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Abstract: To prevent short-circuits between the upper and lower switches of power converters
from over-current protection, the dead time is mandatory in the switching gating signal for
voltage source converters. However, this results in many negative effects on system operations,
such as output voltage and current distortions (e.g., increased level of fifth and seventh
harmonics), zero-current-clamping phenomenon, and output fundamental-frequency voltage
reduction. Many solutions have been presented to cope with this problem. First, the dead-time
effect is analyzed by taking into account factors such as the zero-clamping phenomenon, voltage
drops on diodes and transistors, and the parameters of inverter loads, as well as the parasitic
nature of semiconductor switches. Second, the state-of-the-art dead-time compensation algorithms
are presented in this paper. Third, the advantages and disadvantages of existing algorithms are
discussed, together with the future trends of dead-time compensation algorithms. This article
provides a complete scenario of dead-time compensation with control strategies for voltage source
converters for researchers to identify suitable solutions based on demand and application.
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1. Introduction

Power converters are widely used in industrial applications, such as photovoltaic (PV) power
systems [1], adjustable speed drive systems [2], and wind energy systems [3]. With the development of
power electronics technology and switching power devices, more advanced converters are receiving
widespread attention. A dual output single-phase current source inverter has been proposed for
microgrid applications. It utilizes six switches to handle power flows to two independent loads with
the same or different voltage ratings [4]. The interaction of the cyber twin model by a cyber integration
layer with the physical device is needed for effective control of the system. The interest in grid-tied
PV transformer-less inverters has increased rapidly because of their higher efficiency and lower cost
compared to traditional line transformer inverters. Some new transformer-less have been proposed
such as ESI [5], CH5 [6]. The results show that the novel topologies change the common-mode
behavior, which consequently allows a significant reduction of ground leakage current. On the other
hand, the high-frequency-based medium voltage inverters are used in renewable energy. However,
the power quality is compromised as a result of the increase in common mode noise currents by the
high inter-winding parasitic capacitance in high-frequency link transformers. To solve this problem,
the modified design of a toroid ferrite core transformer offers more resistance to temperature increases
without the use of any cooling agent or external circuitry power sources for power transmission [7].
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In practice, the power switches (e.g., Insulated Gate Bipolar Transistor (IGBT)) of the voltage
source converter have non-ideal features, such as rising and falling time. In order to avoid short
circuits of power switches, the dead time is mandatory for operating voltage source converters [8,9],
that is, a dead time is set between the driving signals of the upper and lower switches on each bridge
arm. In the case of a single pulse, the dead-time effect is not obvious in a speed control system with
a low carrier frequency and low performance requirement. However, the dead-time effect in one cycle
has a cumulative effect. When the converter operates at low speed and high switching frequency,
the accumulated dead-time effect will cause the voltage and current to contain a large number of
harmonic components, and will generate a zero-current-clamping phenomenon. The greater the
switching frequency is, the more adverse this phenomenon is. Moreover, in the case of frequency
conversion, the speed regulation and dead-time effect causes the motor to generate a large pulsating
torque and additional loss. Therefore, the dead-time compensation is one of the most important issues
for power converters.

There are two kinds of algorithms for dead-time compensation. One compensates by both
software and hardware. The hardware detection circuit is used to judge whether the anti-parallel
diode is turned on for the current direction detection. The compensated voltage signal is obtained by
comparing the actual voltage and voltage reference. Software is used for the compensation algorithm.
The major limitation of this method is that the reliability of the hardware detection circuit cannot be
guaranteed, and the complexity of the system is increased. The other method is to simply use the
software compensation algorithms only. This kind of method does not require a hardware detection
circuit, and is simple and flexible for practical implementations. The classification of the dead-time
compensation methods is shown in Figure 1. In general, dead-time compensation methods are divided
into three methods: time compensation method; average voltage compensation method; and other
methods, which use existing mature modulation technologies. Among these, the time compensation
method is most widely used, with other methods using closed loop control.

