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Abstract: Near-infrared (NIR) facial expression recognition is resistant to illumination change.
In this paper, we propose a three-stream three-dimensional convolution neural network with a
squeeze-and-excitation (SE) block for NIR facial expression recognition. We fed each stream with
different local regions, namely the eyes, nose, and mouth. By using an SE block, the network
automatically allocated weights to different local features to further improve recognition accuracy.
The experimental results on the Oulu-CASIA NIR facial expression database showed that the proposed
method has a higher recognition rate than some state-of-the-art algorithms.
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1. Introduction

Facial expressions carry rich non-verbal information. Machines with the ability to understand
facial expressions can better serve humans and fundamentally change the relationship between humans
and machines. Therefore, automatic facial expression recognition has attracted attention from many
fields, such as virtual reality [1,2], public security [3,4], and data-driven animation [5,6].

The effectiveness of facial expression recognition can be easily affected by environmental changes,
such as changes of light, angle, and distance. Among these, the change of illumination conditions
under visible light (VIS) (380–750 nm) has the largest influence [7,8]. To overcome this influence,
an active near-infrared (NIR) illumination source (780–1100 nm) is used for the recognition. In this
study, an NIR camera, together with the NIR illumination sources, were placed in front of the subjects.
The intensity of the NIR illumination source was much higher than that of the ambient NIR light in
indoor environments. Therefore, the ambient illumination problem could be solved as long as the active
NIR illumination source is constant. The NIR recognition system is resistant to ambient illumination
variations, and has been successfully applied to the field of face recognition [9]; it can perform well
even in dark environments [10], in which normal imaging systems fail to perform recognition.

Facial expressions manifest themselves as movements of one or several discrete parts of the
face, such as tightening the lips to express anger and raising the mouth to express happiness [11].
Some researchers use the features extracted from the entire face, which are called global features [12,13],
for recognition, while other researchers use features extracted from specific parts, which are called local
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features [14–17]. Many researchers have demonstrated that local features improve the performance
of facial expression recognition compared with global features [18,19]. The main reason for this
advancement is that the specific local regions contribute more accurate information of facial changes
that help to distinguish the expressions, while the global region contains more identity information.
Some researchers [20,21] have pointed out that the eyes, eyebrows, and mouth are the most expressive
facial parts. However, it is unknown which part of the face should carry more weight in expression
recognition or how the correct weight can be allocated to different parts of the face.

In earlier studies, many facial expression recognition systems used static images [22–24] that only
contain spatial information as the input. However, facial expression can be a dynamic process, and the
dynamic information of the face can better reflect the change of expression. Therefore, it is necessary to
extract spatial and temporal information from the image sequences to facilitate recognition.

In the work reported in this paper, we designed a convolutional neural network (CNN) to complete
NIR facial expression recognition. The CNN used is a three-stream three-dimensional (3D) CNN,
which can learn spatio-temporal information from image sequences. In addition, the three inputs to
the CNN are all local features, which not only reduce computational complexity, but also remove
information not related to the expressions (such as identity information). A squeeze-and-excitation
(SE) block is appended after the 3D CNN, which can automatically assign more weight to the local
features that carry more expression information. To overcome the over-fitting problem caused by small
data, features are extracted through three identical shallow networks. Finally, we add a global face
stream to the local network, further increasing the recognition rate.

The main contributions of this paper are the following: (1) Three local regions of the face are used
as the input of the network for the NIR expression recognition, which can not only accurately extract the
facial expression information, but also reduce the computational complexity and dimensions; and (2)
an SE block is added to model the dependencies between feature channels and adaptively learn the
weight of the channel to gain efficient expression information and attenuate the useless information.

2. Related Work

Facial expressions can be decomposed into movement of one or more discrete facial action
units (AUs). Inspired by this theory, Liu et al. [25] located common patches and unique patches of
different expressions for recognition. However, this method could cause overlapping of located areas.
Liu et al. [26] did further work and proposed a framework called FDM to select the active features of
each expression without overlapping. Later, Liu et al. [27] proposed a 3D CNN with deformable action
part constraints that can locate and code action units.

