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Abstract: In this paper, we propose an efficient multibranch residual network for single image
super-resolution. Based on the idea of aggregated transformations, the split-transform-merge strategy
is exploited to implement the multibranch architecture in an easy, extensible way. By this means,
both the number of parameters and the time complexity are significantly reduced. In addition, to
ensure the high-performance of super-resolution reconstruction, the residual block is modified and
simplified with reference to the enhanced deep super-resolution network (EDSR) model. Moreover,
our developed method possesses advantages of flexibility and extendibility, which are helpful
to establish a specific network according to practical demands. Experimental results on both the
Diverse 2K (DIV2K) and other standard datasets show that the proposed method can achieve a good
performance in comparison with EDSR under the same number of convolution layers.

Keywords: super-resolution; residual network; aggregated transformations

1. Introduction

In recent years, single image super-resolution (SISR) has attracted a lot of attention from
researchers in the field of computer vision. SISR aims to reconstruct a high-resolution image
IHR from a single low-resolution image ILR [1], and it has been widely used in many fields,
such as remote sensing [2], medical imaging [3], and environmental monitoring [4–7]. To our
knowledge, the interpolation technique based on sampling theory was the earliest method to solve
the super-resolution problem. However, there are serious shortages in predicting details and realistic
textures. To address this problem, techniques that learn the mapping relationship between ILR and IHR

have been proposed, such as neighbor embedding [8–11] and sparse coding [12–16]. In the last few
years, deep learning-based approaches for super-resolution are constantly emerging [16–20]. Dong et al.
first applied CNN (convolutional neural networks) into super-resolution [18], with a satisfactory effect
in its practical use. Later, Kim et al. designed SRResNet (residual network for super-resolution) [20]
based on the well-known residual network ResNet [19]. Benefiting from the jump connection and
recursive structure, deeper layers are easy to realize for better performance. To simplify SRResNet,
enhanced deep super-resolution network (EDSR) [1] was proposed for super-resolution by Lim et al.,
which optimizes the architecture of residual blocks by removing unnecessary modules. Although
these ResNet-based models can improve the quality of reconstruction due to deeper layers, they all
met the same problem: a sharp increase in the number of parameters. Especially in engineering
practice, the cost of a large number of residual blocks and parameters has hampered the wider use
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of ResNet-based models. Therefore, the question of how to reduce the number of model parameters
without reconstruction quality loss has become one of the hottest research issues.

Nowadays, there are various methods reported to reduce the number of parameters [21–24].
Network pruning, SVD (singular value decomposition), and split–transform–merge strategy are
three representative methods. In 1990, LeCun et al. first proposed the concept of network pruning,
which decreased the model size by cutting off the redundant parameters of the neural network [21].
This method requires a lot of iterative training to ensure network performance. In 2014, Denton et al.
proposed the SVD method to reduce the number of weights [22]. In the SVD method, the complex
matrix is represented by multiplying smaller and simpler submatrices, which can significantly reduce
network parameters. However, with the increase of the matrix scale, the calculation of the singular
value becomes complicated and difficult. In recent years, the split–transform–merge strategy attracted
more and more attention from researchers. Based on this strategy, the Inception models were developed
with less computational complexity and a fewer number of parameters [23]. In the Inception models,
the input is split into several low-dimensional embeddings (by 1×1 convolutions), then converted
through a set of specialized filters (3×3, 5×5, etc.) and finally merged by connection [24]. However,
because the hyper-parameters of each branch need to be set properly, it is hard to find a simple design
method for the construction of an Inception network. In 2016, Xie et al. proposed the ResNeXt [24]
network based on aggregated transformations, which can be regarded as the improvement of the
split–transform–merge strategy. However, the ResNeXt was originally designed for image classification,
therefore, its structure must be changed and optimized when applying it to super-resolution.

In this paper, an efficient multibranch residual network for the super-resolution task is proposed.
The multibranch architecture is built on the basis of aggregated transformations. In the meantime,
we optimize the residual block with reference to EDSR. According to the proposed network structure,
two specific models are established and given as examples in this work. Experiments show that our
models can achieve a good reconstruction quality with a significant reduction of network parameters.

2. Related Work

Inception: The Inception network is a typical multibranch architecture based on the split-
transform-merge strategy. Each branch in the network is carefully designed to gain good performance
in terms of speed and accuracy. However, the customized size and number of each filter in the branch
make the Inception network hard to implement.

SRResNet: SRResNet is a super-resolution reconstruction network which is inspired by the
residual network [20]. Based on the original residual structure, the network removes the active layer
after the residual block and obtains a good image reconstruction result in human vision.