The remainder of the paper is organized as follows. First, the dead-time effects on the harmonics
of the output voltage are elaborated. Second, the different dead-time compensation methods are
classified and summarized in detail, and the advantages and disadvantages of various methods
are discussed.
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2. Dead-time Effect Analysis

In practice, there are voltage source converters [10] and current source converters [11]. The former
is the main topic of this paper. Assuming that when the current flows into the grid, the direction is
positive, the driving signal waveform and output voltage waveform of the power switch are shown in
Figure 2. The elements of Figure 2 are as follows:

Figure 2a is the waveform of the switch driving signal in the ideal state without dead time.
Figure 2b is the waveform of the switch driving signal with a dead-time state.
Figure 2c is the ideal waveform of the output voltage.
Figure 2d is the actual waveform of the output voltage when i > 0.
Figure 2e is the actual waveform of the output voltage when i < 0.
Figure 3 takes phase A as an example to analyze the effect of dead time on the output voltage

and current.
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2.1. Effect of Dead Time on Output Voltage

From Figure 2, it is clear that there is an error between the actual and ideal values of the output
voltage. The error voltage of phase A can be obtained as follows, where Td is the dead-time, and f c is
the switching frequency:

∆uA =

{
fcTdUdc iA > 0

− fcTdUdc iA < 0
(1)

Three-phase phase voltage errors can be analyzed from the Fourier series point of view, as shown
in Equation (2), where n = 1, 3, 5, 7, 11, 13, . . . , and ω is the angular frequency of the output voltage.
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

∆UAN = 4
π fcTdUdc

∞
∑
n

1
n sin(nωt)

∆UBN = 4
π fcTdUdc

∞
∑
n

1
n sin

[
n
(
ωt − 2

3 π
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The output voltage of phase A by taking the dead-time effect into account can be expressed as:

UA0 = MUdc sin(ωt + ϕ) + ∆UAN

=
[

MUdc sin(ωt + ϕ) + 4
π fcTdUdc sin(ωt)

]
+ 4

π fcTdUdc

[
1
3 (3ωt) + 1

5 (5ωt) + 1
7 (7ωt) + . . .

] (3)

where M is the modulation index and ϕ is the power factor angle. The harmonic voltage amplitude
decreases as the harmonic order rises. The higher harmonics can be filtered by a low-pass filter,
while the low-order harmonics are difficult to attenuate and result in undesirable voltage distortion.

2.2. Zero-Current-Clamping Phenomenon Caused by Dead Time

Zero-current clamping means that the current is close to zero in any direction during dead
time. Due to the freewheeling action of the freewheeling diode, the current magnitude decreases.
When the magnitude of the current is near zero, the dead time begins. Then, when the current drops to
zero, the reverse voltage on the diode will prevent the reverse increase of the current, which keeps
the current near zero during the remaining dead time. When the output voltage is almost zero,
the zero-current-clamping phenomenon causes current distortion and torque ripples. Henceforth,
dead-time compensation becomes mandatory for voltage source converters.

Figure 4 is a schematic diagram of zero-current clamping of a voltage source inverter.
From Figure 4, the following conclusions can be drawn as follows:

(1) The zero-current clamping of the inverter dead time occurs near the current zero crossing, and the
current is clamped near zero during the entire dead time.

(2) The current is little affected by the dead time for a period of time before zero crossing, and it is
clamped to near zero for a period of time after zero crossing.

Therefore, during the period of zero-current clamping, it is inaccurate to compensate the voltage
error by judging the current direction based on the current only.
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3. Dead Time Compensation Methods

3.1. Pulse Width Adjustment Method

The pulse-width adjustment method (also named the time compensation method) changes the
pulse-width by lagging or leading the turn-on or turn-off time of the power device according to the
dead-time insertion, so as to compensate for the effect of dead time [12,13]. It requires the direct
adjustment of real-time pulse-width in each switching cycle. Therefore, it is relatively complex
to implement. Figure 5 is a schematic diagram of the pulse-width adjustment method, where the
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dead-time compensation method based on pulse-width adjusts to ensure that the output voltage
waveform is the same as the ideal waveform.
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In order to solve the problems of phase voltage and phase current distortion and zero-current
clamping caused by dead time, a novel adaptive dead-time compensation strategy is proposed in [14].
The strategy does not require current polarity detection. In the synchronous rotating coordinate system,
the observed q-axis disturbance voltage is adjusted by a proportional integral (PI) controller to obtain
the dead-time compensation time. The dead-time compensation time is allocated according to the ratio
of the action time of the two non-zero space voltage vectors.