To extract temporal features while acquiring spatial features, Ji et al. [28] extended a CNN to a 3D
CNN, which can extract the spatio-temporal information from image sequences. Szegedy et al. [29]
utilized the 3D CNN to extract temporal information for video-based expression recognition.
Chen et al. [30] proposed a new descriptor, the histogram of oriented gradients from three orthogonal
planes (HOG-TOP), to extract the dynamic texture features from image sequences, which are fused with
the geometric features to identify expressions. Fonnegra et al. [31] proposed a deep learning model and
Yan et al. [32] presented collaborative-discriminative-multi-metric-learning (CDMML)-based image
sequences for emotion recognition. To make the system more precise, Zia et al. [33] proposed a dynamic
weight majority voting mechanism for the construction of ensemble systems. However, since these
methods are all based on visible light, the impact of external illumination changes are not considered.

The NIR facial images/videos are hardly influenced by the ambient visible light change. Farokhi
et al. [34] proposed a method of extracting global and local features by using Zernike moments
(ZMs) and Hermite kernels (HKs), respectively, and then used the fused features to identify the NIR
face. Taini et al. [35] assembled a near-infrared facial expression database and completed the first
study based on NIR facial expression recognition. Zhao et al. [18] developed the database of NIR
facial expressions, called the Oulu-CASIA NIR facial expression database, and used local binary
patterns form three orthogonal planes (LBP-TOP) to extract dynamic local features. It was proved
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in this work that NIR can overcome the influence of visible-light illumination changes on expression
recognition. However, these methods must extract facial expression features manually. Jeni et al. [36]
proposed a 3D-shape-information-based recognition technique and further proved that an NIR camera
configuration is suitable for facial expressions under light-changing conditions. Wu et al. [37] proposed
a three-stream 3D convolutional network for NIR facial expression recognition, using a combination of
global and local features, but did not consider assigning different weights to local features.

3. Materials and Methods

3.1. 3D CNN

A 3D CNN is more suitable for spatial-temporal feature extraction. In [28], to process image
sequences more efficiently, a 3D CNN approach is proposed to address action recognition problems.
Through 3D convolution and pooling operations, a 3D CNN has the ability to learn temporal features.

A 3D CNN consists of an input layer, 3D convolution, 3D pooling (usually, each convolution
layer is followed by the pooling layer), and a fully connected (FC) layer. The dimension of the input
image sequences to the 3D CNN is represented as d× l× h×w, where d is the number of the channels,
l the number of frames of video clips, and h and w the height and width, respectively, of each frame.
In addition, 3D convolution and pooling have a kernel size in t× k× k, where t is the temporal depth
and k the spatial size.

3.2. Squeeze-and-Excitation Networks (SENets)

Hu et al. [38] proposed squeeze-and-excitation networks (SENets). The basic architectural unit of
SENets is the SE building block, which is shown in Figure 1.
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Before the SE block operation, input data X is transformed into features U through a series
of convolution operations, i.e., Ftr : X→ U, X ∈ RW′×H′×C′ , U ∈ RW×H×C, where Ftr represents the
transformation from X to U, H (H′) and W (W′) are the frame height and width, respectively, and C (C′)
are the number channels.

The SE block mainly consists of two operations: Squeeze and excitation. Because the filter learned
by each channel in the CNN operates on the local receptive field, each feature map in U cannot utilize
the context information of other feature maps. The purpose of the squeeze operation is to have a global
receptive field, so that the lower layers of the network can also use global information. The global
average pooling operation is used to compress U (multiple feature maps) into Z, so that the C feature
maps eventually become real columns of 1× 1×C. The squeeze operation is performed by

zm = Fsq(um) =
1

W ×H

W∑
i=1

H∑
j=1

um(i, j) (1)

where zm represents the mth element of Z and um the mth element of U.
The excitation operation is a simple gating with a sigmoid activation. The purpose of this operation

is to model the interdependence between feature channels by learning parameters to generate the
weight of each feature channel. To meet these requirements and limit the model complexity and
auxiliary generalization, two FC layers (1*1 conv layer) were introduced. One is the dimension
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reduction layer, in which the parameter is W1 and the dimension reduction ratio r; the other is a
dimension increase layer with parameter W2 followed by a Rectified linear unit (ReLU), W1 ∈ R

C
r ×C

and W2 ∈ RC×C
r . The excitation is performed by:

S = Fex(Z, W) = σ(g(Z, W)) = σ(W2 δ(W1, Z)) (2)

where S is the vector after excitation operation, and δ and σ refer to the ReLU function and the sigmoid
function, respectively.

