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Abstract: Energy is a precious resource in the sensors-enabled Internet of Things (IoT). Unequal
load on sensors deplete their energy quickly, which may interrupt the operations in the network.
Further, a single artificial intelligence technique is not enough to solve the problem of load balancing
and minimize energy consumption, because of the integration of ubiquitous smart-sensors-enabled
IoT. In this paper, we present an adaptive neuro fuzzy clustering algorithm (ANFCA) to balance the
load evenly among sensors. We synthesized fuzzy logic and a neural network to counterbalance the
selection of the optimal number of cluster heads and even distribution of load among the sensors.
We developed fuzzy rules, sets, and membership functions of an adaptive neuro fuzzy inference
system to decide whether a sensor can play the role of a cluster head based on the parameters
of residual energy, node distance to the base station, and node density. The proposed ANFCA
outperformed the state-of-the-art algorithms in terms of node death rate percentage, number of
remaining functioning nodes, average energy consumption, and standard deviation of residual energy.

Keywords: fuzzy logic; neural network; load balancing; supervised learning; back-propagation
learning; clustering

1. Introduction

Sensors enabled Internet of Things (IoT) networks have been regarded as reasonable data collection
and control applications over various network communication infrastructures through smart sensors
called IoT nodes [1–3]. Sensors-enabled IoT networks are comprised of various smart sensor nodes
(RFID enabled) that assemble facts (data) from the encompassing conditions and convey the data to
the static base station (BS) or overload the data to cloud applications where users download the data
for processing [4–6]. Sensors-enabled IoT networks have gained impressive attention in view of their
broad application in animal or human tracking and surveillance, medical environments [7], military
services, automobile industries [8], stock administration in industrial production [9], environment
monitoring, natural hazards and seismic detection, fleet navigation and management, agricultural
advancements [10], etc. However, these smart sensor nodes have a limited amount of energy for
computation and data communication, and it is troublesome to substitute the power source. In addition,
some sensor nodes quickly deplete their energy, which causes network partitions and reduces the
lifetime of the network [11]. Reference [12] proposed a model which uses ant colony optimization
technique coupled with Huffman coding to deduce the energy consumption in green computing
wireless networks. Therefore, the proper use of the energy of the sensors is the primary challenge.
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Hence, there is a need to find an approach that schedules the load among the smart sensors, particularly
among those that have higher computational power and transmission capabilities.

Clustering is one potential load balancing approach which exists in the literature. Clustering is
a technique which divides the entire network into small clusters. The maximum number of cluster
heads per cluster is limited to one; each of the cluster heads have the mandatory duty of collecting
data from their respective member nodes [13,14]. These member nodes are normally distributed
in the same topographical region, so they have correlated data. After obtaining the data from its
member nodes, cluster heads apply data aggregation techniques to eliminate any data redundancies,
as a result, it effectively truncates the quantity of data to be transferred to the base station. Since only
one cluster head per cluster is accountable for routing, to scale down the amount of data transferred,
one must make the network scalable and mitigate the load balance problem [15]. There are three
major aspects for designing a cluster-based network for data collection and transfer, namely, 1) optimal
selection procedure for cluster head, 2) cluster binding, and 3) inter-cluster routing phase for transfer
of aggregated data from each cluster head to the base station.

In clustering, cluster head selection procedure is a primary issue. Cluster head selection using
traditional mathematical models is not appropriate for complex sensors-enabled Internet of Things.
A fuzzy inference system is an appropriate tool to construct a model for cluster head selection since a
fuzzy inference system processes the subjective part of human understanding and thinking without
using any kind of mathematical tools. Zadeh [16] in 1965 first proposed the theory of fuzzy sets. Later
on, Takagi and Sugeno [17] (1985) proposed the fuzzy modeling fuzzy identification or fuzzy modeling
to alleviate the problem of various pragmatic applications such as control, inference, prediction,
and estimation. As fuzzy modeling provides some great advantages such as the capacity to translate
the immanent indecisiveness of human aspects into linguistic variables and effortless understanding of
outcomes, as a result of the natural rule portrayal, simple augmentation of rule to the base knowledge is
achieved through the expansion of new principles and robustness of system. Although, there are some
disadvantages with this approach, there is no proper method defined which can transform human
practical knowledge into fuzzy rule databases. Fuzzy modelling is only capable of giving an answer to
a question that is written in the rules database. It cannot handle out-of-the-box problems, or in other
words, generalization is very difficult. To alleviate this generalization problem, there is the need for a
method of tuning or learning the membership function to cut down the error rates and to increase the
performance index.

McCulloch and Pitts [18] developed the first artificial neural network model. Both Rosenblatt
and Widrow first trained and named the trained variant of the artificial neural network model as the
“adaptive liner neuron”, later on called the “adaptive linear element algorithm” [19–24]. An artificial
neural network is a “connectionist” computation model, which attempts to carve the biological neurons
of a human cerebrum. The main advantage of neural networks is learning capacity; this model can
learn from training data vectors and input–output pairs of the system. The neural network itself maps
the weight functions or membership functions according to the problem up to an acceptable error rate
of the system, which makes the system more efficient in terms of performance. Thus, it leads to the idea
of augmenting the learning algorithm and generalization capability into the fuzzy system. A neural
network receives the clarity of logical interpretation from fuzzy systems to rectify problems. In the early
1990s, Jang and Lin [25], Berenji [26] and Nauck [27] developed a hybrid system called a neuro-fuzzy
system. There is diversity in neuro-fuzzy systems, which include fuzzy adaptive learning control
networks [25,28], generalized approximate reasoning-based intelligence control [26], neuronal fuzzy
controllers [27], fuzzy inference environment software with tuning [29], self-constructing neural fuzzy
inference networks [30], fuzzy neural networks [31], evolving/dynamic fuzzy neural networks [32],
and adaptive network-based fuzzy inference systems [33].

In this paper, a hybrid system based on two different soft-computing techniques—adaptive neural
networks and fuzzy inference systems—is proposed to optimize the number of cluster heads that evenly
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distribute the load among sensors in a network. We refer to this hybrid system as an adaptive neuro
fuzzy clustering algorithm (ANFCA). The main contribution of the paper is highlighted as follows:

1. Firstly, in the system model, a first-order energy radio model was used to examine the energy
consumption throughout the network.