A tri-carrier Sinusoidal Pulse-Width Modulation (SPWM) used to eliminate dead-time effects is
proposed in [15]. It directly modifies the modulation strategy to remove dead-time. It also can reduce
current harmonics and suppress the current ripple on the AC side of voltage source converters. Triple
carriers are used to modulate the modulating wave. According to the current direction after filtering,
the driving signals are obtained by simple logic operations. This method can improve the performance
of the induction motor (IM).

A dead-time compensation scheme is presented for a six-switch three-phase output inverter
in [16]. The error is compensated by extension or reduction of the switching conduction period.
The extended object, which is a turn-on or turn-off period for each switch, is varied by the direction
and the magnitude relationship of the output current in each phase.

In order to simplify the time compensation algorithm, a method for measuring the narrow pulse
width of a pulse train through a single-channel time analyzer is reported in [17]. This provides no
limit to the dead time of the measurement channel. Simultaneously to the periodic jitter measurement
of the pulse train, it can estimate both pulse-width measurement error and minimum pulse width,
which is determined by specifying a relative measurement error.

Furthermore, the dead-time compensation method presented in [18] reduces the delay time and
minimum pulse width. Therefore, it is able to completely compensate for voltage distortion, even if
the input signal includes narrow pulses.

In [19], the dead time at the initial stage of the pulse-width modulation (PWM) generation is
introduced. The protection algorithm ensures that the two series switches are not conducted at the
same time and no switch is turned on during the dead time.

In the voltage source converter, due to the effect of dead time, the fifth and seventh current
harmonics are generated in the stationary reference frame, and the corresponding sixth current
harmonic is generated in the d-q synchronous reference frame, respectively. A proportional integral
(PI) current regulator in the synchronous frame is used to compensate the distortion results from the
dead time [20].

A correction strategy of major contributors that causes voltage distortion has been put
forward by analyzing and quantifying the contributors [21]. Unlike the previous reported solutions,
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the contributors to voltage distortion are analyzed and quantified. The duty cycle of each phase is
adjusted as a function of current feedback or current command to mitigate the voltage distortion due
to switch dynamics.

The effect of dead time of a three-level neutral-point clamp (NPC) voltage source converter is
discussed in [22]. The self-balancing space vector pulse-width modulation (SVPWM) is presented
to improve the effect of dead-time compensation. It provides a cost-effective pulse-based dead-time
compensation for three-level voltage source converters.

The effect of dead-time, as well as minimum and maximum pulse-width effects, on the continuous
and discontinuous pulse-width modulations, is discussed in [23]. Considering that the controller
is not able to compensate for dead time in the case of minimum pulse-width, two compensation
methods are developed. One solution, used for the moderate modulation index, is to switch between
DPWM (Discontinuous Pulse-Width Modulation) methods to avoid a distorted region and allows
a loss-optimized DPWM method. It is used for the maximum part of the operating time. Another
method, used for the high modulation index, is proposed to maintain the linearity of the fundamental
voltage component. The above two methods are able to reduce the sixth voltage harmonics.

A new integrated dead-time space vector pulse-width modulation technique is proposed to
control a voltage source inverter in [24]. The proposed algorithm is modified to ensure the duty ratios
are independent of sampling time T and carrier frequency f c. After the duty ratios are generated by
using the modified modulation technique, an integrated dead-time insertion block is used for given T
and f c by taking the three-phase duty ratios as inputs.

The fixed dead-time control strategy may lead to unwanted body-diode conduction or momentary
cross-conduction. Considering that the optimum dead time varies with the load current, it is important
to continuously adjust the dead time in a cycle-by-cycle manner. An improved solution is proposed to
predict the optimal dead time and eliminate the cross-conduction and body-diode conduction [25].
It is able to adjust the optimum timing for both the rising and falling edges of the output switching
waveform for the converter.