Finally, S is combined with U to obtain the final output by:

∼
xm = Fscale(um, sm) = sm·um (3)

where sm is the mth element of S and
∼
xm the mth element of the final output

∼

X; Fscale refers to channel-wise
multiplication.

The goal of the SE block is to greatly improve the expressiveness of the network; it adaptively
recalibrates the feature weight by modeling the interdependencies between the channels. In more
detail, it allows the network to use global information to selectively enhance the beneficial features of
the channel and suppress the useless function channels.

3.3. Proposed System

In this paper, we propose a three-stream 3D CNN with an SE block called an SE three-stream
fusion network (SETFNet). We took three local regions, the eyes (including eyebrows), nose, and mouth,
from the facial expression image sequence as inputs to the three-stream network. After fusions of
the three streams, an SE block was added to the network to adaptively learn the weight of each
feature channel.

To avoid over-fitting problems, a deep CNN requires large amounts of data for training. However,
the available database for NIR expression is small in size. To train a CNN model on a small database,
researchers use a medium-size CNN [39,40]. Therefore, the SETFNet in this paper was also a
medium-size CNN with four convolutional layers.

The structure of the proposed SETFNet is shown in Figure 2. It is a three-stream 3D CNN
consisting of three identical sub-networks. Each sub-network consists of four convolutional layers
and has the same parameters. The number of convolution kernels for the four convolution layers,
first through fourth, is 16, 32, 64, and 128, respectively. The kernel size of the first convolution layer is
3×3×8, and a large temporal stride here is used to eliminate some useless information. The kernel size
of the other three convolution layers is 3×3×3. The three streams were fused and followed by an SE
block to recalibrate the weight of each stream. The details of each subnetwork are shown in Table 1.

Table 1. Configuration of each stream.

Layers Kernel Parameter Settings Number of Kernels Output Size

Date 32 × 36 × 64
Conv 3 × 3 × 8 16 9 × 18 × 32
Pool1 2 × 2 × 1 16 9 × 18 × 32
Conv2 3 × 3 × 3 32 9 × 9 × 16
Pool2 2 × 2 × 2 32 8 × 8 × 15
Conv3 3 × 3 × 3 64 8 × 8 × 15
Pool3 2 × 2 × 2 64 4 × 4 × 8
Conv4 3 × 3 × 3 128 2 × 4 × 8
Pool4 2 × 2 × 1 128 2 × 2 × 4
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Fusion Network

After extracting the features from the three regions (eyes, nose, and mouth), three stream features
defined as T1, T2, and T3 were obtained. The three stream features were then concatenated together to
achieve better recognition by

T = T1 ⊕ T2 ⊕ T3, (4)

where T is the fused feature and ⊕ represents the concatenation operation. The concatenated features T
were used as inputs to the next operation of the network.

3.4. Experiments

The proposed network was assessed on the Oulu-CASIA NIR facial expression database [18].
The network was implemented in the Caffe framework, which ran on a PC with a NVIDIA Geforce GTX
1080 graphical processing unit (GPU) (8 G). Training a model with the correct parameters is the key to
achieving optimal performance, which has a direct impact on the experimental results. We trained
the network from scratch using a batch size of 4, an initial learning rate of 10−3−3, and a weight decay
of 0.0005.

3.4.1. Database

Because the NIR facial expression database is not very common, the Oulu-CASIA NIR facial
expression database is currently the only suitable one. It was collected in dark, weak, and normal light
conditions, and consists of six kinds of facial expressions (anger, disgust, fear, happiness, sadness,
and surprise) of 80 people between 23 and 58 years old, so each illumination condition has 480 image
sequences. All expression sequences begin at the neutral emotion and end with the peak of the emotion.
Each subject was asked to sit on a chair in the observation room in a way that they were in front of
the camera. The distance between the face and camera was approximately 60 cm. Subjects made
expressions according to the image sequences, while videos were captured by a USB 2.0 PC Camera
(SN9C 201 & 202). Each clip was filmed by the camera at a frame rate of 25 fps. The image resolution
was 320 × 240.
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The aforementioned database has been used in many studies of facial expression recognition. It has
been proved that the identification task under dark illumination conditions is the most difficult [18],
because the facial image loses most of the texture features in dark light conditions. Therefore, we tested
the proposed network on this most difficult sub-dataset (dark illumination condition).