2. Secondly, we designed an adaptive fuzzy logic inference system (AFLIS) with the help of fuzzy
rules, sets, and membership functions that were updated (rules of AFLIS were updated) using
input–output mapping of the hybrid systems. The output of the AFLIS was used as input for the
neural network.

3. Thirdly, in ANFCA, the metrics were input into the fuzzy logic inference system and output was
produced, which provided the information about the sensor nodes, whether it was capable or not
of playing the role of cluster head. The output of the fuzzy logic inference system was handed to
the neuro fuzzy logic inference system to elect the cluster head for the next round. The ANFCA
used a supervised learning strategy to adjust the weight of the membership function of the AFLIS.

4. Fourthly, we present an approach to form clusters in which cluster heads aggregate data and
send that data to the base station.

5. Finally, the proposed algorithm was simulated and the results were compared with LEACH,
CHEF, and LEACH-ERE algorithms to shows the effectiveness of the ANFCA.

This paper is split into well-regulated systematic sections as follow: Section 2 provides a description
about related works on green computing without heuristics and fuzzy-centric heuristics. Section 3
presents the proposed adaptive neuro-fuzzy algorithm for green computing in the IoT. Section 4
discusses the simulation and the analysis of the results. Section 5 describes the conclusion of the paper
with future perspectives.

2. Related Works

There exist discreet numbers of clustering algorithms in the literature. Here, we reviewed the
appropriate papers which were related to the proposed work.

2.1. Green Computing without Heuristics

Low-energy adaptive clustering hierarchy (LEACH) [34] was the first hierarchical clustering
algorithm in sensor networks. There are two stages per clustering round in LEACH. The first one is
related to cluster head election and formation of clusters within the network and the second one deals
with data transmission to the cluster head known as the steady-state stage. A probabilistic model is
proposed to choose a cluster head in the cluster setup phase; each sensor node has a certain probability
of being assigned as cluster head per round. In general, the probability of a sensor node being elected
as a cluster head depends upon a predefined threshold value. Every sensor node generates an arbitrary
value between 0 and 1. Generated values of each sensor are compared with the threshold value to
become cluster head for an ongoing epoch or round when generated value is below the threshold
value. Each elected cluster head broadcasts a message using the carrier-sense multiple-access protocol
to avoid inter-cluster interference. The strength of the received signal is used by each sensor node to
determine which cluster head they want to join. After that, every cluster head gathers information
from their member sensor nodes, and applies data aggregation, and then forwards the aggregated
packet to the base station [35]. Thus, LEACH provides equal opportunity for each sensor node to
become a cluster head with equal probability. But there are major shortcomings, as it does not take into
account the energy consumption of each node, the geographical location of nodes are not included
which causes asymmetrical classification of clusters in a network, and it does not use multi-hop nodes
for transmission of data. Hybrid energy efficient distributed (HEED) [36] clustering protocol rectifies
the shortcomings of LEACH in terms of uneven formation of clusters by including one extra parameter:
the residual energy of nodes with nodes density (i.e., the proximity of neighbors’ sensor nodes) for
selection of cluster heads. Node density plays a major role in reducing the intra-cluster communication.
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Hybrid energy efficient distributed clustering also uses a probabilistic model to elect temporary cluster
heads, and every sensor node increases the probability of being a cluster head by twice in between
rotations. Hybrid energy efficient distributed clustering also suffers from problems where some of
the nodes are exempted from the cluster head selection process, and these nodes resolve this problem
by pronouncing themselves as cluster head. In addition, several sensors may be exempted from all
clusters or be freely available. Power-efficient gathering in sensor information systems (PEGASIS) [37]
was introduced to save energy by making a chain of sensor nodes; it uses a greedy approach which
means every node accepts delivery of data from its closest neighbors, and these acquired data are then
transferred to another closest neighbor node. These assembled data keep on moving subsequently
between nodes. Data are fused and then transmitted from specified nodes to the base station. The role
of the designated node is replaced by another random node. Therefore, all the nodes deplete their
energy proportionally or evenly distribute the load among nodes. Further, average energy spent in
each cycle is reduced.

2.2. Green Computing Using Fuzzy-Centric Heuristics

Recently, fuzzy logic systems have been applied to elect cluster heads in sensors-enabled IoT
networks. Gupta et al. [38] have proposed to choose a node as cluster head based on energy, density,
and centrality of nodes. The main difference between the protocol proposed in Reference [38] and
LEACH clustering is that this information is sent by node to the base station (known as a centralized
approach). The base station is solely responsible for the selection of the cluster head. The base
station processes these data with the help of a Mamdani-type fuzzy inference system, which gives
output as a chance to decide the future of the preferred node if that would be suitable as a cluster
head or not. The rest of the operations for a steady-state phase of that kind are similar to LEACH
clustering. In Reference [39], another cluster head selection mechanism (CHEF) is proposed based
on residual energy and local distance. Nodes select a cluster head using local information gathered
from neighboring nodes, whereas in Reference [38] the cluster head is elected by the base station.
Another improvement over the low-energy adaptive clustering hierarchy (LEACH) protocol is based
on fuzzy logic (LEACH-FL) [40]. This protocol is proposed by Reference [37], apart from it, LEACH-FL
has three distinct fuzzy variables: node density, energy level, and distance to base station. In this
mechanism, the base station gathers information from sensor nodes and applies a Mamdani-type
fuzzy inference system to figure out whether a node would be interpreted as a cluster head or not.
Lee et al. [41] put forward a clustering head selection algorithm (LEACH-ERE) with the use of energy
prediction techniques in accordance with fuzzy logic for homogenous WSNs. All of the above cluster
head election mechanisms are based on fuzzy logic, and are intended to equalize the load among
sensor nodes, but these are not able to tune the membership function or weight of the fuzzy descriptor
to adapt to the environment.