In [26], the impact of the dead time on common-mode voltage is discussed. A modified
pulse-width modulation method is presented to eliminate common-mode voltage due to the dead-time
effect. Another dead-time compensation method superimposes the square wave on the triangle
wave [27]. The triangle carrier and the square wave have the same frequency. The amplitude of the
square wave is equal to that of the dead time. It is simple to implement in practice. Based on a back
calculation of the current phase angle, a new on-line dead-time compensation method is proposed
in [28]. A detailed switching characterization with dead-time effect in all operation states is discussed
in [29]. A dead-time compensation method for a three-level voltage-source inverter is proposed
in [30]. It is based on the fact that the voltage error caused by dead time depends on current polarity,
and inserts the dead time at the instant of turning on and off of switches. The algorithm is simple and
eliminates current harmonics.

It can be concluded from the above that the advantage of the pulse-width adjustment method
are that the compensation accuracy is high, the voltage is compensated and has no error, and the
compensation method is only related to the polarity of the current. It is simple and intuitive, and has
good real-time performance. However, the pulse-width is simultaneously directly adjusted during
each switching cycle, which occupies a large amount of computing resources of the controller, and the
ambiguity of the zero-crossing point of the current affects the accuracy of the compensation.

3.2. Average Voltage Compensation Method

The average voltage compensation method averages the deviation voltage that is caused by
the difference between the output voltage and ideal output voltage waveform [31]. Dead-time
compensation is completed by feeding forward the averaged deviation voltage. Compared with
the pulse-width adjustment method, it is much simpler. Figure 6 shows a schematic of the average
voltage compensation technique and elaborates in detail.
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The direction of the output current of the converter is sgn(ia):

sgn(ia) =

{
1 (ia > 0)

−1 (ia < 0)
(4)

The dead-time voltage required for each modulation period in bipolar modulation is:

Utdm = − sgn(ia)·2td
Ts

·Vdc (5)

where Ts is the switching period, Vdc is the DC voltage and td is the dead-time.
The compensated voltage Utdm superimposed on the modulating wave voltage and compared

with the carrier to obtain a PWM driving signal. This kind of method has the same issues as
the pulse-width adjustment method, such as compensation error around the zero-crossing region.
The major reason for this is that the compensation voltage is determined by the current detection
signal. Therefore, the accuracy of current detection directly affects the compensation accuracy.

In order to minimize the harmonic current distortion caused by dead time, a simple dead-time
compensation technique is proposed in [32]. With a suitable PI current controller, the proposed
technique easily be added into the synchronous reference frame current (cf. d-q axis) control. With the
proposed technique, the output of the PI current controllers can be limited to lower values to reduce
an integral windup problem and improve control capability of the system.

A new dead-time elimination method is proposed in [33]. It uses a low voltage detector circuit
connected in parallel to each device to measure the terminal voltage of power switches. It can reduce
voltage distortion.

An accurate compensation based on the average-value theory is presented in [34].
The compensation factor is adjusted according to the accumulated error within a half period of
the output current. The proposed method evaluates initial compensation voltage according to the
dead-time and switching cycle, and a proportional factor is introduced to the compensation voltage.
The exact compensation factor is obtained by minimizing the harmonic component of the current in
the synchronous frame. The compensation voltage introduced by the dead-time, turn-on/off delay
and voltage drop across the power switches can be accurately identified by the proposed method.
Another method based on the virtual inductor is proposed for dead-time compensation in [35]. It is
able to reduce current distortion. Another improved compensation based on the average error voltage
is proposed in [36]. Different from conventional methods, which have amplitude and phase errors
at the output voltage, it can achieve dead-time compensation with much less amplitude and phase
errors. A new distortion voltage compensation method for eliminating the effect of dead-time on
zero-current clamping is proposed in [37]. The modeling analysis of the dead-time effects on parallel
converters is discussed in [38]. It is useful to evaluate the impact of dead-time on the circulating
current of voltage-source converters.
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In summary, the average voltage compensation method is simple and convenient, easy to
implement, and feasible. However, the zero-crossing detection accuracy is not high enough, and error
compensation will occur, causing new harmonics in the output voltage and current.