We used the very popular method of tenfold cross-validation. All of the image sequences were
divided into 10 groups. At each fold, nine groups were used to train the network and the rest were used
for testing. During the entire experiment, there was no overlap between the training and testing sets.

3.4.2. Data Pre-Processing

In our experiment, a video sequence was pre-processed in the following three steps: (1) Frame-
by-frame face detection; (2) locating eyes, nose, and mouth; and (3) cropping off the eyes, nose,
and mouth areas. We found that step 2 had a significant effect on the performance of the network,
so the choice of area to perform accurate spotting is crucial. To ensure that this was done accurately,
the local areas were cropped based on the location of landmark points annotated by a robust landmark
detector, discriminative response map fitting (DRMF) [41]. DRMF not only achieves good performance
in landmark-detection methods [30], but also consumes very little computation time.

The cropping of these local areas was done by an automatic method. Since some of the cuts are
inaccurate, manual cropping was used. Using the facial landmark points annotated earlier, the three
regions were identified by using rectangular bounding boxes determined based on the eyes, nose,
and mouth landmark points. We segmented the three local regions according to the following eleven
points: E1 (x1, y1), E2 (x2, y2), E3 (x3, y3), E4 (x4, y4), E5 (x5, y5), N1 (x6, y6), N2 (x7, y7), M1 (x8, y8),
M2 (x9, y9), M3 (x10, y10), and M4 (x11, y11) (shown in Figure 3). The center point of the rectangular
bounding box of the eye region is L1 = E5 (x5, y5), and the length and width of the rectangle are 5

3 |x2 − x1|

and 4
3 |y4 − y1|, respectively. The center point of the rectangular bounding box of the nose region is L2 =

(x5,
y7−y6

2 ), and the length and width of the rectangle are |y7 − y6| and |x3 − x4|, respectively. The center
point of the rectangular bounding box of the mouth region is L3 = (x5,

y11−y9
2 ), and the length and

width of the rectangle are 5
3 |x10 − x8| and 4
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For the network input, each video sequence is normalized to 32 frames using the linear interpolation
method [42]. Each frame of a global face (whole face) and local areas were resized to 88 × 108 and 36 ×
64, respectively. To reduce the amount of calculation, all input images were converted to 8-bit grayscale.
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4. Results and Discussion

4.1. Comparisons of Different Streams and Their Fusion

Table 2 shows the average results of tenfold cross-validation for each local region using a single
sub-network (one stream) and a fused network. The feature information of the eye (including eyebrows),
nose, and mouth regions is extracted by a single stream and the recognition rates are 35.37%, 42.76%,
and 68.35%, respectively. The mouth region has the highest recognition rate, which may indicate that
this part is the most expressive part in the database. The recognition rate of the eye region is the lowest
among the three regions. This may be due to some of the participants wearing glasses. In the NIR
face image, the NIR light reflected by the glasses removes the feature of the eyes, so that the frames
with glasses have a great influence on recognition. At the same time, we can see that the performance
of the recognition rate of the three-local-stream-fused networks (TFNets) reaches 78.68%, which is
much higher than that of each single stream network (eye, 35.37%; nose, 42.76%; mouth, 68.35%).
This indicates that our fusion is very effective in improving the recognition rate. After the network was
fused, we added the SE block that automatically allocates weights to different streams. Since the SE
block can make the entire network adaptively learn the weight of the feature channel, the SETFNet
further improves the recognition rate, reaching a recognition rate of 80.34%.

Table 2. Comparison of different local and fused networks.

