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Abstract: This paper presents a 2.5 Gbps 10-lane low-power low voltage differential signaling (LVDS)
transceiver for a high-speed serial interface. In the transmitter, a complementary MOS H-bridge
output driver with a common mode feedback (CMFB) circuit was used to achieve a stipulated
common mode voltage over process, voltage and temperature (PVT) variations. The receiver was
composed of a pre-stage common mode voltage shifter and a rail-to-rail comparator. The common
mode voltage shifter with an error amplifier shifted the common mode voltage of the input
signal to the required range, thereby the following rail-to-rail comparator obtained the maximum
transconductance to recover the signal. The chip was fabricated using SMIC 28 nm CMOS technology,
and had an area of 1.46 mm2. The measured results showed that the output swing of the transmitter
was around 350 mV, with a root-mean-square (RMS) jitter of 3.65 ps@2.5 Gbps, and the power
consumption of each lane was 16.51 mW under a 1.8 V power supply.
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1. Introduction

While scaled CMOS technology continues to enhance on-chip operating speeds, the power
dissipation also increases at the same time. This means that reducing power consumption is critical for
battery-powered systems to extend battery life. Low voltage differential signaling (LVDS), as one of
the data transmission standards, is now pervasive in communication networks and is used extensively
in applications such as laptop computers [1], office imaging [2,3], and medical [4] and automotive [5,6]
applications. It features a low-voltage swing (250–400 mV) and achieves a high data rate (up to several
gigahertz per single pair) with less power dissipation. A typical LVDS serial link [7,8] point-to-point
communication is shown in Figure 1, and involves a single transmitter (TX) and receiver (RX) pair.
A current source (Is) is derived from the TX, and the output amplitude is formed by the current source
flowing through the terminated resistor (RT) to establish voltage in the input of RX. By changing the
current direction, the same amplitude with the opposite polarity is created to generate the logic of
zeros and ones. The simple termination, low-power, and low-noise characteristics have gradually
made LVDS the technology of choice for gigabit-per-second serial transmission. In addition, the wide
common mode input of LVDS makes its devices easily interoperable with other differential signaling
technologies [9–11].
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Figure 1. Low voltage differential signaling (LVDS) serial link communication block. 

In general, the architecture of LVDS drivers is divided into fully-differential NMOS-only style 
[12], fully-differential PMOS-only style [13] and complementary MOS style [14–16]. As shown in 
Figure 2, all configurations consist of four MOS switches arranged in an H-bridge structure. The 
NMOS-only style LVDS driver, shown in Figure 2a, works well if the supply voltage (VDD) is 2.5 V 
or greater [17]. However, when the supply voltage is scaled down (1.8 V for 28 nm CMOS 
technology), it is not applicable, as there is not enough voltage headroom. According to the LVDS 
standard specifications [18], a 1.125–1.325 V common mode voltage range and 250–400 mV output 
swing of the output signals is required, which would cause the transistors (M1a and M2a) to cut off. 
To overcome the supply voltage headroom issues, PMOS-only (shown in Figure 2b) and 
complementary MOS (shown in Figure 2c) LVDS drivers need to be addressed. A benefit of PMOS-
only style drivers is that they can work without the body effect. However, the inherent speed 
limitation in PMOS devices precludes their use in high speed data communication. To achieve the 
same speed as CMOS style drivers, the size of the transistors must be increased. Consequently, the 
area cost and power consumption will also increase. Comparing the above-mentioned LVDS drivers, 
the complementary MOS style driver is the optimum choice for LVDS transmission systems 
operating under low supply voltage, as it is not only compatible with the LVDS standard, but also 
faster than the other options. 
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Figure 2. Simplistic circuit of LVDS output driver: (a) NMOS-only style; (b) PMOS-only style; (c) 
Complementary MOS style. 

In this paper, a 2.5 Gbps 10-lane low-power LVDS transceiver is presented. The transceiver can 
operate at a data rate up to 2.5 Gbps, and is fully compatible with ANSI/TIA/EIA-644-A standards. 
The paper is organized as follows: Section 2 describes the architecture of the proposed LVDS 
transceiver, and presents some related simulation results. In Section 3, the measurement results are 
discussed. Finally, a summary and the conclusions are outlined in Section 4. 

