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Abstract: In this paper, exponential synchronization for inertial neural networks with time delays
is investigated. First, by introducing a directive Lyapunov functional, a sufficient condition is
derived to ascertain the global exponential synchronization of the drive and response systems based
on feedback control. Second, by introducing a variable substitution, the second-order differential
equation is transformed into a first-order differential equation. As such, a new Lyapunov functional
is constructed to formulate a novel global exponential synchronization for the systems under study.
The two obtained sufficient conditions complement each other and are suitable to be applied in
different cases. Finally, two numerical examples are given to illustrated the effectiveness of the
proposed theoretical results.

Keywords: inertial neural networks; variable substitution; lyapunov functional; exponential
synchronization

1. Introduction

One of the main problems in the field of motion control is that the motion of multiple mechanisms
should be controlled in a synchronous manner [1–3], such as position synchronization of two
robot systems [4], speed synchronization of multiple induction motors [5], synchronous control for
forging machines [6,7] and motion synchronization for dual-cylinder electro hydraulic lift systems [8].
Thus far, various kinds of synchronization control methods have been proposed, including feedback
control [9–11], adaptive control [12,13], impulse control [14], pinning control [15], and sliding mode
control [16–19].

When the inertia exceeds a critical value and the state of each neuron becomes under-damped,
properties of the networks will change qualitatively [20,21]. On the other hand, due to the finite
switching speed of amplifiers, time delays usually occur in a neural network [22–25]. Time delays
are commonly regarded as an important factor to degrade system performance [26–28]. Thus, it is
practically significant to study inertial neural networks with time-delays. For this reason, Ke and
Miao [29–32] investigated stability and periodic solutions in inertial BAM neural networks and inertial
Cohen–Grossberg-type neural networks, respectively. Asymptotical synchronization of a delayed
inertial neural networks is considered in [33] by using the Lyapunov functional method and the
Barbalat Lemma. Cao and Wana [34] presented some matrix measure strategies for stability and
synchronization of inertial BAM neural network with time delays. Different from the methods in [35],
the direct Lyapunov functional method is successfully applied to study stability and synchronization
for a delayed inertial neural networks. However, the above synchronization results cannot reflect how
fast the synchronization can be achieved [36–38]. As a fundamental issue, exponential synchronization
should be paid more attention if fast synchronization is expected. Nevertheless, to the best of the
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authors’ knowledge, few results have been reported on exponential synchronization of inertial delayed
neural networks, which motivates this work.

In this paper, we focus on the problem of exponential synchronization for inertial neural networks
with time delays. Two sufficient conditions are formulated on the global exponential synchronization of
the drive and response inertial delayed neural networks. The first one is based on a normal Lyapunov
functional. The second one is based on a variable transformation. As a result, the second-order
differential equation is transformed into a first-order differential equation, which allows us to construct
a new Lyapunov functional. The two sufficient conditions can be applied in different cases. Finally,
two illustrative examples are provided to show the effectiveness of the obtained theoretical results.

2. Problem Formulation

We consider the following inertial neural networks with time delay

ẍi(t) = −βi ẋi(t)− αixi(t) +
n

∑
j=1

aij f j(xj(t)) +
n

∑
j=1

bij f j(xj(t− τij)) + Ii(t), (1)

for i = 1, 2, . . . , n, where αi and βi > 0 are constants. xi(t) denotes the states variable; aij and bij are
connection weights of the system; f j denotes the activation functions; τij is time delay and satisfies
0 ≤ τij ≤ τ; and Ii(t) denotes the external inputs. The initial values of the system in Equation (1) are

xi(s) = ϕxi(s), ẋi(s) = ψxi(s), −τ ≤ s ≤ 0, (2)

where i = 1, 2, . . . , n, ϕxi(s), ψxi(s) are bounded and continuous functions.
In special cases, the system in Equation (1) contains mathematical models in mechanical fields.

For example, if n = 1, swing equation is given by

mθ̈(t) + cθ̇(t) + qθ(t− τ) + kθ(t) = g(t).