Architecture Accuracy (%) Time (s)

Eye 35.37
Nose 42.76 0.515

Mouth 68.35

TFNet 78.68 1.158
SETFNet 80.34 1.237

SETFNet + global 81.67 2.142

To investigate whether the SETFNet had extracted most of the expression features, we added
one more stream to the SETFNet, which takes the frame of the global face as the input. Because
each frame of the global face has larger spatial size than that of each local area, we added one more
convolution pair to this added stream. The network structure is shown in Figure 4, with the fourth
stream being the global face stream. When it is added to the SETFNet, the recognition rate becomes
81.67%. The SETFNet itself can achieve an 80.34% recognition rate. That is to say, after adding the
entire face as input, the improvement of the recognition rate is still limited. This may indicate that the
SETFNet has extracted most of the expression features.

Table 2 also shows the time consumption of various single sub-networks and fused networks.
The time for a single sub-network to process an image sequence is 0.515 s, and the time for TFNet and
SETFNet to process a sequence is 1.158 and 1.237 s, respectively. Considering the large improvement
in recognition rate made by the TFNet and SETFNet, the increase of computation time is acceptable.
However, when a global face stream is added to the SETFNet, the time for the network to process a
sequence is 2.142 s. The slight increase in recognition rate (80.34% versus 81.67%) made by the global
stream is at the expense of the processing time (1.237 s versus 2.142 s). However, all of the computation
time may be within acceptable limits, since the input is 32 frames. Under the hardware settings used
(NVIDIA Geforce GTX 1080 GPU (8G) for deep-learning acceleration), the SETFNet can process 32/1.237
= 25.87 frames every second. The frame rate of a normal imaging system is 25–30 fps, and 25.87 fps
is within this range, which means that the SETFNet can give the recognition result just 1 s of lag in
real-time imaging if the computation is performed in parallel with the imaging. With better hardware,
the computation time can be further decreased to or to less than 1 s, which makes the processing a
real-time process. Therefore, this network could be used in real applications.
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The recognition rate of the eye region is the lowest among the three regions. One reason may
be that the eyes have fewer features than the other parts; another reason could be that some of the
subjects wear glasses. To verify the effect of glasses on the recognition rate, we input the eyes with and
without glasses into the sub-network separately. The recognition results are shown in Table 3. It is
seen that the recognition rate without glasses is better than that with glasses, which indicates that the
glasses remove some features of the eyes. Since we divided the dataset into two parts, the recognition
rates of wearing glasses and not wearing glasses are lower than that of the single sub-network with all
data as the input.

Table 3. Comparison of recognition rate with and without glasses.

Category Accuracy (%)

With glasses 30.13
Without glasses 31.45

4.2. Comparison of Embedded SE Block

The SE block was added to the network after the fusion so that the network could receive the
information of the entire network and have a global receptive field. In the SE block, the reduction
ratio r is an important parameter that can change the capacity and computational cost. We compared
different reduction ratios r in our network model and the results are shown in the Table 4. When r = 16,
the accuracy is the highest; therefore, r is set as 16.

Table 4. Comparison of different network reduction ratios.

Architecture Accuracy (%)

SETFNet

r = 4 79.82
r = 8 79.12
r = 16 80.34
r = 32 79.54

SETFNet + global

r = 4 80.57
r = 8 81.25
r = 16 81.67
r = 32 80.38
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4.3. Comparisons with Other Methods

Table 5 shows the different expression recognition rates of different methods on the Oulu-CASIA
NIR facial expression database under dark-lighting conditions. For all of the methods, we used the
tenfold cross-validation method to obtain an average recognition rate. The results of Deep Temporal
Geometry Network (DTAGN), 3D CNN Deformable Facial Action Parts (DAP), and NIRExpNet were
obtained from [37], and the result of LBP-TOP was obtained by implementing the algorithm using
MatLab software (MathWorks, Natick, MA, USA). SETFNet and SETFNet + global were implemented
by using Caffe. It is seen that LBP-TOP and 3D CNN DAP can achieve recognition rates of 69.32% and
72.12%, respectively, which are higher than that of DTAGN. NIRExpNet used the fusion information of
local and global features, and therefore can achieve an even higher recognition rate than LBP-TOP
and 3D CNN DAP. SETFNet uses only local information of three regions, but it can achieve a higher
recognition rate (even higher than NIRExpNet, which uses local and global features). When a global
face stream is added to SETFNet, it further improves the recognition rate to 81.67%. This indicates that
the automatic allocation of the weight-of-features channel helps improve the recognition performance,
which could be a promising method for NIR facial expression.