The next one in this series is the cluster head election mechanism using the fuzzy logic (CHEF)
protocol [39] that is almost the same as the Gupta fuzzy protocol. In CHEF, the base station is not
responsible for selection of the cluster head; it does not gather any information from sensor nodes.
The mechanism for selection of the cluster head is localized (a distributed approach) within a cluster.
The setup phase is similar to the setup phase of LEACH. The CHEF protocol uses two fuzzy parameters:
residual energy and local distance. The CHEF protocol works in rounds; in each round the sensor
nodes select random numbers between 0 and 1, much like LEACH. If the chosen value is less than the
threshold value, they calculate their chance using the fuzzy inference system. If the chance value of a
tentative node is greater than all other chance values of sensor nodes, than it becomes the cluster head
for the current round. It does far better than the Gupta protocol in terms of the number of cluster head
selections; the Gupta protocol selects only a single cluster head per network (simulation was done
under certain circumstances), although it is claimed that it can be increased, the process of creating
more clusters is unclear [38].
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Another improved version of the LEACH protocol based on fuzzy logic is LEACH-FL [40].
This protocol coupled with the above Gupta protocol (a centralized approach) has three distinct
fuzzy variables: node density, energy level, and distance to base station. In this protocol, the base
station gathers information from sensor nodes and applies a Mamdani-type fuzzy inference system to
determine whether a node would be interpreted as a cluster head or not. Lee et al. [41] put forward a
clustering head selection algorithm (LEACH-ERE) to predict residual energy in accordance with fuzzy
logic for homogenous sensors-enabled IoT. The chance value of a cluster head is determined with the
aid of two fuzzy norms, expected residual energy, and residual energy of a node. It is similar to the
LEACH protocol where each node makes the decision itself to become a cluster head or not, without the
help of the base station (called a distributed or localized approach). The sensor node having both extra
residual energy as well as expected residual energy, gains additional benefit in becoming a cluster head.
However, LEACH-ERE does not consider the distance between the cluster head and base station, or the
node density around the sensor node which can lead to uneven energy consumption over the network.

Recently Nayak and Devulpalli [42,43] proposed a new fuzzy-logic-based clustering algorithm
where the base station is mobile, and each cluster head does not send aggregated data to the mobile
station. There is one super cluster head (SCH) in the network area that gathers the aggregated data from
cluster heads and only the SCH dispatches information to the base station. Similar to LEACH, in each
round the cluster heads are selected using a probabilistic model. Furthermore, the SCH is elected
among cluster heads based on a Mamdani-type fuzzy inference system. According to a distributed
approach, each cluster head is determined by its chance value using three fuzzy descriptors: remaining
battery power (residual energy), mobility (referring to when the BS changes its position, and then the
distance between the SCH and the BS increases or decreases), and centrality (primarily focusing on how
central the SCH is to other cluster heads for communication). The chance value is the summation of
the centrality mobility and battery power. These fuzzy labels are taken as additives due to the increase
or decrease in the mobility and centrality upon the increase or decrease in the mobility of the base
station. The chance value that is greater, this cluster head becomes a super cluster head. So, the SCH
degrades the transmission taken by nodes, consequently, it reduces the duration of the first node dead
over a number of rounds and enhances the network lifetime over LEACH.

In Reference [44], Abidoye et al. present the significance of the IoT in wireless sensor networks.
Energy-efficient models are presented for enabling service-oriented applications in IoT-enabled WSN
areas in two stages: in the first stage, the clustering-based model is used for service of the application,
and in second phase, an energy-aware model is designed. Basically, those approaches are good,
but not good enough for IoT networks, and their performances are poor when considering those
networks are static. As the IoT provides dynamic networks, there is a need to improve the algorithms,
so we emphasize fuzzy-based techniques with adaptive neural networks, which adapt to the dynamic
networks of the IoT as well. In Reference [45], Yan li et al. proposed an analytic hierarchy process
and fuzzy-based energy management system for industrial equipment management, and showed
intensive case studies over IoT networks. In Reference [46], fuzzy-based vehicular physical systems
were analyzed in the Internet of Vehicles (IoV), which uses fuzzy frameworks with the Markov
chain to optimize location-oriented channel access delay. Signal-to-inference ratios and channel
access delays are used as parameters for channel quality measurement. Hu et al. proposed [47]
another aspect of the IoV which enables communication at the edge with the help of fuzzy logic.
The cluster heads or gateways (smart vehicle) are chosen using fuzzy parameter velocity, vehicle
neighboring density, and antenna height. The proposed algorithm provides an optimal number
of gateways to bridge the licensed sub 6-GHz communication with millimeter wave to enhance
network throughput. In Reference [48], a genetic-based virtualization approach was used to develop a
method to overcome the torrent delay and minimize the energy consumption in IoT-enabled sensor
networks. In Reference [10], the proposed algorithm was used for proper deployment of sensor nodes
for coverage and connectivity for agricultural purposes. There are two methods for deployment
of sensor nodes based on seven metrics that quantified the qualities measurement of sensor nodes.
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Test-bed-based experiment (INDRIYA) is done for simulation purposes to show the effectiveness of the
proposed algorithm.

All of the above protocols deal with fuzzy-logic-based algorithms, but none of them are able to
tune the membership function or weight of the fuzzy descriptor. To the best of our knowledge, none of
the above are up to the mark for real implementation, where input–output pairs are changing according
to the environment. An adaptive artificial neural network is another soft-computing technique where
a supervised learning approach is used to adapt to the environment. Therefore, we propose a novel
adaptive neuro-fuzzy clustering algorithm (ANFCA) using both fuzzy logic and a neural network to
address the problem of leaning rate of membership function, balancing the load, and minimizing the
energy consumption to improve the lifetime of the sensor-enabled IoT.

3. Adaptive Neuro-Fuzzy for Green Computing in IoT

In this section, the details of the proposed adaptive neuro fuzzy for green computing in IoT
is presented.

3.1. System Model

We consider that there are N sensor nodes deployed randomly in the sensing field in order to
sense the surroundings of the environment periodically. These sensor nodes form clusters using the
proposed neuro-fuzzy system. Each cluster has one cluster head, which receives data from cluster
members. All the sensors are stationary in nature, having equal initial energy and capability for
sensing the environment, processing the data, and transmission. The radio link between the nodes
is symmetric. It means the nodes require equal energy for transmission in both directions. The base
station is outside of the network. Sensor nodes have the capability to adjust their transmission power
depending upon the distance between receiving nodes.

We consider the first-order radio model to compute the energy requirement in the proposed work.
Let the size of the packet be m bits. The total energy consumed in transmitting a packet of m bits across
l meter distance between the sender and receiver is given by

ETNE(m, l) =
{

m ∗ Eelect + m ∗ ε f sp ∗ l2 i f l < lo
m ∗ Eelect + m ∗ εmp f ∗ l4 i f l ≥ lo

(1)

The energy consumed to receive a packet of m bits from the sender node is given by

ERCE(m) = m ∗ Eelect (2)

where Eelect represents information about electronic energy dissipation in the electronic circuit per
bit. This is affected by several factors such as digital coding, acceptable bit-rate, modulation, etc.
The ε f sp and εmp f are the energy consumption factor in the free space path and multipath fading,
respectively. When the source and receiver nodes are separated within the limit of the threshold value

lo(lo =
√
ε f sp/εmp), it uses the free space model, otherwise its multipath fading channel will be used

to computing the energy consumption for transmitting the message.