If n = 2, the system in Equation (1) contains the torque balance equation for two inertial bodies of
isolated {

J1θ̈1 = −B1θ̇1 + K(θ2 − θ1)− T1,
J2θ̈2 = −B2θ̇2 − K(θ2 − θ1) + T2.

which has strong application background.
Let the system in Equation (1) be a drive system. Then, the corresponding response system of

Equation (1) can be represented as

ÿi(t) = −βi ẏi(t)− αiyi(t) +
n

∑
j=1

aij f j(yj(t)) +
n

∑
j=1

bij f j(yj(t− τij)) + Ii(t) + ui(t), (3)

where ui(t) is the feedback controller, i = 1, 2, . . . , n. The initial values of the system in Equation (3) are

yi(s) = ϕyi(s), ẏi(t) = ψyi(s), −τ ≤ s ≤ 0, (4)

where i = 1, 2, . . . , n and ϕyi(s), ψyi(s) are continuous and bounded functions.
Let ei(t) = yi(t)− xi(t), from Equations (1) and (3), we obtain the following error system

ëi(t) = −βi ėi(t)− αiei(t) +
n

∑
j=1

aij f̄ j(ej(t)) +
n

∑
j=1

bij f̄ j(ej(t− τij)) + ui(t), (5)

where f̄ j(ej(t)) = f j(yi(t))− f j(xi(t)), i = 1, 2, . . . , n.
Throughout this paper, the following assumption is needed.
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(H) : The functions f j (j = 1, 2, · · · , n) are assumed to satisfy the Lipschitz condition. That is,
there exist constants lj > 0, such that

| f j(v1)− f j(v2))| ≤ lj|v1 − v2|, v1, v2 ∈ R, j = 1, 2, . . . , n.

In this paper, we focus on exponential synchronization of the systems in Equations (1) and (3),
whose definition is given as follows.

Definition 1. The systems in Equations (1) and (3) are said to be exponentially synchronized if there exist
constants M > 0 and σ > 0 such that

n

∑
i=1
|xi(t)− yi(t)|2 ≤ Me−σt‖ϕx − ϕy‖2, t > 0,

where

‖ϕx − ϕy‖2 = sup
−τ≤t≤0

n

∑
i=1
|ϕxi(t)− ϕyi(t)|2.

3. Main Results

In this section, two sufficient conditions are given to ascertain the exponentially synchronizing of
the systems in Equations (1) and (3).

Theorem 1. Assume (H) holds. For the following feedback controller

ui(t) = λi(yi(t)− xi(t)), i = 1, 2, · · · , n,

where λi is a positive constant, if the inequalities

−2αi + 2λi + |2− αi − βi + λi|+
n

∑
j=1

(|aij|lj + 2|aji|li) +
n

∑
j=1

lj|bij| < 0,

2− 2βi + |2− αi − βi + λi|+
n

∑
j=1
|aij|lj +

n

∑
j=1

lj|bij| < 0,

are satisfied for i = 1, 2 . . . , n, then the systems in Equations (1) and (3) are globally exponentially synchronized.

Proof. For the feedback controller

ui(t) = λi(yi(t)− xi(t)), i = 1, 2, · · · , n

from Equation (5), we can obtain

ëi(t) = −βi ėi(t)− (αi − λi)ei(t) +
n

∑
j=1

aij f̄ j(ej(t)) +
n

∑
j=1

bij f̄ j(ej(t− τij)), (6)

where i = 1, 2, . . . , n. Now, we consider the Lyapunov functional as

V(t) =
n

∑
i=1

[e2
i (t) + (ei(t) + ėi(t))2]eεt + 2

n

∑
i=1

n

∑
j=1
|bij|lj

∫ t

t−τij

eε(s+τij)e2
j (s)ds, (7)

where ε is a small positive constant.
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From Equations (6) and (7), we have

D+V(t) =
n
∑

i=1
{ε[e2

i (t) + (ei(t) + ėi(t))2]eεt + 2[ei(t)ėi(t) + (ei(t) + ėi(t))(ėi(t) + ëi(t)]eεt

+2
n
∑

j=1
|bij|lj[e2

j (t)e
ε(t+τij) − e2

j (t− τij)eεt]}

= eεt
n
∑

i=1
{ε[e2

i (t) + (ei(t) + ėi(t))2] + 2ei(t)ėi(t) + 2((ei(t) + ėi(t))[(1− βi)ėi(t)