Table 5. Comparison of total recognition rates of different methods.

Method Accuracy (%)

LBP-TOP [18] 69.32
DTAGN [43] 66.67

3D CNN DAP [27] 72.12
NIRExpNet [37] 78.42

SETFNet 80.34
SETFNet + global 81.67

4.4. Confusion Matrixes

To analyze the experimental results further, the confusion matrixes of SETFNet and SETFNet
+ global are shown in Tables 6 and 7, respectively. The labels on the left-hand side represent actual
classes and those at the bottom represent the predicted classes; each percentage value in the matrix
was calculated by dividing the number of a predicted class to the number of the corresponding actual
class. After adding the global stream, the recognition rate of each expression is increased by 1–2%.
It can be seen from Tables 6 and 7 that whether or not the global face stream is added, both happiness
and surprise have high recognition rates, while fear and disgust have relatively low rates. The latter
low recognition rates may be due to the slight movement of AUs for fear and disgust, which makes it
more difficult to distinguish them from other expressions. Moreover, disgust is confused with anger,
fear, and sadness, and fear is confused with anger, disgust, happiness, and surprise, perhaps because
their appearance and movements are similar to each other.

Table 6. Confusion matrix of SETFNet. Labels on left-hand side represent actual classes; those on
bottom represent predicted classes.

An 77.64% 12.27% 1.25% 0 8.84% 0
Di 15.06% 72.91% 9.53% 0 2.50% 0
Fe 7.45% 6.31% 68.53% 1.25% 0 16.46%
Ha 0 0 6.64% 93.36% 0 0
Sa 12.25% 3.52% 0 2.89% 81.34% 0
Su 0 0 8.46% 3.25% 0 88.29%

An Di Fe Ha Sa Su



Electronics 2019, 8, 385 10 of 15

Table 7. Confusion matrix of SETFNet + global. Labels on left-hand side represent actual classes;
those on bottom represent predicted classes.

An 78.43% 11.86% 0 0 9.71% ↑ 0
Di 13.38% 74.67% 7.87% 0 4.08% ↑ 0
Fe 9.54% ↑ 5.58% 71.08% 0 0 13.83%
Ha 0 0 5.74% 94.26% 0 0
Sa 9.46% 8.25% ↑ 0 0 82.29% 0
Su 0 0 3.38% 7.31% ↑ 0 89.31%

An Di Fe Ha Sa Su

SETFNet + global takes the entire face as input. The more input features there are, in general,
should increase the true prediction values (values on the diagonal of the confusion matrix) and decrease
the false prediction values (the zero value will be unchanged). It is seen from Table 6 that SETFNet +

global does increase all true prediction values. However, more input does not always decrease the
false prediction values. We can see from Table 7 that increased false prediction values do exist, which
are indicated by up-pointing arrows. As the database is small in size, the prediction values could vary
due to noise. To ensure that the located false prediction values are increased only as a result of more
input features, we located their paired false prediction values as well. Each false prediction value
pair appears in the same color in Table 7; for example, 9.54% (fear predicted as anger) and 0% (anger
predicted as fear) in green. Only when both paired values are increased can the two expressions be
considered as confused with each other more in SETFNet + global.

Under this criterion, we can see that sadness tends to be more recognized as disgust (8.25% versus
3.52%), or disgust tends to be more recognized as sadness (4.08% versus 2.50%), if SETFNet + global is
used. The reason for this might be that, in sadness and disgust expression situations, lower cheek areas
have an up-and-down movement pattern due to the movement of AU15 or AU10 [44]. When SETFNet
+ global takes these similar movement patterns as input, sadness will be recognized as disgust more.

Tables 8–11 show the confusion matrix of the comparison algorithms, with the labels on the
left-hand side representing actual classes and those at the bottom representing the predicted classes.
The confusion matrix of NIRExpNet (Table 8) was adopted from [37] directly. The other matrixes were
obtained by implementing the algorithms with MatLab code on the database (tenfold cross-validation).
Happiness and surprise again have higher recognition rates than the others in all algorithms. Fear has
the lowest average recognition rate, and disgust has a similar average recognition rate to that of anger
and sadness. This trend is in accord with what SETFNet reveals.