3.2. Adaptive Neuro-Fuzzy Clustering Algorithm

In this section, we propose our adaptive neuro-fuzzy clustering algorithm (ANFCA). The proposed
algorithm combines the features of the adaptive fuzzy logic algorithm (ALFIS) and the adaptive neural
fuzzy feature inference system (ANFIS), described in the following sections. The ALFIS is used to
obtain training data for ANFIS. The output of the ANFLIS is used as input for the ANFIS, where the
result is tuning, with weight adjustment, of the membership function of the antecedent and consequent
of the fuzzy-rule-based system. In the last section, the phase of the proposed algorithm is presented.
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3.2.1. Adaptive Fuzzy Logic Inference System

In this section, an adaptive fuzzy logic inference system (AFLIS) is presented to obtain information
about a sensor node to become a cluster head. The output of the fuzzy logic inference system is passed
as input data set for the next proposed adaptive neuro fuzzy inference system (ANFIS). We employed
a Mamdani engine in the adaptive fuzzy logic inference system. Three metrics: residual energy (RE),
node density (ND), and node distance to the base station (NDBS) were considered to compute the
observation about a node, whether it can play the role of cluster head or not. As a sensor node has
limited power for computation and communication, and these battery powers are almost irreplaceable
in nature, residual energy is the most viable parameter for cluster head selection. In addition, these
cluster heads are not very far away from base station otherwise data transfer would consume more
energy from the nodes. Therefore, node distance to the base station is taken as another factor. Those
nodes in the vicinity of the cluster head define the second criterion of node density, as sensor nodes
are dispersed in the surrounding area by air support, artificial arrangement or any other method.
As a result, each sensor node has a different number of neighbor nodes; if we select nodes with a lower
number of neighbors in their communication range and these neighbors are not much closer to each
other, these nodes cannot communicate directly to the cluster head and need intermediate nodes for
transmission, thus increasing communication cost. Therefore, node density was another parameter
taken into account.

The linguistic variables of the three metrics are defined as follows: residual energy (RE) = (below,
fair, top); node distance to the base station (NDBS) = (adjacent, midway, distant); and node density
(ND) = (deficient, medium, compact). The triangular and trapezoidal fuzzy membership function
was used over other membership functions (such as Gaussian, Bell or Sigmoidal) for achieving better
performance in real-time scenarios. For below and top values of residual energy, adjacent and distant
values of node distance to base station, and deficient and compact values of node density, trapezoidal
membership functions were used. The triangular membership function was used for the rest of the
values as illustrated in Figures 1–4. The probability (output of adaptive fuzzy inference system) of
sensor nodes to be assigned with the responsibility of cluster head was defined by linguistic variable
chance (CH) = (weakest, weaker, weak, medium, strong, stronger, strongest). Since we used three
metrics in fuzzification, therefore it required a total 33 = 27 rules that are shown in the Table 1. These
rules were stored in the knowledge base component of the fuzzy inference system. There were two
extreme rules: The first one was related to creating strong chances for assigning the responsibility of
cluster head to a sensor node when the value of the residual energy of that sensor node was equal to
top, the node density was compact in nature, and the node was adjacent to the base station. The second
one was if the value of the residual energy was equal to below, the node was distant from the base
station, and the node was deficient in node density, then a node would have a very weak chance to
become a cluster head.Electronics 2018, 7, x FOR PEER REVIEW  8 of 22 
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Table 1. Fuzzy knowledge database rules.

Rule
IF THEN

Rule
IF THEN

RE NDBS ND CH RE NDBS ND CH

1. below adjacent deficient weakest 15. fair midway compact medium
2. below adjacent medium weaker 16. fair distant deficient weakest
3. below adjacent compact weak 17. fair distant medium weaker
4. below midway deficient weakest 18. fair distant compact weaker
5. below midway medium weakest 19. top adjacent deficient strong
6. below midway compact weaker 20. top adjacent Medium stronger
7. below distant deficient weaker 21. top adjacent compact strongest
8. below distant medium weakest 22. top midway deficient medium
9. below distant compact weakest 23. top midway medium strong
10. fair adjacent deficient weak 24. top midway compact stronger
11. fair adjacent medium medium 25. top distant deficient strong
12. fair adjacent compact strong 26. top distant medium stronger
13. fair midway deficient weak 27. top distant compact stronger
14. fair midway medium weak - - - - -
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The adaptive fuzzy inference system works in four steps to compute the possibility of a node to
evolve into a cluster head.

a. Fuzzification or Input Crisp Value: In this step, we input the three metrics: residual energy, node
density, and distance to base station as crisp values in the fuzzy inference system. In this step,
the inference system creates membership functions for each metric that is the intersection points.

b. Knowledge Base or If–Then Rules: The knowledge base consists of all 27 rules, which runs
concurrently on inputs and generates output as chance values. There are multiple inputs
(three membership values), but selection is done among the minimum membership values which
use fuzzy AND operator.

c. Aggregation: There are 27 rules in the fuzzy inference system, which give multiple outputs.
In this step, we aggregate all the output to generate a single fuzzy output set using union fuzzy
OR operator which choose maximum of rule evaluation.

d. Defuzzification: In this step, whether a sensor node can act as a cluster head or not is computed.
For this purpose, we use a centroid method in the defuzzification step under the fuzzy set to get
from aggregation, which is given by Equation (3).

NODE CHANCE (CH) =

∫
uc(z) ∗ zdy/uc(z)dz (3)

where uc(z) measures the rate of the membership function of the entity z within fuzzy set C, which is
described as follows: C =

{
(z, uP(z))/ z ε Z , where Z denotes the universe of discourse.