−(αi − λi)e(t) +
n
∑

j=1
aij f̄ j(ej(t)) +

n
∑

j=1
bij f̄ j(ej(t− τij))] + 2

n
∑

j=1
|bij|lj[e2

j (t)e
ετij − e2

j (t− τij)]}

≤ eεt
n
∑

i=1
{(2ε− 2αi + 2λi)e2

i (t) + (ε + 2− 2βi)ė2
i (t) + 2(ε + 2− βi − αi + λi)ei(t)ėi(t)

+2[|ei(t)|+ |ėi(t)|](
n
∑

j=1
|aij|lj|ej(t)|+

n
∑

j=1
|bij|lj|ej(t− τij|)

+2
n
∑

j=1
|bij|lj[e2

j (t)e
ετij − e2

j (t− τij)]}

≤ eεt
n
∑

i=1
{[2ε− 2αi + 2λi + |ε + 2− βi − αi + λi|+

n
∑

j=1
(|aij|lj|+ 2|aji|li|) +

n
∑

j=1
(|bij|lj

+2|bji|lieετij)]e2
i (t) + [ε + 2− 2βi + |ε + 2− βi − αi + λi|+

n
∑

j=1
(|aij|+ |bij|)lj]ė2

i (t)}.

(8)

By the condition of Theorem 1, we can choose a small ε > 0 such that

2ε− 2αi + 2λi + |ε + 2− αi − βi + λi|+
n

∑
j=1

(|aij|lj + 2|aji|li) +
n

∑
j=1

(|bij|lj + 2|bji|lieετij) ≤ 0,

ε + 2− 2βi + |ε + 2− αi − βi + λi|+
n

∑
j=1
|aij|lj +

n

∑
j=1

lj|bij| ≤ 0,

for i = 1, 2 . . . , n. From Equation (8), we get D+V(t) ≤ 0, and thus V(t) ≤ V(0), for all t ≥ 0.
From Equation (7), we have

V(t) ≥
n

∑
i=1

e2
i (t)e

εt. (9)

V(0) =
n

∑
i=1

[e2
i (0) + (ei(0) + ėi(0))2] + 2

n

∑
i=1

n

∑
j=1
|bij|lj

∫ 0

−τij

eε(s+τij)e2
j (s)ds

=
n

∑
i=1

[e2
i (0) + (ei(0) + ėi(0))2] + 2

n

∑
i=1

n

∑
j=1
|bij|lj

∫ 0

−τij

eε(s+τij)(ϕyj(s)− ϕxj)
2(s)ds

≤ 3‖ϕy − ϕx‖2 + 2(‖ψy − ψx‖2) + 2τ
n

∑
i=1

max
1≤j≤n

{|bij|lj}eετ‖ϕy − ϕx‖2

≤ [3 + 2τ
n

∑
i=1

max
1≤j≤n

{|bij|Lj}eετ ]‖ϕy − ϕx‖2 + 2‖ψy − ψx‖2.

(10)

where ‖ψx − ψy‖2 = sup
−τ≤t≤0

n
∑

i=1
|ψxi(t)− ψyi(t)|2.

Since V(0) ≥ V(t), from Equations (9) and (10), we obtain

n

∑
i=1

e2
i (t)e

εt ≤ [3 + 2τ
n

∑
i=1

max
1≤j≤n

{|bij|Lj}eετ ]‖ϕy − ϕx‖2 + 2‖ψy − ψx‖2. (11)

By multiplying both sides of Equation (11) with e−εt, we get

n

∑
i=1

e2
i (t) ≤ Me−εt‖ϕy − ϕx‖2, t ≥ 0, (12)
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where M = [3 + 2τ
n
∑

i=1
max

1≤j≤n
{|bij|Lj}eετ +

2‖ψy−ψx‖2

‖ϕy−ϕx‖2 ].

From Equation (12), we have

n

∑
i=1

(xi(t)− yi(t))2 ≤ Me−εt‖ϕy − ϕx‖2, t > 0.