3.3. Current Feedback Method

The current feedback dead-time compensation method determines the compensation voltage
by detecting the polarity of the output current of the converter [39]; a schematic diagram is shown
in Figure 7. In practice, it is affected by the dead-time, amplitude and frequency of the current.
Actually, the zero crossing of the current is not easy to detect. Moreover, the necessary current filters
also exacerbate the difficulty of detection of the current polarity, especially when this method is
implemented in software. Severe detection delay will destroy the correct compensation of dead-time.

The current feedback needs to detect the polarity of the phase current and convert the polarity
of the current into a square wave voltage, which is added to the modulation wave of each phase.
This square wave voltage causes the inverter to generate a current phase that is the same as the error
of the compensation voltage. Generally, in the control system, there are three kinds of methods used to
detect the polarity of the current:

A. Direct detection of current zero-crossing point
This method determines the modulation plus or minus compensation voltage according to the

current sign. Its key characteristic is its simplicity, but it needs to accurately detect the current
zero-crossing point, especially when the frequency is relatively low, or else it will lead to incorrect
compensation because the current zero-crossing point is not obvious.

B. Prediction of zero-crossing point
This method is an improvement of method (A), realizing the advance detection of the current

zero-crossing point, which is usually used for high-frequency bands. It has a good compensation effect.

C. Dead-time compensation based on rotor magnetic field orientation
The method performs coordinate transformation on the three-phase output current, then calculates

the current vector angle according to the synchronous rotation angle of the rotor field orientation,
and finally compensates for the dead time according to the current vector angle. Usually,
the three-phase output current pulse has a better compensation effect.

Figure 7 shows a schematic of current feedback compensation. It is known that, due to the
influence of dead-time, the output current contains harmonics. A method named the current harmonic
filter method calculates the compensation voltage by filtering the sixth current harmonic in the d-q
synchronous rotating coordinate system [40,41]. The output current of the grid-tied inverter contains
odd-numbered harmonics because of dead-time and nonlinear characteristics of the switching devices.
A new compensation algorithm using the second-order generalized integrator (SOGI) is proposed to
reduce the dead-time effect [42]. By using synchronous reference frame, even-harmonic components are
generated by the dead-time effect. Accordingly, SOGI detects the specific frequency used to reduce the
dead-time effect. This algorithm does not require any additional hardware or other information, except
phase current and grid angle information. The output current harmonics are effectively eliminated by
controlling the error terms of d-q axis currents.

A novel method of compensating for dead-time effects, which uses a feed-forward approach for
the standard compensation and a feedback loop with adaptive harmonic compensator to suppress the
persistent sixth harmonic components in the d-q axis current, is presented in [40]. This method does
not rely on parameter calculation.
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In [41], a novel online dead-time compensation strategy for a vector controlled permanent-magnet
synchronous motor (PMSM) is proposed. The output of the adaptive method is a slowly time-varying
voltage, which is used to compensate for output voltage distortion. Although the current harmonic
filtering method does not depend on current polarity detection and motor parameters, it is affected by
the zero-current-clamping phenomenon.

In a voltage source converter, the dead-time effect can be divided into the controlling dead-time
effect and switching dead-time effect. The switching dead-time effect includes the turn-on and
turn-off time delay of the power devices, the voltage drop of the power devices, and the influence of
parasitic capacitance. In order to reduce the switching dead-time effect, a dead-time compensation
method to reduce the influence of zero-current-clamping and parasitic capacitance has been raised [43].
The method is used to calculate the three-phase compensation voltage according to the polarity of the
three-phase current and the compensation time, and to correct the error polarity of the compensation
voltage caused by the zero-current-clamping phenomenon. Since the magnitude of the compensation
voltage varies with the current, this method has the disadvantage that the reference quantity is the
amount of change when the voltage polarity is corrected.

The polarity of the current is often difficult to determine accurately, mainly because the accuracy
of the current detection is affected by the dead-time, amplitude and frequency of the current, thus the
output current of the converter is distorted in the zero region and the current zero-crossing point is
more difficult to determine.

The dead-time effect is created by using the change of the slope of the current waveform caused
by dead time to compensate for the deviation voltage [44], but this method relies on the correct
judgment of the polarity of the current. If the polarity is judged incorrectly, it will lead to a worse
compensation effect.