3.2.2. Adaptive Neuro-Fuzzy Inference System

Fuzzy logic and artificial neural networks are good candidates for making smart artificial
intelligence systems because of their generalization and non-linearity properties. We developed a
hybrid system which consists of two different soft-computing techniques: fuzzy logic and artificial
neural networks. We named the hybrid system an adaptive neuro fuzzy inference system (ANFIS).
Fuzzy logic has expertise in the area of shapes but not on the subjective aspects of human learning into
the procedure of exact quantitative analysis. But in any case, it does not have a characterized technique
that can be utilized as a guide during the change from human idea into knowledge or rules-based
fuzzy inference systems. It is also requires much time to adjust the membership function. Not at all
like artificial neural networks, it has a higher ability in the learning procedure to adjust to its condition.
Along these lines, the artificial neural network can be used to consequently alter the membership
function and lower the rate of error in the assurance of tenets in fluffy rationale. Artificial neural
networks are used for weight adjustment of the membership function of the antecedent and consequent
of fuzzy-rule-based systems. Jang [49] proposed the ANFIS, which implements the Takagi–Sugeno
fuzzy inference system of five layers. The ANFIS technique was intended to permit membership
function and if–then rules to be developed in the light of already acquired data of metrics that are input
or output data from the previously designed adaptive fuzzy inference system (AFLIS) in Section 4.1.
In addition to the ANFIS, the fuzzy rules are tuned automatically, which is already used in adaptive
fuzzy inference systems by using supervised learning. The ANFIS uses a trapezoidal membership
function for weight adjustment. These membership functions were used with product inference rules
in fuzzification level. The model of the proposed ANFIS with three inputs and one output is shown
in Figure 5. Each input used the three membership functions following the Takagi–Sugeno type
model containing 27 rules, and each of the nodes were governed by the if–then rules shown in Table 1.
The antecedent part of the rules depicts a fuzzy subspace, whereas the subsequent part determines the
output inside the fuzzy subspace.
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The ANFIS system is a feed-forward neural network with five layers using a supervised learning
algorithm. These layers are denoted as fuzzy layer, T-norm layer, normalized layer, defuzzy layer,
and aggregated layer, which represent the first, second, third, fourth, and fifth layers, respectively.
The first and fourth layers have adaptive nodes, and the remaining layers have fixed nodes. There are
three inputs: residual energy (RE), node distance to base station (NDBS), and node density (ND),
and one output: chance (CH). We developed twenty-seven rules of “if–then” for the proposed ANFIS
system based on the Takagi–Sugeno fuzzy inference model. These rules are

Rule 1 = If RE is below, NDBS is adjacent and ND is deficient Then F1 = S1m + T1n + U1o + P1
Rule 2 = If RE is below, NDBS is adjacent and ND is medium Then F2 = S2m + T2n + U2o + P2
Rule 3 = If RE is below, NDBS is adjacent and ND is compact Then F3 = S3m + T3n + U3o + P3

. . .

Rule 25 = If RE is top, NDBS is distant and ND is deficient Then F25 = S25m + T25n + U25o + P25
Rule 26 = If RE is top, NDBS is distant and ND is medium Then F26 = S26m + T26n + U26o + P26
Rule 27 = If RE is top, NDBS is distant and ND is compact Then F27 = S27m + T27n + U27o + P27

where below, adjacent, and deficient are the membership functions or linguistic variables of inputs
RE, NDBS, and ND (part of antecedent), respectively, and Si, Tj, Uk are linear parameters of then part
(consequent) of the Takagi–Sugeno fuzzy inference model. The linguistic variable for residual energy
RE (M) = (below, fair, top) is represented as (M1, M2, M3), node distance to base station NDBS (N)
= (adjacent, midway, distant) is represented as (N1, N2, N3) and node density ND (O) = (deficient,
medium, compact) is represented as (O1, O2, O3).

1. Fuzzy Layer: This section describes the nature of the node which is actually flexible according to
backward pass (denoted by square adaptable node) that resembles each input variable relative
to membership function. The membership function graph is plotted against each adaptable
node to describe their output. Membership function follows Gaussian distribution as shown in
Equation (4) or generalized bell-shaped membership function (see Equation (5)) which gives a
value in the range of 0 and 1.

µMα(M) = exp

−(m− fα
2dα

)2 (4)
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µMα(M) =
1

1 +
∣∣∣∣m− fα

d

∣∣∣∣2eα
(5)

The output of the first layer is given by

R1,α = µMα(M), α = 1, 2, 3
R1,α = µNα(N), α = 1, 2, 3
R1,α = µOα(O), α = 1, 2, 3

where M is the input node to α and µMi, µNi, µOi are the degree of membership function
cross-ponding to linguistic variables Mi, Ni, and Oi and {di, ei, fi} are referred to as a parameter
set of the membership function or premise parameter. The bell-shaped membership function
varies along with the values of the premise parameter set. In this layer, we can also use the
triangular and trapezoidal membership function for the input node; they are also valid quantifiers
for this node.

2. T-Norm Layer: In this layer, each node is non-adaptive in nature, and called as rule nodes which
are depicted by the circle labeled with π (see Figure 5). These nodes represent the firing strength
of each rule connected to it. To determine the results of each node, multiply all the signals
(membership function) coming to the node. The T-norm operator uses generalized AND to
calculate the antecedents/outputs at second layer of the rule.

R2α = Tα = µMα(M) ∗ µNα(N) ∗ µOα(O), α = 1, 2, 3 (6)

where Tα is the output of each node which stands for each rule’s firing strength.
3. Normalized Layer: Non-adaptive in nature nodes found in the normalized layer, which is known

as normalized mode, are depicted by circles labeled as N (see Figure 5). The output of every node
is an estimation of the proportion between the αth rule’s firing strength to the summation of
firing strength of all rules. The result at the third layer or normalized output can be expressed as

R3α = Tnα =
Tα∑
α Tα

, α = 1, 2, 3 (7)

4. Defuzzy Layer: This layer consists of those nodes which have adaptive essence depicted by a
square (see Figure 5). The output of the node is the product of normalized firing strength and
individual rule. The output at the fourth layer can be given by

R4α = Tnα fα = Tnα(sαm + tαn + uαo + pα) (8)

where Tnα(sαm+tαn+uαo+pα) is the normalized firing strength from the normalized layer and
(sαm + tαn + uαo + pα) is a parameter in the node. Defuzzy layer parameters are also known as a
consequent parameter.