By Definition 1, the systems in Equations (1) and (3) are globally exponentially synchronized.

In the following, we will introduce some variable transformation and construct a new suitable
Lyapunov functional to realize the global exponential synchronization between the drive system in
Equation (1) and the responsive system in Equation (3).

By the variable transformation:

zi(t) = ẋi(t) + ηixi(t), wi(t) = ẏi(t) + ηiyi(t), ηi > 0, i = 1, 2, . . . , n,

then Equations (1)–(4) can be rewritten as


ẋi(t) = −ηixi(t) + zi(t),

żi(t) = −(αi + η2
i − βiηi)xi(t)− (βi − ηi)zi(t) +

n
∑

j=1
aij f j(xj(t)) +

n
∑

j=1
bij f j(xj(t− τij)) + Ii(t).

(13)

{
xi(s) = ϕxi(s), ẋi(t) = ψxi(s),
zi(s) = ϕxi(s) + ψxi(s)

.
= ϕ̄i(s).

(14)


ẏi(t) = −ηiyi(t) + wi(t),

ẇi(t) = −(αi + η2
i − βiηi)yi(t)− (βi − ηi)wi(t) +

n
∑

j=1
aij f j(yj(t)) +

n
∑

j=1
bij f j(yj(t− τij))

+Ii(t) + ui(t).

(15)

and {
yi(s) = ϕyi(s), ẏi(s) = ψyi(s),
wi(s) = ϕyi(s) + ψyi(s)

.
= ϕ̄i(s).

(16)

Let the error

e1i(t) = yi(t)− xi(t), e2i(t) = wi(t)− zi(t), i = 1, 2 . . . , n.

From Equations (13) and (15), we can obtain


ė1i(t) = −ηie1i(t) + e2i(t),

ė2i(t) = −(αi + η2
i − βiηi)e1i(t)− (βi − ηi)e2i(t) +

n
∑

j=1
aij f̄ j(e1j(t)) +

n
∑

j=1
bij f̄ j(e1j(t− τij)) + ui(t),

(17)

where f̄ j(e1i(t)) = f j(yi(t))− f j(xi(t)).
Based on the above analysis, we have the following results.

Theorem 2. Assume (H) holds. For the following feedback controller

ui(t) = −λie1i(t)− µie2i(t),

where λi and µi are positive constant, if the inequalities

−2ηi + |αi + η2
i − βiηi + λi − 1|+

n

∑
j=1
|aji|li +

n

∑
j=1

li|bji|eτji < 0,
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−2βi + 2ηi − 2µi + |αi + η2
i − βiηi + λi − 1 +

n

∑
j=1
|aji|li +

n

∑
j=1

lj|bij| < 0,

hold for i = 1, 2 . . . , n, then the systems in Equations (1) and (3) are globally exponentially synchronized.

Proof. Consider the following feedback controller

ui(t) = −λie1i(t)− µie2i(t), i = 1, 2 . . . , n.

From Equation (17), we can obtain

ė1i(t) = −ηie1i(t) + e2i(t),

ė2i(t) = −(αi + η2
i − βiηi + λi)e1i(t)− (βi − ηi + µi)e2i(t) +

n
∑

j=1
aij f̄ j(e1j(t))

+
n
∑

j=1
bij f̄ j(e1j(t− τij))

(18)

which follows that

1
2

d(e2
1i(t)+e2

2i(t))
dt = −ηie2

1i(t) + e1i(t)e2i(t)− (αi + η2
i − βiηi + λi)e1i(t)e2i(t)− (βi − ηi + µi)e2

2i(t)

+
n
∑

j=1
aije2i(t) f̄ j(e1j(t)) +

n
∑

j=1
bije2i(t) f̄ j(e1j(t− τij))

≤ −ηie2
1i(t)− (αi + η2

i − βiηi + λi − 1)e1i(t)e2i(t)− (βi − ηi + µi)e2
2i(t)