2. Architecture Design 

The proposed 10-lane, low-power, LVDS transceiver is shown in Figure 3. Each lane is 
comprised of a receiver followed by a transmitter. It employs differential data transmission and the 
receiver is configured as a switched-polarity signal generator. The receiver is composed of a pre-stage 
common mode voltage (Vcm) shifter and a rail-to-rail comparator (COMP), while the transmitter 
includes a CMOS H-bridge output driver with a common mode feedback (CMFB) circuit, a high-
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In general, the architecture of LVDS drivers is divided into fully-differential NMOS-only
style [12], fully-differential PMOS-only style [13] and complementary MOS style [14–16]. As shown
in Figure 2, all configurations consist of four MOS switches arranged in an H-bridge structure.
The NMOS-only style LVDS driver, shown in Figure 2a, works well if the supply voltage (VDD)
is 2.5 V or greater [17]. However, when the supply voltage is scaled down (1.8 V for 28 nm CMOS
technology), it is not applicable, as there is not enough voltage headroom. According to the LVDS
standard specifications [18], a 1.125–1.325 V common mode voltage range and 250–400 mV output
swing of the output signals is required, which would cause the transistors (M1a and M2a) to cut off.
To overcome the supply voltage headroom issues, PMOS-only (shown in Figure 2b) and complementary
MOS (shown in Figure 2c) LVDS drivers need to be addressed. A benefit of PMOS-only style drivers
is that they can work without the body effect. However, the inherent speed limitation in PMOS
devices precludes their use in high speed data communication. To achieve the same speed as CMOS
style drivers, the size of the transistors must be increased. Consequently, the area cost and power
consumption will also increase. Comparing the above-mentioned LVDS drivers, the complementary
MOS style driver is the optimum choice for LVDS transmission systems operating under low supply
voltage, as it is not only compatible with the LVDS standard, but also faster than the other options.
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In this paper, a 2.5 Gbps 10-lane low-power LVDS transceiver is presented. The transceiver can
operate at a data rate up to 2.5 Gbps, and is fully compatible with ANSI/TIA/EIA-644-A standards.
The paper is organized as follows: Section 2 describes the architecture of the proposed LVDS transceiver,
and presents some related simulation results. In Section 3, the measurement results are discussed.
Finally, a summary and the conclusions are outlined in Section 4.

2. Architecture Design

The proposed 10-lane, low-power, LVDS transceiver is shown in Figure 3. Each lane is comprised
of a receiver followed by a transmitter. It employs differential data transmission and the receiver is
configured as a switched-polarity signal generator. The receiver is composed of a pre-stage common
mode voltage (Vcm) shifter and a rail-to-rail comparator (COMP), while the transmitter includes a
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CMOS H-bridge output driver with a common mode feedback (CMFB) circuit, a high-speed level
shifter (LS) and pre-emphasis (PE) driver. In addition, two bandgap references (BGR) are embedded
in the scheme to provide proper DC bias for receivers and transmitters, respectively. In the design,
the differential data are firstly addressed by the receiver, then the transmitter deals with the data and
sends them out in accordance with specified requirements. Therefore, only if both the receiver and
transmitter are operated properly can the transmitted signals be output. The detailed implementation
of the transceiver will be expatiated in the following sections.
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2.1. Receiver

According to LVDS specifications [18], a receiver is required to operate in a wide input common
mode voltage range of 0.05–2.35 V. Therefore, with the 1.8 V supply voltage, the receiver firstly
needs to achieve the common mode voltage conversion. Figure 4 shows the simplistic circuit of a
pre-stage common mode voltage shifter, which includes a current regulator and an error amplifier.
The error amplifier detects the common mode voltage difference between input data (INP and INN)
and reference voltage (VREF) and amplifies the voltage difference to control the current regulator by
injecting or extracting currents from resistors R1 and R2. As a result, voltage drops across R1 and R2
are generated, and the common mode voltage is shifted [19]. It is obvious that the shifted common
mode voltage is affected by VREF. Thus, the value of VREF was set at 0.9 V for the following rail-to-rail
comparator to obtain a higher gain.
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Figure 4. The input common mode voltage shifter.