In order to reduce the voltage error and current waveform distortion caused by dead time, current
feedback control is applied to a three-phase power factor correction rectifier and power device ripple
filter with a small capacitance value using a high feedback coefficient [45]. Since the small capacitor
on the AC side easily leads to system instability under a high feedback coefficient [46], this method
cannot effectively suppress the current ripple due to dead time.

A method compensating for dead-time harmonics by including a harmonic compensator
with a current controller is proposed in [47]. A multiple-parallel resonant controller is adopted,
which enables selectively canceling out the harmonic components or a repetitive controller mitigates
all harmonics below the Nyquist frequency.

For the well-known problem of determining the current polarity in the zero-crossing region of
the current, a solution to minimize the voltage distortion in the zero-crossing region is discussed [48].
In the proposed solution, the polarity of the current and its instantaneous value is employed to correct
the pulse-width. The experimental results show that the compensating term is maintained at a fixed
value no matter the polarity and magnitude of the current flowing through the power switch.
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For the problem of a low current with multiple zero-crossing points during a switching period,
a new method which uses a model for calculating the voltage error caused by dead time has been
put forward [49]. This determines the dwell time and integrates the volt-seconds for a half period of
the triangular carrier. Each half period of the triangular carrier split to time segments. The resulting
error voltage is used to calculate a new compensated duty factor. Another method that uses the model
to calculate the deviation voltage caused by dead time is introduced in [50]. It uses a model to split
each half period of the triangular carrier into time segments where the slopes of the currents in all
phases and the output voltage of all semiconductor phase legs are constant. It determines the duration
of each time segment and integrates the voltage-seconds for a half period of the triangular carrier.
The resulting error voltage can be used to calculate a new duty cycle to compensate for dead time.

As is known, the amplitude of the square wave modulated by SPWM is basically constant, and the
amplitude can be estimated without additional hardware. The structure is simple, easy to implement,
and has a practical application value. On the other hand, the compensation effect is greatly affected
by the current detection accuracy, and accuracy of the zero-crossing point of the current detection
becomes the decisive factor in determining the compensation effect.

3.4. Voltage Feedback Method

The voltage feedback dead-time compensation method compares the actual output voltage of
each phase with the reference output voltage to obtain the deviation voltage, and superimposes the
deviation voltage with the reference voltage to obtain a new reference voltage [51]. Because each
comparison must be corrected at the next switching cycle and the output voltage must be accurately
detected, this method also has hysteresis and is complicated to implement. Figure 8 shows a schematic
of voltage feedback compensation.
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The error voltage vector caused by the dead-time effect of the PWM inverter is given by [52].
Using the vector synthesis method, the formulae for calculating the amplitude and phase of the
composite voltage vector are deduced, and the characteristics of the composite voltage vector are
analyzed by simulation. In order to ensure that the actual opening time of the switch tube is equal
to the ideal given opening time, a dead-time compensation method is proposed. Combined with the
characteristics of SVPWM, a simplified formula is obtained. In order to eliminate the error voltage
vector, a dead-time voltage compensation method is proposed. According to the difference between
SPWM and SVPWM, the equations for dead-time voltage compensation in the stator three-phase
stationary frame and the two-phase stationary frame are calculated separately. The experimental results
show that the proposed compensation method can improve the output performance of the inverter.

In some control strategies, it is necessary to use the output voltage to calculate some state values,
but it is difficult to accurately measure the output voltage of the converter. Therefore, the reference
voltage is often used in place of the actual output voltage. However, due to the effect of the dead time
of the power devices, the output voltage is distorted, resulting in inconsistency with the reference
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voltage. Therefore, the reference voltage is used instead of the output voltage after compensating the
output voltage [53].

The classical dead-time compensation scheme is to add an extra voltage command to counteract
the voltage error using a similar approach. The compensation signal is generated based on the precise
analytical voltage. The voltage deviation can be compensated by adjusting pulse-width accordingly.