+
n
∑

j=1
|aij|lj|e2i(t)||e1j(t)|+

n
∑

j=1
lj|bij||e2i(t)||e1j(t− τij)|

≤ −ηie2
1i(t)− (βi − ηi + µi)e2

2i(t) + (|αi + η2
i − βiηi + λi − 1|

+
n
∑

j=1
|aji|li)|e1i(t)||e2i(t)|+

n
∑

j=1
lj|bij||e2i(t)||e1j(t− τij)|

≤ −ηie2
1i(t)− (βi − ηi + µi)e2

2i(t) + (|αi + η2
i − βiηi + λi − 1|

+
n
∑

j=1
|aji|li)

e2
1i(t)+e2

2i(t)
2 +

n
∑

j=1
lj|bij|

e2
1j(t−τij)+e2

2i(t)
2

= −[ηi − 1
2 (|αi + η2

i − βiηi + λi − 1|
+

n
∑

j=1
|aji|li)]e2

1i(t)− [βi − ηi + µi − 1
2 (|αi + η2

i − βiηi + λi − 1|

+
n
∑

j=1
|aji|li +

n
∑

j=1
lj|bij|)]e2

2i(t) +
n
∑

j=1
lj|bij|

e2
1j(t−τij)

2 ,

(19)

where i = 1, 2 . . . , n.
We now construct the following Lyapunov functional

V(t) =
n

∑
i=1
{

e2
1i(t) + e2

2i(t)
2

eεt +
n

∑
j=1

|bij|
2

lj

∫ t

t−τij

eε(s+τij)e2
1j(s)ds}, (20)

ε > 0 is a small number. By Equations (18) and (20), we obtain
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D+V(t) =
n
∑

i=1
{ε e2

1i(t)+e2
2i(t)

2 eεt + 1
2

d
dt (e

2
1i(t) + e2

2i(t))e
εt +

n
∑

j=1

|bij |
2 lj[e2

1j(t)e
ε(t+τij) − e2

1j(t− τij)eεt]}

≤ eεt
n
∑

i=1
{ε e2

1i(t)+e2
2i(t)

2 − [ηi − 1
2 (|αi + η2

i − βiηi + λi − 1|+
n
∑

j=1
|aji|li)]e2

1i(t)

−[βi − ηi + µi − 1
2 (|αi + η2

i − βiηi + λi − 1|+
n
∑

j=1
|aji|li

+
n
∑

j=1
lj|bij|)]e2

2i(t) +
n
∑

j=1
lj|bij|

e2
1j(t−τij)

2 +
n
∑

j=1

|bij |
2 lj[e2

1j(t)e
τij − e2

1j(t− τij)]}

= eεt
n
∑

i=1
{ε e2

1i(t)+e2
2i(t)

2 − [ηi − 1
2 (|αi + η2

i − βiηi + λi − 1|

+
n
∑

j=1
|aji|li +

n
∑

j=1
li|bji|eτji )]e2

1i(t)− [βi − ηi + µi − 1
2 (|αi + η2

i − βiηi + λi − 1|

+
n
∑

j=1
|aji|li +

n
∑

j=1
lj|bij|)]e2

2i(t)

= 1
2 eεt

n
∑

i=1
{[ε− 2ηi + (|αi + η2

i − βiηi + λi − 1|+
n
∑

j=1
|aji|li

+
n
∑

j=1
li|bji|eτji )]e2

1i(t) + [ε− 2βi + 2ηi − 2µi + (|αi + η2
i − βiηi + λi − 1|

+
n
∑

j=1
|aji|li +

n
∑

j=1
lj|bij|)]e2

2i(t).

(21)

By condition of Theorem 2, we can choose a small ε > 0 such that

ε− 2ηi + (|αi + η2
i − βiηi + λi − 1|+

n

∑
j=1
|aji|li +

n

∑
j=1

li|bji|eτji ) ≤ 0,

ε− 2βi + 2ηi − 2µi + (|αi + η2
i − βiηi + λi − 1|+

n

∑
j=1
|aji|li +

n

∑
j=1

lj|bij|) ≤ 0,

for i = 1, 2 . . . , n. From (21), we get D+V(t) ≤ 0, for all t ≥ 0. On the other hand, from Equation (20),
we have

V(t) ≥
n
∑

i=1

e2
1i(t)+e2

2i(t)
2 eεt =

n
∑

i=1

eεt

2 [(yi(t)− xi(t))2 + (wi(t)− zi(t))2] (22)