5. Aggregated Output Layer: This layer consists of a single consolidated node as an output which
is specified as non-adaptive in nature. This non-adaptive node gives information about the
complete system performance evaluated by adding up all the approaching signals arriving at
this layer from the previous node. Summation sign

∑
is used inside a circle to represent this

aggregated output node. The output of the fifth layer is computed as

R5α =
∑
α

Tnα fα =

∑
α Wα fα∑
α wα

(9)
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The ANFIS uses the adaptive neuro fuzzy clustering algorithm (Algorithm 1) to train the premise
and consequent parameters. The first layer resembles the adaptive node, which contains the non-linear
premise parameter, and the fourth layer consists of the linear consequent parameters. Initially,
the gradient descent or back propagation method is used as a learning algorithm. There may be a
chance to stick in local minima and slow convergence rates while using back propagation. To rectify
these problems Jang [49] uses a hybrid learning algorithm in which two learning strategies—least mean
squares and gradient descent—are merged. The convergence rate of the hybrid learning algorithm
is much faster than general artificial neural networks that never include local minima. The working
strategy of the ANFCA incorporates two passes: forward pass and backward pass. In the forward
pass, input signals (premise metrics) are propagated layer by layer until the fourth layer. These metrics
are fixed, and consequent metrics are updated using the least mean squares method. After obtaining
the output data at the fourth layer, the data are compared with the actual output and the error is
calculated. Now, in the backward pass, the errors which occurred due to the comparison of the output
generated in the forward pass and the actual output are sent back to the adaptive node of the first
layer. At the same time, the membership functions (premise metrics) are updated using the gradient
descent method or back propagation method. During this time, consequent metrics are fixed. Each
level of learning is called an epoch. The proposed algorithm works in three phases: selection phase,
cluster formation phase, and transfer phase. In the first phase, cluster heads are selected. In the second
phase, clusters are formed by calculating their area based upon radius. In the final phase, cluster heads
transfer the aggregated data to the base station. The precise description of each phase is presented in
the next section.

Algorithm 1- Adaptive Neuro Fuzzy Clustering Algorithm (ANFCA)

1. Begin

2.
Input: Given input training pattern, {RE, NDBS, ND} and maximum number of Epoch to Emax. //

obtained from first modeling mamdani type fuzzy inference system.
3. Output {CH}
4. Process
5. for E=1 to Emax.
6. Input the training data into first layer of Takagi-sugeno inference engine.
7. Membership function µMα(M) tuned using Equations (4) and (5).
8. Adjust the firing strength of each node (Tα), using Equation (6) in non-adaptive T-norm layer.
9. Normalize the firing strength of each node (Wni) using Equation (7) in normalized layer.
10. Defuzzification of each node using Equation (8).
11. Aggregated output is produced for each node using Equation (9) in fifth layer.
12. END

3.2.3. Phases of the Algorithm

The proposed algorithm of the ANFCA works in three phases as follow.

Selection Phase

Initially, the base station starts the operation of clustering; it broadcasts a beacon message (request
for IDs, residual energy, distance to base station, and its density) in the network. All the sensor nodes
reply an acknowledgment with requested information. Every node estimates the distance between
base station and itself using received signal strength indicator. Equation (10) determines the received
signal strength.

Sr = So + 10β log
( ar

ao

)
+ δ (10)

Sr = So10
RSSI−θ

10α (11)
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where So (in decibel meter) is the reference signal strength at distance ao, β is used to represent path
loss exponent (2 ≤ β ≤ 4), and ar is the actual distance. Gaussian random variable is represented by δ
having mean zero and variance σ2 (in decibel meter 4 ≤ σ ≤ 12). The distance between the base station
and a node is calculated using Equation (11). Where θ is the received signal strength in one meter
distance from the base station without any obstacles. The base station triggers election procedures for
cluster heads choosing some nodes as cluster heads randomly. These temporary cluster head nodes
are gone through AFLIS to check the validity of each node whether they can play the role of cluster
head or not. Afterwards, output of AFLIS is recorded and trained using ANFIS, and the final output
is recorded. If the nodes have fulfilled the selection criteria for a cluster head, then these nodes are
designated as permanent cluster heads for the present round. The selection procedure for a cluster
head is rehashed in each cycle so it is potentially able for the sensor to get opportunity to become
a part of cluster head group, therefore all nodes exhaust their energy relatively that upgrades the
network lifetime.

Cluster Formation Phase

The ANFCA forms variable sizes of clusters; the cluster head manages the number of nodes or
cluster sizes that eventually balances the load with periodic replacement of cluster heads. Initially,
selected cluster heads calculate their radius for formation of cluster phase. The mean radius of each
cluster head is obtained by the Equation (12)

Crminimum =

√
A×A
π× n× k

(12)

whereas n represents the number of nodes deployed inside the network of area A×A, and k represents
the number of clusters. Generally, a cluster has at least a radius equal to Cr. After radius calculation,
each cluster head acquires an area according to their radius then sends a join message to each node
within the cluster. The nodes make the decision based upon the received signal strength to join which
cluster. The sensor node which does not receive any join message declares themselves as cluster head
and sends their data directly to the base station. The nodes within the defined radius are called member
nodes for their respective clusters. Now, cluster heads schedule a time-division multiple-access
approach to gather data from member nodes. This time-division multiple-access schedule reduces
intra-cluster collision in addition to cutting down on energy utilization because of the limit on the
number of messages exchanged between member nodes. Each cluster head broadcasts time-division
multiple-access schedule information in their clusters to their member nodes on when they are able to
send messages to their cluster head. The cluster head dictates the time slot for every node, only in
their specific time slot can nodes send their message to the cluster head. Therefore, nodes enter the
wake-up mode in their time slot, otherwise they go into sleep mode. In this way, nodes conserve their
energy. The cluster heads gather messages from their member nodes and apply data aggregation to
form single packets of a fixed size.

Transfer Phase

According to the time-division multiple-access schedule, the cluster head gathers and aggregates
data, and then communicates to the base station directly without using any relay node. The number of
messages exchanged is limited to the number of cluster heads which reduces the energy consumption.

4. Simulation

In this section, the performance of the proposed adaptive neuro fuzzy clustering algorithm
(ANFCA) was analyzed. The proposed algorithm was simulated by writing a script in MATLAB
(R2019a, MathWorks, Natick, MA, USA) and using simulator tools: FIS and ANFIS. The simulator FIS
consists of a fuzzy inference model and membership function for each considered metric: residual
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energy, node density, and node distance to the base station. The ANFIS simulator produced the output
that determined the cluster head. The proposed algorithm ANFCA was compared with LEACH,
fuzzy-logic-based CHEF, and energy prediction technique using fuzzy-logic-based LEACH-ERE to
show its effectiveness.