EDSR: EDSR is a state-of-the-art super-resolution network which further modifies the residual
block structure based on SRResNet [1]. Since BN (batch normalization) layers get rid of the range
flexibility from networks and consume a lot of memory, EDSR removes two BN layers in the
residual block. Benefiting from the structural modification, EDSR has great improvements in image
reconstruction and reduction in the usage of graphics processing unit (GPU) memory.

ResNeXt: Based on the residual block architecture, ResNeXt exploits the split–transform–merge
strategy in an easy, extensible way—namely, aggregated residual transformations [24]. This method
involves stacking a series of homogeneous, multibranch residual blocks with only a few
hyperparameters to set [24]. Branches of ResNeXt each preform their set of convolutions and merge at
the end of the block. Compared with ResNet, ResNeXt shows better performance and less computation
complexity in the task of image classification.

Grouped convolution: Grouped convolution was first proposed in the AlexNet paper [25] in
2012. The given motivation by the author was to distribute the model over two GPUs to solve the
limited hardware resources of a single GPU. Grouped convolution divides the feature maps into
multiple GPUs for convoluting and subsequently aggregates the obtained results of multiple GPUs.
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3. Methods

EDSR has achieved good results in the super-resolution field, but there is little improvement
on the parameter quantity compared with other algorithms. To reduce the number of parameters,
the aggregation transformation method is applied to EDSR in this paper. The aggregation
transformation method, by which the multibranch architecture of networks can be built in an easy
way, is originally presented in ResNeXt. This method can reduce the parameter and time complexity
without significantly decreasing the accuracy of image classification.

A simple and obvious way to directly transform EDSR into multibranch architecture is
by the aggregation transformation method. However, the original residual block of EDSR with
two convolution layers is inconsistent with the aggregation transformation method [24]. This direct
transformation would result in a wild and dense model, which not only has no benefit but adds more
complexity. To solve this issue, we must redesign the model with multibranch architecture. Three or
more convolution layers are required in the residual block of the new model. To simplify the structure
of the residual block and enhance the feature extraction capability, we adopted three convolution
layers in this work. Compared with the original residual block as shown in Figure 1a, our rebuilt
residual block removes the unnecessary rectified linear unit (ReLU) and BN layers with reference to
the EDSR structure. This removal operation helps improve the performance of image reconstruction.
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Figure 1. Comparison of residual blocks in the original ResNet, enhanced deep super-resolution
network (EDSR), and our model. (a) Original ResNet residual block; (b) EDSR residual block;
(c) Our proposed residual block.

As shown in Figure 1, the convolutional layer (Conv) was used to perform feature extraction, and
ReLU to rectify the network output. The BN layer was used to normalize the features, and Addition
represents the additional layer that the network adds as needed.

It is also known from the experiment by Lim et al. [1] that increasing the number of feature maps
above a certain level would make the training process numerically unstable. The typical solution is to
place a constant scaling layer (also called as MulConstant layer) after the last convolutional layer of
each residual block. Owing to the use of aggregation transformations, the number of feature maps per
convolution layer can be significantly reduced in comparison with the original EDSR model, therefore,
the model proposed in this paper does not require the constant scaling layer. From the results in
the following Experiment section, we can see that adding a constant scaling layer could worsen the
performance. After removing the constant scaling layer, the architecture of our multibranch network is
modeled and shown in Figure 2. The detailed description of ResBlock (residual block) has been given
in Figure 1c. Upsample (upsampling structure) can magnify the image to the desired multiple.



Electronics 2019, 8, 339 4 of 10Electronics 2019, 8, x FOR PEER REVIEW 4 of 11 

 

C
o

n
v

C
o

n
v

R
esB

lo
ck

C
o

n
v

U
p

sam
p

le

C
o

n
v

R
esB

lo
ck

C
o

n
v

R
eLU

C
o

n
v

R
eLU

C
o

n
v

 

 

Figure 2. The architecture of the proposed multibranch network. 

As shown in Figure 3, we design with different configurations for our multibranch architecture: 

EDSRSP-3×3 and EDSRSP-1×1. The number represents the size of the first and third convolution 

kernel. The configuration of the residual block in EDSRSP-3×3 is as the same as that in EDSR, i.e. 3×3 

convolution kernel, 256-d input and 256-d output. It is seen from Table 1 that the number of 

parameters in EDSRSP-3×3 is reduced by 1/3 compared with EDSR. To further decrease the 

parameters, the configuration of EDSRSP-1×1 is properly adjusted and shown in Figure 3b. The 

detailed adjustments include using the 1 × 1 convolution kernel in the first and third layers and the 

512-d input and output in the second layer. EDSRSP-1×1 is similar to the bottleneck structure of 

ResNet, only with a little modification on the output dimension in the first layer. Due to the use of a 

1 × 1 convolution kernel, the number of parameters in EDSRSP-1×1 are reduced to 1/4 of those in 

EDSR. 