V(0) =
n
∑

i=1
{ e2

1i(0)+e2
2i(0)

2 +
n
∑

j=1

|bij |
2 lj

∫ 0
−τij

e2
1j(s)e

ε(s+τij)ds}

=
n
∑

i=1
{ (ϕyi(0)−ϕxi(0))2

2 +
(ϕyi(0)−ϕxi(0)−ψyi(0)+ψxi(0))2

2

+
n
∑

j=1

|bij |
2 lj

∫ 0
−τij

(ϕyj(s)− ϕxj(s))2eε(s+τij)ds}

≤ 3‖ϕy−ϕx‖2

2 + ‖ψy − ψx‖2 + τ
n
∑

i=1
max

1≤j≤n
{ |bij

2 |li}eετ‖ϕy − ϕx‖2

≤ 1
2 [3 + τ

n
∑

i=1
max

1≤j≤n
{|bij|lj}eετ ]‖ϕy − ϕx‖2 + ‖ψy − ψx‖2,

(23)

where ‖ψx − ψy‖2 = sup
−τ≤t≤0

n
∑

i=1
|ψxi(t)− ψyi(t)|2.

Since V(0) ≥ V(t), from Equations (22) and (23), we obtain

n
∑

i=1

eεt

2 [(yi(t)− xi(t))2 + (wi(t)− zi(t))2] ≤ 1
2 [3 + τ

n
∑

i=1
max

1≤j≤n
{|bij|lj}eετ ]‖ϕy − ϕx‖2 + ‖ψy − ψx‖2. (24)

Multiplying both sides of Equation (24) with 2e−εt yields

n

∑
i=1

[(xi(t)− yi(t))2 + (wi(t)− z(t))
2] ≤ Me−εt‖ϕy − ϕx‖2, (25)
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where M = 1
2 [3 + τ

n
∑

i=1
max

1≤j≤n
{|bij|lj}e2ετ +

2‖ψy−ψx‖2

‖ϕy−ϕx‖2 ].

From Equation (25), we have

n

∑
i=1

(xi(t)− yi(t))2 ≤ Me−εt‖ϕy − ϕx‖2, t > 0.

By Definition 1, the systems in Equations (1) and (3) are globally exponentially synchronized.

If n = 1, f (x(t)) = x(t), then the system in Equation (1) becomes the swing equation of ship with
time delays

ẍ(t) + β1 ẋ(t)− b11x(t− τ11) + (α1 − a11)x(t) = I(t). (26)

The response system is given as follows

ÿ(t) + β1ẏ(t)− b11y(t− τ11) + (α1 − a11)y(t) + u1(t) = I(t). (27)

By Theorem 1, we obtain the following corollary.

Corollary 1. Assume (H) holds. For the following feedback controller u1(t) = λ1(y1(t)− x1(t)), if

−2α1 + 2λ1 + |2− α1 − β1 + λ1|+ 3|a11|+ |b11| < 0,

2− 2β1 + |2− α1 − β1 + λ1|+ |a11|+ |b11| < 0,

then the driven system in Equation (26) and the response system in Equation (27) are globally exponentially
synchronized.

If n = 2, α1 = α2 = a12 = a21, a11 = a22 = 0, fi(xi(t)) = xi(t), bij = 0, Ii(t) = Ti, i, j = 1, 2,
then the system in Equation (1) become the torque balance equation for two inertial bodies of isolation{

ẍ1(t) = −β1 ẋ1(t) + α1(x2(t)− x1(t)) + T1,
ẍ2(t) = −β2 ẋ2(t)− α1(x2(t)− x1(t)) + T2

(28)

The response system that is driven by Equation (28) reads as{
ÿ1(t) = −β1ẏ1(t) + α1(y2(t)− y1(t)) + T1 + u1(t),
ÿ2(t) = −β2ẏ2(t)− α1(y2(t)− y1(t)) + T2 + u2(t)

(29)

By Theorem 2, we obtain:

Corollary 2. Assume (H) holds. For the following feedback controller

ui(t) = −λie1i(t)− µie2i(t), λi > 0, µi > 0, i = 1, 2,

if
−2ηi + |α1 + η2

i − βiηi + λi − 1|+ α1 < 0, i = 1, 2,

−2βi + 2ηi − 2µi + |α1 + η2
i − βiηi + λi − 1|+ α1 < 0, i = 1, 2,

then the system in Equation (28) exponentially synchronizes.