4.1. Simulation Environment

In this section, the simulation parameters used to conduct simulation of the ANFCA are presented.
We considered a 200× 200 node simulation area of the network, where 200 sensor nodes were distributed
randomly. The sensing capabilities of the nodes were limited to 5 m and they were allowed to transfer
data within a 25-meter range in a symmetric way. The simulation cycle time was approximately 60 µs,
and it ran until all nodes had died. The size of the packets were 512 bits. The simulation metrics and
their values are shown in Table 2.

Table 2. Modeling framework.

Metrics Specification

Number of nodes 200
Rectangular area 200 × 200 m2

Node sensing range 5 m
Node transmission range 25 m
Base station location (200,170)
Packet size m 512 bits
Initial Energy 2 J
ETDA 5 nJ/bit/message
ETNE 50 nJ/bit
ε f sp 10 pJ/bit/m2

εmp f 0.0013 pJ/bit/m4

Cycle time 60 µs

Evaluation Metrics

� Network Lifetime: Lifetime definition of the network is application dependent, and it may be
stated that as the tenure spans from the start, it is the functioning of the network to a moment
when a certain percentage of the nodes have died or the network will be disconnected. In this
paper, we considered the simulation time until 90% of the nodes were dead.

� (First node death) FND, (Half node death) HND and (Last node death) LND: The round at which
the death of the first node occurred was defined as FND. Similarly, the round at which half of the
nodes had died was defined as HND. The round at which the last node death has occurred was
taken as LND.

� Average Residual Energy: Defined as the mean of residual energy of alive nodes in the network
with respect to rounds.

� Average Energy Consumption: Defined as the summation of overall energy consumption taken
place during the sensing and transmission by each sensor node to the number of sensor nodes
with respect to rounds.

� Standard Deviation of Residual Energy: The standard deviation of residual energy is the square
root of variance of residual energy of all the sensor nodes. It shows the variation of residual
energy around the mean.

4.2. Simulation Results

4.2.1. Network Lifetime Over Rounds

Figure 6 shows the results obtained in the simulation for functioning nodes with respect to each
round. It was observed that 90% of all 200 nodes had died by 2000 rounds, and the remaining 10%
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stretched the lifetime of the network up to another 100 rounds (total: 2100 rounds) for the LEACH
algorithm, whereas CHEF showed little improvement over the classical LEACH (20% improvement
in network lifetime) which ran up to 2220 rounds smoothly, and there were still 20 nodes alive.
The LEACH-ERE initially showed up to 800 rounds with only 20–30 nodes having died, and thereafter
the death rate of the nodes increased and almost followed the CHEF curve. The LEACH-ERE showed
a 4–5% enhancement over the CHEF and 25% over LEACH. The LEACH-ERE ran up to 2300 rounds.
Apart from this proposed algorithm, the ANFCA showed a steady death rate of sensor nodes; at up
to 1000 rounds, only 10% of sensor nodes (20 nodes) had died, and thereafter it followed almost a
similar curve to the LEACH-ERE up to 1200 rounds. The ANFCA lasted up to 2300 rounds until all
200 sensor nodes (100%) had died. It was clearly observed that the proposed ANFCA runs for a longer
time compared with the state-of-the-art algorithms. It is due to the fact that the neuro fuzzy system is
employed to rotate the cluster head responsibility among the sensors.
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Figure 6. Number of functioning nodes over the rounds.

Figure 7 shows the percentage of nodes that died over the increasing number of rounds.
From the simulation results, it was observed that the proposed ANFCA does far better than LEACH
and LEACH-ERE. Initially, in the LEACH algorithm, the node death percentage rate slowly increased
up to 500 rounds, but thereafter there was a sharp drop from 1400 rounds onwards, and all 200 nodes
(100%) died before reaching 2200 rounds. In the case of the ANFCA, about 15% more nodes were still
alive compared with the LEACH, and 5% of nodes were still alive compared with the LEACH-ERE
after completing 2200 rounds, respectively. The rate of node death for the ANFCA was very slow
compared to the state-of-the-art algorithms. It is because the proposed algorithm uses a supervised
learning approach for the membership function, which is responsible for updating the membership
weight function and lowering the energy consumption rate.
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Table 3 shows the comparative view of the metrics FND, HND, and LND for the proposed
algorithm ANFCA and all of the state-of-the-art algorithms with respect to rounds. Figure 8 shows
a comparative view of the death percentages’ connections with FND, HND, and LND for LEACH,
CHEF, LEACH-ERE, and ANFCA. It was observed that FND for LEACH was around the 96th round,
FND occurred for ANFCA at the 260th round, which was almost two and half times more than that
of LEACH, and the last node died at 1970 rounds for LEACH, whereas LND occurred for ANFCA
at the 2310th round. Figure 8 and Table 3 show that the proposed algorithm did far better than the
state-of-the-art algorithms, and that the lifetime of the network was enhanced because of the lower
death rate of the nodes.

Table 3. Node death rate percentages up to 2500 rounds.

Death Percentage (%) LEACH CHEF LEACH-ERE ANFCA

FND 96 150 205 260
20 600 827 1107 1224
40 934 1223 1536 1707
HND 1167 1400 1665 1810
60 1386 1631 1885 1972
80 1600 1795 1994 2206
LND 1970 2056 2140 2310
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4.2.2. Energy Expenditure over Rounds

In this simulation, we show the comparative study of energy expenditure across LEACH, CHEF,
LEACH-ERE, and ANFCA. Figure 9 depicts the average residual energy versus the number of rounds
for the ANFCA and the state-of-the-art algorithms. Initially, all the sensor nodes had equal energy at
2 joules. The LEACH, CHEF, and LEACH-ERE lost almost equal amounts of energy at 425 rounds,
and around 1.72 joule of the average residual energy was remaining out of the initial 2 joules. The energy
consumption of the nodes was calculated with the help of Equation (1). The ANFCA outperformed
compared to the state-of-the-art algorithms; at the same point (425 rounds), the residual energy of
the nodes was approximately 1.86 joule. As the number of rounds increased, LEACH performed the
worst among the other algorithms, and all the remaining energy of the nodes was exhausted near
1800 rounds. The CHEF and LEACH-ERE showed better performance than LEACH, in terms of energy
usage, with about 11% (up to 2000 rounds) and 20% (up to 2200 rounds), respectively. Overall, in this
simulation the proposed algorithm ANFCA did far better than all the other algorithms. The ANFCA
ran up to 2480 rounds, and the average remaining residual energy of the nodes was still 0.45 joule.
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Figure 9. Avgerage residual energy over the rounds.