A simple rail-to-rail comparator [20,21], as shown in Figure 5, was constructed as a composite of
P and NMOS pairs. The amplifier with rail-to-rail input identifies the voltage difference from the input
data (OP and ON) and converts them into currents through the input trans-conductor cell (M1–M4).
After this, the currents are both mirrored and summed up at the node N1, before the data is reinstituted
and reshaped by the last-stage shaping buffer.
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(R1 and R2), which is compared with the designed reference common mode voltage (Vbg). The 
difference is then amplified and converted into the common mode current to adjust the common 
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Figure 5. Schematic of the rail-to-rail comparator.

2.2. Transmitter

In this paper, the transmitter contained three parts: a high-speed level shifter, a pre-emphasis
driver and an output driver. The high-speed level shifter [22,23] was introduced to achieve the
different voltage domain conversion in the pre-stage of the transmitter, whose circuit is presented
in Figure 6. A pair of NMOS devices (M3 and M4) receive the low-voltage input signals (Dp_L and
Dn_L) and convert them into high-voltage signals through the positive feedback transistors (M1 and
M2). Then, the buffer chain with several inverters reshapes the output signals under the high-voltage
(VDDH) supply.
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Figure 7 shows the proposed transmitter output driver based on the CMOS H-bridge structure.
As Figure 7 shows, the output stage of the driver uses the PMOS and NMOS configuration. A simple
common mode feedback (CMFB) circuit [24,25], with transistors M5–M8, is used to stabilize the output
common mode voltage (Vcm), and is less dependent on PVT. The two differential output voltages
(Voutp and Voutn) are averaged to form a common mode voltage (Vcm) by two resistors (R1 and R2),
which is compared with the designed reference common mode voltage (Vbg). The difference is then
amplified and converted into the common mode current to adjust the common mode voltage (Vcm).
In addition, an Rc and Cc pole-zero compensation network is exploited to obtain an adequate phase
margin of CMFB under the conditions created by the PVT variations. Meanwhile, a cascade current
mirror (M9–M12) is utilized to provide high precision current bias at a 1.8 V voltage supply.

In addition, a pre-emphasis driver with a simple pulse-width modulation (PWM) technique [26,27]
is used in the transmitter to enhance signal integrity. A simplistic circuit of this pre-emphasis driver is
presented in Figure 8. The pre-emphasis driver exploits the timing relationship between signals and
delay signals to establish the signal-related pulse (UP and DN), which is only enabled at the rise and
fall of the signal [28,29]. During the signal transition, the pre-emphasis driver adds a current to the
output node, and also extracts the current from the output node by the UP and DN pulses, so that the
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rise and fall time is decreased. Figure 9 shows the eye diagram of the transmitter after the channel,
which operates at 2.5 Gbps. Figure 9a presents the simulated results of the eye diagram without a
pre-emphasis driver, while the simulated results of the eye diagram with a pre-emphasis driver are
shown in Figure 9b. As shown, the pre-emphasis driver is not only able to shorten the rise time but
also improves the amplitude of the output signal.Electronics 2019, 8, x FOR PEER REVIEW 5 of 10 
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3. Measured Result Analysis and Discussion

Figure 10 shows a chip microphotograph of the 10-lane LVDS transceiver. The entire chip was
fabricated with SMIC 28 nm CMOS technology and the total area was 1.46 mm2. The area of each
TX/RX lane was 0.0333 mm2, where TX and RX occupy 0.0306 mm2 and 0.0027 mm2, respectively.
In multi-lane high-speed serial links, crosstalk and interference of lanes are important issues that
deteriorate the performance of output signals. In this paper, two lanes of the transceiver shared supply
voltage to improve the power integrity, and the BGR utilized a pair of individual supply voltages to
provide the dependable DC bias for TX and RX, respectively. Plentiful on-chip decoupling capacitors
were also inserted in the empty area to enhance signal integrity. These methods simply and effectively
suppressed output jitter.
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Figure 10. Microphotograph of the LVDS transceiver.

