size of the transistors.

This paper proposes a new NDR circuit based on the connection of a FET and a BJT simple current
mirror with multiple outputs. A JFET, MESFET, HEMT, or PHEMT can be used as a FET. A distinctive
feature of this circuit is the ability to control the NDR without changing the types or the size of
transistors. This feature is based on the property of a simple current mirror to increase the current gain
due to the parallel connection of transistors at the output of the mirror [59]. In the proposed circuit, the
current-voltage characteristics are of the N-type with three threshold voltages. General mathematical
equations for calculating the threshold voltages and currents have been derived. Since the threshold
current related to the beginning of the NDR region depends on the FET drain current, a mathematical
modeling of this current has been performed for a JFET and a gallium-arsenide FET, such as MESFET,
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HEMT, or PHEMT. A comparison of the calculated voltage and current thresholds with the SPICE
simulations showed perfect convergence as for the case of using a JFET as well as for PHEMT,
which was modeled by the Statz nonlinear model. The latter indicates the adequacy of mathematical
expressions derived for the calculation of current and voltage thresholds.

The proposed NDR circuit can be used to design various oscillators. By connecting a parallel LC
tank to the output of the proposed NDR circuit, one can get a sinusoidal oscillator, which can operate
in different frequency bands. When using an ultra-high frequency JFET, the maximum frequency is
limited to several hundred MHz. When using a gallium-arsenide transistor such as MESFET, HEMT,
or PHEMT, the maximum oscillation frequency lies in the region of several GHz. Self-excitation
of the oscillator by the proposed NDR circuit depends on the magnitude of the negative resistance
introduced into the parallel LC tank circuit. If the value of the introduced negative resistance is
sufficient to compensate for losses in the tank circuit, then the amplitude of oscillations increases
and reaches a steady-state value. However, if the magnitude of the introduced negative resistance is
insufficient, the oscillator does not self-excite. In any other NDR oscillator, in this case, it is necessary
to change the transistors or their sizes for increasing negative resistance. However, in the proposed
NDR circuit, it is enough to add one or more transistors in the current mirror as shown in Figure 1a
and in this case, according to formula (18), the NDR will increase, and hence the absolute value of the
negative resistance introduced into the tank circuit will also increase. Then the oscillator will oscillate.
A SPICE simulation of the LC oscillator with a PHEMT and a BJT current-mirror at the frequency
of 1.096 GHz showed that the generated signal has a low level of distortion, as well as a low noise
level when using additional capacitances in the positive feedback circuit and between the drain of
the PHEMT and ground. The implemented LC oscillator prototype operating in the high-frequency
band has confirmed theoretical results. The proposed NDR circuit can also be used to design a VCO.
Depending on the transistors used, such VCO can operate in different frequency bands, ranging from
high-frequencies and up to microwaves. Thus, the simulated VCO circuit with PHEMT covers the
frequency range from 775 MHz to 1.375 GHz, i.e., the frequency overlap ratio is higher than 1.75.
Moreover, the amplitude of oscillation is about 2 V and practically does not change in the whole range
of tunable frequencies. A comparison of the performance characteristics of the designed VCO with
VCOs in previously published studies has shown that it is about 20 dB more efficient than the HEMT
VCOs and is not inferior to the best CMOS VCOs.

The proposed NDR circuit can also be used in laboratory works in the electronics departments of
universities to study the properties of negative resistance, to model various oscillators and to analyze
the conditions for self-excitation of oscillators.

Our future work will include an analysis of the use of various bipolar and MOS current mirrors
instead of the simple current mirror in the proposed NDR circuit.
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BJT Bipolar junction transistor
CM Current mirror
CMOS Complementary metal-oxide-semiconductor
FET Field-effect transistor
FOM Figure of merit
HBT Heterojunction bipolar transistor
HEMT High-electron-mobility transistor
JFET Junction gate field-effect transistor
KCL Kirchhoff’s current law
KVL Kirchhoff’s voltage law
MESFET Metal-semiconductor field-effect transistor
MOS Metal-oxide-semiconductor
MOSFET Metal-oxide-semiconductor field-effect transistor
NDR Negative differential resistance
NENS N-channel enhancement mode with load operated at saturation
PCB Printed circuit board
PHEMT Pseudomorphic high-electron-mobility transistor
PNP Positive-negative-positive
RF Radio frequency
SPICE Simulation program with integrated circuit emphasis
THD Total harmonic distortion
VCO Voltage controlled oscillator
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