According to the current feedback compensation methods, the distortion of the output voltage
results in the generation of fifth and seventh harmonics in the current of the stationary coordinate
system, and the generation of the sixth harmonic in the current of the synchronous rotating coordinate
system. Various harmonic attenuation methods are proposed [54–58]. The output signal of the PI
current regulator in the synchronous coordinate system, which is used to compensate for voltage
distortion, is selected and processed in [59]. This method reduces voltage distortion by compensating
the d-axis output voltage and the q-axis current regulator.

It is known that the deviation voltage is directly detected, and that the error caused by the
dead-time effect can be eliminated and is not affected by the change of the load current. This structure
is complicated, and an additional voltage detecting circuit is needed. The small dead-time value
requires real-time and accurate detection.

3.5. Adaptive Dead-Time Compensation Method

During processing and analysis, the adaptive control method automatically adjusts the processing
method, sequence, parameters, boundary conditions, or constraint conditions to adapt to the statistical
distribution characteristics and structural characteristics of the processed data to obtain the best
treatment effect.

An adaptive observer-based method, which does not require current polarity detection, is brought
forward in [14]. This method uses the PI controller to adjust the q-axis disturbance voltage observed in
the synchronous rotating coordinate system to obtain the compensation time of dead time. On the
basis of conventional SVPWM [60], in each sector, the compensation time is allocated according to the
ratio of the dwell time of the two non-zero space voltage vectors. Finally, the dwell times of the two
vectors, respectively, are compensated by the allocated compensation time. An adaptive estimation
principle diagram of compensation time based on disturbance observer is shown in Figure 9, where PI
is the proportional integral controller, uqdis is the q-axis disturbance from the disturbance observer.
The compensation time is obtained by the disturbance and the PI regulator.
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The conventional sliding mode observer (SMO) collects the rotor position angle by identifying
rotor position angle, and needs to introduce a phase-locked loop (PLL) to realize the reverse control.
It has certain limitations, including massive calculation, slow dynamic response and complex methods,
and not taking the effect from the inverter dead time on the estimation model into consideration during
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the identifying process. To solve the problems, a new sensorless control method for the adaptive SMO
based on a rotating coordinate system and considering dead-time has been proposed [61]. Based on
the conventional hypothetical rotational co-ordination system approach, and combined with the model
motor approach, this method takes the rotation speed of the hypothetical coordination system as
a controlled variable and improves the response speed. Meanwhile, the voltage change triggered by
the inverter’s dead time is taken into consideration and the motor current control is achieved through
the SMO, which reduces the error between the model and actual motor current to be zero. This method
can be realized easily and achieves the motor’s positive-negative rotation control.

A dead-time optimization technique for a two-level voltage source converter using turn-off
transition monitoring is proposed in [62]. By tracking the change of the load on-line, the method
can adaptively calculate the optimum width of the inductor current zero-crossing region to eliminate
the dead-time effect of the zero-crossing region and the non-zero-crossing region, respectively.
This technique can effectively eliminate dead time regardless of the load during the entire modulation
period. This method not only reduces the output voltage’s fundamental distortion and low harmonic
content, but also introduces the adaptive algorithm, greatly reducing the accuracy requirements of
the current sampling device and effectively improving the practicality of the dead-time elimination
method and the reliability of system.

In [63], an adaptive dead-time compensation strategy to obtain fundamental phase voltage for
inverter-fed vector-controlled PMSM drives proposed. A phase dead-time compensation voltage
(DTCV), which is used to compensate for the disturbance voltage, is transformed into q-axis DTCV
in the rotor reference frame. The relationship between dead-time compensation time (DTCT) and
the q-axis DTCV, when the d-axis current is zero, is investigated. In this study, the q-axis DTCV is
considered to be the same as the q-axis interference voltage. Adaptive DTCT is used to determine the
amplitude of the phase DTCV. Since only the amplitude of the phase DTCV is adjusted, this method
has less influence on the estimation delay of the disturbance observer.

There is a dead-time problem in the PWM control of the motor, and it seriously affects the
performance of the motor. In order to eliminate the influence of noise, an adaptive filtering method
has been presented [64]. The response speed of the filter is improved by the dynamic convergence
coefficient. Experimental results show that this filtering method is highly suitable for dead-time
compensation, which is based on the current vector. Compared with other noise removal methods,
the algorithm is concise and easy to program.