An Agilent pulse generator 81134A was used to produce 231-1 pseudorandom bit sequence (PRBS)
data patterns to the receiver, while a Tektronix MSO71604C mixed signal oscilloscope was used to
detect the differential output eye diagram of the transmitter. A 22-inch coupled micro-strip line on
the testing PCB acted as the transmission channel, the channel loss of which is shown in Figure 11.
The channel loss was 2.2 dB at 625 MHz, and 1.8 dB at 1.25 GHz.
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According to the measured results, the maximum data rate of the transceiver reached 2.5Gbps.
Figure 12a,b shows the single lane of transmitter differential output eye diagrams with 231-1 PRBS
patterns and data rates of 1.25 Gbps and 2.5 Gbps. Both output swings of the two operating
data rates were around 350 mV, and the root-mean-square (RMS) jitters were 5.48 ps and 3.65 ps,
respectively. Figure 12c,d show transmitter differential output eye diagrams of 1.25 Gbps and 2.5 Gbps
for multi-lane transmission communication. Similarly, their output swings were around 350 mV, but
their performance was degraded. This is due to the lane-to-lane interference of signals and power lines,
which introduced higher deterministic jitter (DJ) that deteriorated the signal integrity of the output
signals. The total power dissipation of the two operating data rates were 8.72 mW and 16.51 mW at a
1.8 V power supply for each lane.
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Table 1 summarizes the comparison of the performance of the previously reported LVDS
transmitters. This LVDS transmitter, based on a complementary MOS H-bridge, had excellent noise
immunity performance, with an RMS jitter of 3.65 ps with a data rate up to 2.5 Gbps. The proposed
LVDS transmitter also had superior power consumption performance of 16.51 mW at a data rate of
2.5 Gbps, with a figure of merit (FOM) of 6.6 mW/Gbps.

Table 1. Comparison with previous works.

Ref. [9] * [15] ** [30] * [31] ** This Work **

Year 2016 2011 2014 2018 2019
Technology (nm) 28 CMOS 180 CMOS 40 CMOS 28 CMOS 28 CMOS

Supply voltage (V) 1.8/1 2.5 1.8/1 1.8/1 1.8/0.9
Output swing (mV) 350 313 320 348 350

Data rate (Gbps) 1 2 1 1 2.5
RMS jitter (ps) 2.2 7.65 4 9.8 3.65
Power(mW) 8.7 15.41 7 7.9 16.51
Area (mm2) 0.009 0.061 0.0168 0.085 0.0306

FOM # (mW/Gbps) 8.7 7.705 7 7.9 6.60

*: Simulated result; **: Measured result; #: FOM = Power (mW)/Data rate (Gbps).

4. Conclusions

In this paper, a 2.5 Gbps, 10-lane, low-power, LVDS transceiver was presented. In the receiver,
a pre-stage common mode voltage shifter was introduced to implement the common mode voltage
conversion, and a rail-to-rail comparator embedded with a shaping buffer was utilized to recover
the input signal. Compared with the characteristics of previous LVDS driver architectures, a
complementary MOS LVDS driver using a CMFB circuit was exploited to provide the required output
common mode voltage and differential output swing at 1.8 V supply voltage. In addition, a high-speed
level shifter was designed for voltage domain conversion, and a pre-emphasis driver with PWM
technique was employed to reduce the signal transition time. Further, the proposed LVDS transceiver
was compatible with ANSI/TIA/EIA-644-A standards. The tranceiver is easy to interoperate with
other differential signaling technologies, and can be embedded in other chips as an IP core, which
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makes it suitable for use in portable electronics. The whole circuit was fabricated with SMIC 28 nm
CMOS technology, with a total chip area of 1.46 mm2. The measured results show that the proposed
low-power LVDS was able to be properly operated at 2.5 Gbps, with an RMS jitter of 3.65 ps and an
FOM of 6.6 mW/Gbps.
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