Table 8. Confusion matrixes of NIRExpNet.

An 71.01% 14.43% 0 0 14.56% 0
Di 20.56% 79.44% 0 0 0 0
Fe 0 8.00% 62.44% 0 0 29.56%
Ha 0 0 0 96.01% 0 3.99%
Sa 10.44% 0 14.44% 0 75.12% 0
Su 0 0 9.41% 4.04% 0 86.55%

An Di Fe Ha Sa Su

Table 9. Confusion matrixes of 3D CNN DAP.

An 69.82% 16.23% 8.68% 0 5.27% 0
Di 14.54% 73.41% 8.47% 0 3.58% 0
Fe 7.34% 7.46% 60.21% 8.32% 0 16.67%
Ha 0 0 8.58% 83.23% 0 8.19%
Sa 13.45% 9.93% 12.32% 0 64.30% 0
Su 4.51% 0 11.49% 2.45% 0 81.55%

An Di Fe Ha Sa Su
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Table 10. Confusion matrixes of DTAGN.

An 69.25% 15.28% 2.35% 3.30% 9.82% 0
Di 18.72% 70.32% 10.96% 0 0 0
Fe 5.42% 3.13% 59.32% 5.62% 3.05% 23.46%
Ha 0 7.66% 12.57% 71.13% 0 8.64%
Sa 15.62% 0 14.52% 0 60.21% 9.65%
Su 0 0 13.46% 15.42% 0 71.12%

An Di Fe Ha Sa Su

Table 11. Confusion matrixes of LBP-TOP.

An 63.45% 16.52% 7.66% 0 12.37% 0
Di 15.33% 58.36% 10.67% 3.26% 12.36% 0
Fe 7.46% 6.89% 64.31% 0 3.89% 17.45%
Ha 0 11.68% 7.89% 75.86% 0 4.57%
Sa 10.62% 8.77% 10.43% 0 70.18% 0
Su 0 0 9.39% 6.85% 0 83.76%

An Di Fe Ha Sa Su

To further analyze the discrimination ability of different methods, we counted the number of zero
false prediction values in each matrix. This number indicates that two corresponding expressions
are perfectly recognized by the method. It is observed that NIRExpNet has 20 zero false prediction
values, much more than other methods. 3D CNN DAP, DTAGN, and LBP-TOP have a similar number
of zero false prediction values (approximately 12). These results indicate that NIRExpNet has the
best performance in distinguishing one expression from others. This could be because NIRExpNet
is designed specifically for the dataset. The features extracted by NIRExpNet are balanced so the
possibility of confusing one expression with others is small.

Some zero false prediction values do not have zero paired values, e.g., the values in red in Table 9.
4.51% of the surprise expression was recognized as anger, but 0% anger was recognized as surprise
using 3D CNN DAP. This could be due to the noise of the small dataset.

The F1 score and Matthews correlation coefficient (MCC) are calculated using the confusion
matrixes, which are indexes considering accuracy and recall of the classification results and are fairer
methods for assessing a classifier. The F1 score and MCC are summarized in Table 12. It is observed
that SETFNet and SETFNet + global have the highest F1 and MCC, NIRExpNet has the second-highest
values, and 3D CNN DAP the third highest. LBP-TOP and DTAGN have the lowest F1 and MCC.
This indicates that SETFNet outperforms other methods in even more rigorous assessment. The order
of the F1 and MCC performance of the methods is in accord with accuracy performance. This also
indicates that the number of each sub-category is well balanced.

Table 12. Comparison of F1 score and MCC of different methods.

Method F1 Score MCC

LBP-TOP [18] 0.6712 0.6343
DTAGN [43] 0.6949 0.6077

3D CNN DAP [27] 0.7235 0.6702
NIRExpNet [37] 0.7828 0.7416

SETFNet 0.8034 0.7648
SETFNet + global 0.8164 0.7806

4.5. Potential Application and Improvement

SETFNet, which used three regions of the face as the input, can achieve higher recognition rates
than NIRExpNet, which used the entire face as input, because an SE block can automatically allocate
the weights to different streams. These results suggest that the automatic allocation of weights to
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different features will help improve the recognition rate. This idea of automatic allocation may have
potential use in other recognition tasks. The SE block can always be added after a feature fusion step
to allocate weights to different features to further improve the recognition rate.