256,3x3,256

256,3x3,256

256,3x3,256

256-d in

256-d out
 

512,3x3,512

256,1x1,512

512,1x1,256

256-d in

256-d out
 

(a) (b) 

Figure 3. Proposed models. (a) EDSRSP-3×3. (b) EDSRSP-1×1. 

Table 1. Parameters of EDSR and our models. 

Model Number of  

Residual Blocks 

Total Parameters of  

Residual Blocks 

EDSR 

256, 3 × 3, 256 

256, 3 × 3, 256 

 

32 

 

~32,749K 

Figure 2. The architecture of the proposed multibranch network.

As shown in Figure 3, we design with different configurations for our multibranch architecture:
EDSRSP-3×3 and EDSRSP-1×1. The number represents the size of the first and third convolution
kernel. The configuration of the residual block in EDSRSP-3×3 is as the same as that in EDSR, i.e., 3×3
convolution kernel, 256-d input and 256-d output. It is seen from Table 1 that the number of parameters
in EDSRSP-3×3 is reduced by 1/3 compared with EDSR. To further decrease the parameters, the
configuration of EDSRSP-1×1 is properly adjusted and shown in Figure 3b. The detailed adjustments
include using the 1 × 1 convolution kernel in the first and third layers and the 512-d input and output
in the second layer. EDSRSP-1×1 is similar to the bottleneck structure of ResNet, only with a little
modification on the output dimension in the first layer. Due to the use of a 1 × 1 convolution kernel,
the number of parameters in EDSRSP-1×1 are reduced to 1/4 of those in EDSR.
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Table 1. Parameters of EDSR and our models.

Model Number of Residual Blocks Total Parameters of Residual Blocks

EDSR
32 ~32,749 K256, 3 × 3, 256

256, 3 × 3, 256

EDSRSP-3×3

21 ~25,160 K
256, 3 × 3, 256

256, 3 × 3, 256, 32
256, 3 × 3, 256

EDSRSP-1×1

21 ~7053 K
256, 1 × 1, 512

512, 3 × 3, 512, 32
512, 1 × 1, 256
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For the implementation of aggregation transformation, our model has two equivalent structures
as shown in Figure 4. The two structures have the same-level reconstruction performance, but the
structure based on group convolution (Figure 4b) has the distinct advantages of time complexity and
memory usage. Therefore, we use group convolution to realize the aggregation transformation.
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4. Experiment

4.1. Datasets

For our experiment, the newly proposed Diverse 2K (DIV2K) dataset [26] is used due to its
high-quality (2K) resolution for the image reconstruction tasks. The DIV2K dataset consists of 800
training images, 100 validation images, and 100 test images. Since the test dataset ground truth has not
been published, the performance comparison was made on the validation dataset. We also compared
the performance on three standard benchmark datasets: Set5 [9], Set14 [12], and B100 [27].

4.2. PSNR and SSIM Criteria

Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are the two most-used
indicators in the field of super-resolution reconstruction, which can measure the similarity between
the reconstructed image and the original high-resolution image [28,29]. The mathematical expression
of PSNR is as follows:

PSNR = 10log

[
(2n − 1)2

MSE

]
, (1)

where n is the number of bits per pixel, and mean square error (MSE) is defined as shown below:

MSE =
1

MN ∑ ∑
[

f (i, j)− f ′(i, j)
]2, (2)

where f (i, j) and f ′(i, j) represent the original and reconstructed images, respectively. Both of them
are of size M× N, and (i, j) stands for the pixel coordinate. The larger the value of PSNR, the better
effect of image reconstruction.

SSIM is another popular criteria to compare the reconstructed image x and the original
high-definition image y. The formula of SSIM is shown as follows:

SSIM(x, y) =
(2uxuy + c1)(2σxy + c2)

(ux2 + uy2 + c1)(σx2 + σy2 + c2)
, (3)
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where ux, uy are the mean value of x, y. σx
2, σy

2 are the variance of x, y. σxy is the covariance of x and
y. c1 = (k1L)2 and c2 = (k2L)2 are constants to maintain formula validity, avoiding the denominator
being zero. L represents the dynamic range of the pixel value. k1 = 0.01 and k2 = 0.03 by default.
The larger the value of SSIM, the better similarity of the two images.