Figure 10 depicts the average energy consumption versus number of rounds for the ANFCA and
the other algorithms. It was observed that, initially, all four algorithms—LEACH, CHEF, LEACH-ERE,
and ANFCA—followed the same curvature and consumed almost an equal amount of energy up
to 455 rounds, around 0.25 joule. Yet, the ANFCA consumed only 1.67 joule out of 2 joules up to
2200 rounds. In fact, as there was growth in the number of rounds, the LEACH consumed energy much
faster than other algorithms because of the probabilistic selection cluster head method and because it
does not include the residual energy parameter, whereas CHEF, LEACH-ERE, and ANFCA include
fuzzy logic to select a cluster head. The CHEF consumed more energy towards increasing the number
of rounds compared with the LEACH-ERE, whereas the proposed algorithm ANFCA showed that the
rate of consuming energy by nodes was uniform until the last node death. The ANFCA consumed
10%, 15%, and 40% less energy than LEACH-ERE, CHEF, and LEACH, respectively. This is because
cluster head selection is done initially with the AFLIS model, and thereafter it is refined through the
selected cluster head ANFIS model. Thus, overall, the ANFCA appears to be energy-efficient, which
ultimately enhances the network’s lifetime.
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Figure 10. Avgerage energy consumed by nodes over the rounds.

4.2.3. Standard Deviation of Residual Energy

Uniform consumption of energy is highly desirable for load balancing among the sensor nodes
which increases the lifetime of the networks. Therefore, we examined the standard deviation of residual
energy for all the nodes in the networks and show the variation around the rounds as well as the
diaspora from the mean. The energy dissipated by the cluster head and member node per cycle “c”
(rounds) was evaluated. The energy consumption by cluster head is expressed as
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Ec
dst(h) =

{
(xn − 1)mEelect + xnmEda + mEelect + mεmp f l4h to BS , h ε CH
mEelect + mε f spl2h to BS , h ε non−CH

(13)

where xn represents the total number of sensor nodes that are actually connected to the cluster head as
well as the cluster head node, h is used to represent the nodes, and m is the m-bit data. The average
(mean) dissipated energy for a cycle can be computed as

u(Edst) =

∑
h ε N Ec

dst(h)

N
(14)

The residual energy for the next cycle (c + 1) is calculated as

Ec+1
res (h) = Ec

res(h) − Ec
dst(h) (15)

The average (mean) residual energy for next cycle is expressed as

u(Eres) =
1
N

∑
i ε n

Ec
res(h) (16)

The standard deviation of residual energy is the square root of the variance of the residual energy,
and is given by

σ(Eresdiual) =

√
1
N

∑
i ε n

[u(Eres) − Eres(h)]
2 (17)

Figure 11 shows the standard deviation of residual energy versus the rounds for all of the
algorithms considered in this simulation. The broader the area of standard deviation, the higher
the value of a node’s residual energy within one mean (that means that each node dissipates almost
equal amounts of energy relatively). The LEACH showed a lower coverage of area among the other
algorithms, which means that nodes in the LEACH method have variable amounts of energy dissipation.
The CHEF showed much improvement over the LEACH by 27%, as 80% of nodes were within one
mean (all 80% had almost equal amounts of residual energy). The LEACH-ERE and the ANFCA were
closer to each other on basis of coverage; both the algorithms had coverage of 95% of total nodes.
The ANFCA provided a little smoother graph over the LEACH-ERE. For example, as the ANFCA ran
up to 2000 rounds, the graph progressed more smoothly. This is because the ANFCA balanced the load
using a fuzzy neural system and fairly balanced the energy consumption among the sensor nodes.
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Figure 12 shows the alternative representation of the standard deviation of residual energy of
functioning nodes for better visualization. As seen from the bar graph in Figure 12, when the number
of functioning nodes was 40, the value of the standard deviation for LEACH was 0.045. This was
higher than the other state-of-the-art algorithms, whereas the ANFCA had a standard deviation of
residual energy equal to 0.027, which means that the load among the nodes was shared fairly in terms
of energy consumption. Lowering the value of the standard deviation means a uniform distribution of
the load from the mean. That means energy consumption of the load is evenly distributed among the
sensor nodes. When the number of alive nodes was between 80 and 120, the values of the standard
deviation for the LEACH-ERE was less than the ANFCA. This shows that for lower numbers of nodes,
the LEACH-ERE distributed the load more fairly than the proposed algorithm ANFCA, but when
the number of nodes increased between 160 and 200, the ANFCA did better than the state-of-the-art
algorithms. Lowering the value of the standard deviation of energy means broadening the coverage
area, which includes all the sensors nodes within one mean. This shows that the ANFCA has a
better capability to distribute the load evenly among the sensor nodes. This is due to the fact that the
membership function of residual energy is updated as a result of the role of the cluster head being
changed every round among the other sensor nodes.
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5. Conclusions and Future Perspectives

Cluster formation in an evenly and energy-efficient manner is of the utmost priority in a
sensors-enabled IoT environment. In this paper, an energy-efficient neuro fuzzy hybrid approach for
load balancing was proposed. The key components of the ANFCA are an adaptive neural network and
a fuzzy logic inference system, which combined the use of residual energy, node distance to base station,
and node density to select a cluster head. With the training data of ANFIS from the fuzzy logic system,
the membership function and rules can be legitimately tuned to refine the cluster formation process
according to the current situation of the network. The results proved that the proposed algorithm
ANFCA formulated the evenly distributed clusters, as well as lowered the energy dissipation in
the network, which directly improved the network’s lifetime. The simulation results revealed that
the proposed algorithm’s performance was one step ahead of LEACH and the fuzzy-logic-based
CHEF and LEACH-ERE with regards to cluster formation, energy dissipation, and network lifetime,
because ANFCA combined the features of an artificial neural network learning strategy into fuzzy
logic. The proposed algorithm could be useful in monitoring in the agriculture field. Our proposed
work follows a centralized algorithm where all decisions are made by the base station only. In the
future, we plan to extend this work to a distributed algorithm rather than a centralized algorithm,
which is suitable for a scalable, fault-tolerant, cluster-based network, which considers RFID-enabled
smart sensors with multiple gateways for IoT networks. These multiple gateways are loaded with
heavy data, thus it must use distributed approaches to balance the load.
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