Remark 1. In Theorem 1, a Lyapunov function is directly constructed based on the error system in Equation
(6) to realize the global exponential synchronization between the the system in Equation (1) and the the system
in Equation (3).
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Remark 2. In Theorem 2, we introduce some variable transformation and construct a new suitable Lyapunov
functional to realize the global exponential synchronization between the drive system in Equation (1) and the
responsive system in Equation (3).

Remark 3. Theorems 1 and 2 give two sufficient conditions to ensure the global exponential synchronization
between the drive system in Equation (1) and the responsive system in Equation (3), respectively. For the purpose
of applications, we can select one of them according to the actual requirements. For example, the parameters
given in the systems in Equations (28) and (29) satisfy all the conditions of Theorem 2, but cannot satisfy the
conditions of Theorem 1. In this situation, we can draw a conclusion on the global exponential synchronization
of Equations (1) and (3) by Theorem 2 and not by Theorem 1.

4. Numerical Examples

In this section, we give two numerical examples to illustrate our results.

Example 1. Consider the following inertial neural networks with time delay (n = 2)

ẍi(t) = −βi ẋi(t)− αixi(t) +
2

∑
j=1

aij f j(xj(t)) +
2

∑
j=1

bij f j(xj(t− τij)) + Ii(t). (30)

The response system that is driven by Equation (30) is given as follows

ÿi(t) = −βi ẏi(t)− αiyi(t) +
2

∑
j=1

aij f j(yj(t)) +
2

∑
j=1

bij f j(yj(t− τij)) + Ii(t) + ui(t), (31)

where ui(t) = λi(yi(t) − xi(t)), λi > 0, i = 1, 2. Set α1 = 1.2, α2 = 1.5, β1 = 2, β2 = 2.5,
a11 = 1

32 , a12 = − 1
32 , a21 = − 1

64 , a22 = − 1
64 , b11 = − 1

32 , b12 = 1
64 , b21 = 1

32 , b22 = − 1
64 ,

fi(x) = 1
8 sin(8x), Ii(t) = 1

16 exp(−t), τij = ln2, i, j = 1, 2. λ1 = 0.2, λ2 = 0.4. Obviously,
| fi(x)− fi(y)| ≤ |x− y|, li = 1, i = 1, 2.

For numerical simulation, the initial condition is supposed to be [ϕx1(0), ϕx2(0), ψx1(0),
ψx2(0), ϕy1(0), ϕy2(0), ψy1(0), ψy2(0)] = [0.1; 0.2; 0.1; 0.1; 0.13; 0.12; 0.25; 0.3].

The simulation results are shown in Figures 1–3.
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(t)
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Figure 1. The synchronization trajectories between the state x1(t) of the drive system in Equation (30)
and the state y1(t) of the response system in Equation (31) in Example 1.
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Figure 2. The synchronization trajectories between the state x2(t) of the drive system in Equation (30)
and the state y2(t) of the response system in Equation (31) in Example 1.
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Figure 3. Evolution of synchronization errors e1(t), e2(t) in Example 1.

Through simple calculation, we get the following results

−2α1 + 2λ1 + |2− α1 − β1 + λ1|+
2

∑
j=1

(|a1j|lj + 2|aj1|l1) +
2

∑
j=1

l1|bj1| < −0.79 < 0,

2− 2β1 + |2− α1 − β1 + λ1|+
2

∑
j=1
|a1j|lj +

2

∑
j=1

lj|b1j| < −0.89 < 0,

−2α2 + 2λ2 + |2− α2 − β2 + λ2|+
2

∑
j=1

(|a2j|lj + 2|aj2|l2) +
2

∑
j=1

l2|bj2| < −0.38 < 0,

2− 2β2 + |1− α2 − β2 + λ2|+
2

∑
j=1
|a2j|lj +

2

∑
j=1

lj|b2j| < −1.29 < 0.