SETFNet + global has a slightly higher recognition rate than SETFNet, but consumes much
more calculation time. This indicates that a small part of the face could carry most of the expression
information. For any other type of facial expression recognition task, we may only analyze the parts of
face carrying expression information, which can save much calculation time and make recognition a
real-time application.

The highest recognition rate on the Oulu-CASIA NIR facial expression database (dark condition)
is 98.6%, achieved by Rivera et al. [45]. A number transitional graph method (DNG) was proposed
in [45]. The confusion matrixes achieved by DNG method were summarized in Tables 13 and 14
(adopted from [45] directly), with the labels on the left-hand side representing actual classes and those
at the bottom representing the predicted classes. Table 13 is the confusion matrix of DNG using 3D
Sobel (DNGS), and Table 14 is the confusion matrix of DNG using nine-plane mask (DNGP). It is seen
that the recognition rate of each expression class is more than 97% and similar to each other. This may
indicate that the DNG has obtained good enough features to discriminate one expression from others.
In terms of zero false prediction values, DNGS has 21 zero false prediction values, and DNGP has
23 zero false prediction values, which are less than all other methods. This indicates that the DNG
method can achieve the most un-confused matrix. The F1 and MCC of DNG are higher than other
methods, as well (DNGS: F1 0.9859, MCC 0.9830; DNGP: F1 0.9879, MCC 0.9856). This indicates that
DNG outperforms other methods in more rigorous assessment.

Table 13. Confusion matrixes of DNGS.

An 98.75% 1.25% 0 0 0 0
Di 2.53% 97.47% 0 0 0 0
Fe 0 0 97.81% 0.63% 1.25% 0.31%
Ha 0 0.63% 0 98.73% 0.63% 0
Sa 0 0 0 0.63 99.38% 0
Su 0 0 0.63% 0 0 99.38%

An Di Fe Ha Sa Su

Table 14. Confusion matrixes of DNGp.

An 100% 0 0 0 0 0
Di 1.9% 96.2% 0 0 1.9% 0
Fe 0 0 99.38% 0 0.63% 0
Ha 0 0 0 98.73% 0.63% 0
Sa 0.63 0 0.63 0 98.75% 0
Su 0 0 0 0 0.63 99.38%

An Di Fe Ha Sa Su

DNG consists of designed feature-extraction and feature-fusion methods, which make the extracted
features robust in uneven illumination conditions. This could be the reason why DNG can achieve
the best performance. According to the design of the DNG, two aspects could be considered in the
future design of the SETFNet. Firstly, the uneven illumination conditions in the database could be
taken into account when designing the network, such as using the features extracted from DNG as a
stream to the network. Secondly, a more sophisticated fusion method could be used in future design,
e.g., the concatenation operation used in this paper could be replaced by the fusion method in DNG.

However, a different form of DNG using hand-crafted features, SETFNet, proposed in this paper
extracts features automatically. This design does not need the background knowledge of the data.
Specifically, The feature extraction in this paper was finished by using a 3D CNN. Since the dataset
used for training the CNN is small in size, the proposed network is not deep enough and may not
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extract high-level features. To further improve the recognition rate, transfer learning could be used,
i.e., training a deeper CNN on a larger dataset and then fine-tuning the network on the NIR database.

5. Conclusions

In this paper, we proposed a three-stream 3D CNN architecture with an SE block called SETFNet
that can automatically learn spatio-temporal features simultaneously. We only used three local regions
of the face as input to the network. The advantages of using local information as input to the network
were the removal of some information unrelated to recognition and a reduction of the amount of
computation. To enable the network to adaptively learn the weight of each feature channel, an SE
block was added to the network after the fusion of three single sub-networks. Experimental results
show that SETFNet can achieve an average recognition rate of 80.34%; when a global face stream was
added to SETFNet, the recognition rate was further increased to 81.67%, which is higher than some
state-of-the-art methods.
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