4.3. Training Details

For training, we use and adjust the training parameters given in Lim et al. [1]. Neither the
pre-training model nor the geometric self-ensemble strategy is used in this training. The chop size is
set to 4.0 × 104 and patch sizes of ×3/×4 were set to 96. We also learnt from the code published by
the EDSR paper and trained the models by using NVIDIA Titan Xp GPUs. According to the official
baseline model, the used EDSR model is retrained with no modifications other than those mentioned
above. It takes seven days to train EDSR compared with three days for our models.

4.4. Comparison between the Cases with and without MulConstant Layer

To analyze the effect of the MulConstant Layer in our designed residual block, we performed
experiments on the EDSRSP-1× 1× 4 model and the EDSRSP-3× 3× 2 model. The three experiments
correspond to three different cases: (1) without the MulConstant layer; (2) MulConstant layer with
the factor set to 0.1; (3) MulConstant layer with the factor set to 0.01. From the experimental results
as shown in Figure 5, we can see that removing the MulConstant layer in our model results in
better performance.
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4.5. Evaluation on DIV2K Dataset

For the performance evaluation, a comparison between the retrained EDSR model and our model
is made and shown in Figure 6. The detailed evaluation method is given and described in Lim et al. [1].
Using PSNR and SSIM criteria, the evaluation is conducted on 10 images of the DIV2K validation
set. Concretely, we use full RGB channels and ignore the (6 + scale) pixels from the border. The small
difference between EDSR and our models could verify the performance of the proposed method.
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Figure 6. (a) Validation PSNR of EDSR ×2 model and proposed ×2 models. (b) Validation PSNR of
EDSR ×3 model and proposed ×3 models. (c) Validation PSNR of EDSR x4 model and proposed
×4 models.

Table 2 gives PSNR and SSIM scores of EDSR and our models on the DIV2K validation set, where
the results are consistent with those in Figure 6. In addition, visual comparisons of the super-resolution
images are shown in Figure 7. It can be seen, intuitively, that our models show high quality regardless
of details or textures.

Table 2. Performance comparison between architectures on the DIV2K validation set (PSNR (dB)/SSIM).

Dataset Scale EDSR EDSRSP-3×3 EDSRSP-1×1

DIV2K
×2 35.80/0.9676 35.71/0.9673 35.60/0.9670
×3 32.17/0.9345 32.06/0.9337 31.99/0.9331
×4 30.07/0.9057 29.97/0.9050 29.88/0.9045

We also performed the running time test on the pictures in Figure 7. The experimental results are
shown in Table 3. As can be seen from the data in the table, the proposed model has a faster running
time than EDSR.
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Table 3. Running time (s) comparison between EDSR and proposed models.

Scale EDSR EDSRSP-3×3 EDSRSP-1×1

×2 12.562 9.966 6.472
×3 7.700 6.348 4.665
×4 4.426 3.363 2.442
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4.6. Evaluation on Other Datasets

More experiments were implemented on the standard datasets of B100, Set5, and Set14.
For comparison, we measured PSNR and SSIM on the y-channel, ignoring the same number of pixels
as the boundary scaling. The MATLAB code was provided by the EDSR paper for this evaluation.
As can be seen from Table 4, our models can achieve the same level performance as EDSR with fewer
parameters, in theory.

Table 4. Public benchmark test results (PSNR (dB)/SSIM).

Dataset Scale EDSR EDSRSP-3×3 EDSRSP-1×1

Set5
×2 38.08/0.960 38.04/0.9599 37.99/0.9598
×3 34.59/0.9275 34.48/0.9267 34.40/0.9261
×4 32.36/0.8950 32.21/0.8937 32.15/0.8926

Set14
×2 33.71/0.9185 33.65/0.9180 33.58/0.9169
×3 30.35/0.8435 30.32/0.8428 30.24/0.8412
×4 28.60/0.7831 28.57/0.7821 28.51/0.7809

B100
×2 32.30/0.9009 32.24/0.9004 32.20/0.8995
×3 29.20/0.8080 29.16/0.8067 29.12/0.8055
×4 27.64/0.7390 27.60/0.7378 27.57/0.7366
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It can be seen from the experimental results that under the premise of ensuring the reconstruction
quality, the proposed models have obvious advantages in time complexity and space complexity.
This also means a reduction in the demand for hardware resources in practical applications, which
makes our models easier to implement in real conditions.

5. Conclusions

In this paper, we propose an efficient super-resolution network based on aggregated residual
transformations. Based on the proposed network, two specific models were designed and built in
this work. Each of the two models has its own advantages regarding the reconstruction performance
and the number of parameters. Experiments on both the DIV2K and other standard datasets were
implemented to evaluate the performance of our network. The experiment results proved that our
method is effective and easy to implement. Compared with EDSR, the number of parameters is
significantly reduced with the same-level performance.
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