By Theorem 1, the systems in Equations (30) and (31) are globally exponentially synchronized.
Clearly, this consequence is coincident with the results of numerical simulation.
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Example 2. We consider the following inertial neural networks with time delay (n = 2)

ẍi(t) = −βi ẋi(t)− αixi(t) +
2

∑
j=1

aij f j(xj(t)) +
2

∑
j=1

bij f j(xj(t− τij)) + Ii(t). (32)

The response system that is driven by Equation (32) is given as follows

ÿi(t) = −βi ẏi(t)− αiyi(t) +
2

∑
j=1

aij f j(yj(t)) +
2

∑
j=1

bij f j(yj(t− τij)) + Ii(t) + ui(t), (33)

where ui(t) = −λi(yi(t)− xi(t))− µi(wi(t)− zi(t)), zi(t) =
dxi(t)

dt + ηixi(t),

wi(t) =
dyi(t)

dt + ηiyi(t), i = 1, 2.
α1 = 1, α2 = 2, β1 = 3, β2 = 2.5, a11 = 1

32 , a12 = − 1
32 , a21 = − 1

64 , a22 = − 1
64 ,

b11 = − 1
32 , b12 = 1

64 , b21 = 1
32 , b22 = − 1

64 , fi(x) = 1
8 sin(8x), Ii(t) = 1

16 exp(−t),
τij = ln2, i, j = 1, 2. η1 = 0.6, η2 = 0.8, µ1 = 1, µ2 = 2, λ1 = 0.5, λ2 = 0.4

Obviously, | fi(x) − fi(y)| ≤ |x − y|, i = 1, 2. We select li = 1. The initial condition is set to
be [ϕx1(0), ϕx2(0), ψx1(0), ψx2(0), ϕy1(0), ϕy2(0), ψy1(0), ψy2(0)] = [0.1; 0.2; 0.1; 0.3; 0.02; 0.06; 0.5; 0.3].
The simulation results of Example 2 are shown in Figures 4–6.

We obtain the following results by calculation,

−2η1 + |α1 + η2
1 − β1η1 + λ1 − 1|+

2

∑
j=1
|aj1|l1 +

1

∑
j=1

l1|bj1| < −0.25 < 0,

−2β1 + 2η1 − 2µ1 + |α1 + η2
1 − β1η1 + λ1 − 1|+

2

∑
j=1
|aj1|l1 +

2

∑
j=1

lj|b1j|eτ1j < −4.55 < 0,

−2η2 + |α2 + η2
2 − β2η2 + λ2 − 1|+

2

∑
j=1
|aj2|l2 +

2

∑
j=1

li|bj2| < −1.4 < 0,

−2β2 + 2η2 − 2µ2 + |α2 + η2
2 − β2η2 + λ2 − 1|+

2

∑
j=1
|aj2|l2 +

2

∑
j=1

lj|b2j|eτ2j < −7.2 < 0.

Thus, the conditions in Theorem 2 are satisfied. Then, the system in Equation (33) globally
exponentially synchronizes with the system in Equation (32). Obviously, the conclusion from Theorem 2
is consistent with the numerical simulation results.
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Figure 4. The synchronization trajectories between the state x1(t) of the drive system in Equation (32)
and the state y1(t) of the response system in Equation (33) in Example 2.



Electronics 2019, 8, 356 12 of 14

0 5 10 15 20 25 30
−0.05

0

0.05

0.1

0.15

0.2

t

x 2(t
),

  y
2(t

)

 

 

x
2
(t)

y
2
(t)

Figure 5. The synchronization trajectories between the state x2(t) of the drive system in Equation (32)
and the state y2(t) of the response system in Equation (33) in Example 2.
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Figure 6. Evolution of synchronization errors e1(t), e2(t) in Example 2.

5. Conclusions

In this paper, we study the inertial neural networks with time delays, where βi is the damping
coefficient. By employing the Lyapunov functional method, two exponential synchronization have
been derived for the drive and response systems, which are useful in practice. These two sufficient
conditions complement each other to be applied in different cases. Two examples have shown their
effectiveness.
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