Based on the influence of dead time on the PMSM inverter, a dead-time compensation method
based on the Kalman filter has been brought forward [65]. This method is used to filter system noise
and the generation of fifth and seventh harmonics in the α and β static coordinate frame, so as to obtain
the direction of the three-phase current and the error voltage vector reduced by dead time. According
to the error voltage vector, the dead-time effect can be suppressed. The experimental results show that
the proposed method can effectively improve the output current waveform of the inverter and the
performance of the PMSM system.

In [40], an adaptive dead-time compensation method based on sixth harmonic elimination is
proposed. In order to improve the performance of the control algorithm, the method uses an adaptive
harmonic filter to suppress the sixth harmonic. PI controllers are used in the proposed method.
These controllers have appropriate parameters and effectively suppress the sixth harmonic current in
the d-q axis.

Aiming at the online dead-time compensation for PMSM, which is controlled by a vector, a new
online dead-time compensation strategy has been discussed [41]. The proposed method is composed of
two parts. The first independent part of the parameter is an adaptive method based on the monitoring
of harmonic distortion in the d-axis current. Therefore, the criterion is defined as the sum of squared
direct axis current between the two zero-crossing points of the phase current. The criterion is minimize
by the PI controller, and the output of the PI controller is a slowly time-varying voltage, used to
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calculate the compensation voltage. This method is extended by the constant voltage disturbance
observer of the PMSM model.

Some industrial processes are affected by not only different gain and time constants, but also
dead-time. For such industrial processes, the present classic self-regulating regulator is not applicable
because it needs the time delay of the process.

In order to control the switching time and simultaneously eliminate the power losses caused by
body-diode conduction, power-stage shoot-through current and inductor reverse current, an adaptive
inverter-based dead-time controller for synchronous DC-DC converter is proposed in [66]. To achieve
even faster comparison, an inverter is used to replace the high-speed comparators in the proposed
dead-time controller. In addition, a two-step (coarse- and fine-tuning) dynamic delay generator
is proposed for accurate switching time and a wider dead-time correction range comparing to the
conventional design. Thanks to the novel adaptive dead-time controller, it is able to dynamically adjust
the dead-time to its optimal value with a very wide load range.

An adaptive-linear-neuron (ADALINE)-based dead-time compensation method used for
vector-controlled PMSM drives is put forward in [67]. Four ADALINEs are employed in the proposed
method. Two ADALINEs are used for estimating the sixth-order harmonic components of d-q axes
currents, and the other two used for generating the compensation voltages of d-q axes. Without
any additional hardware and complicated signal processing algorithms required, the method is easy
to implement.

Because of fault tolerance, adaptive dead-time compensation has the ability to adapt to changes
in dynamic behavior of controlled objects, parameters and operating conditions. On the other hand,
the disadvantage of this method is that simple fuzzy processing of information will lead to reduced
control accuracy and dynamic quality of the system, and the design is not systematic and cannot define
control objectives.

3.6. Predictive Current Control

The predictive current control method uses predictive control to control the voltage source
converter; that is, to use the known state of the present sampling point, the circuit model, and the
reference current of the next sampling point to predict the voltage that can make the output current
reach the desired current [68]. This method is implemented only with software. Figure 10 shows the
schematic of predictive current control.
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In order to improve the adaptability of the system, a novel closed-loop adaptive method is
proposed in [69]. The method uses the duty ratio instead of the average deviation voltage, and feeds
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forward the duty cycle of the compensation time. Simultaneously, the method uses the predictive
current controller (PCC) to regulate the phase current. The method is simple to implement, has high
computational efficiency, and is easily added to the existing PCC. This method can enhance the
dead-time suppression capability of the PCC without modifying the internal structure.

With dead-time compensation, a control method of a doubly-fed induction generator with
a three-level midpoint-clamped inverter with dead-time compensation is described in [70].
The principle of the proposed control scheme is to use a dynamic model to predict the voltage
value, the rotor current and the DC bus capacitor voltage vector of the next sample point. However,
dead time also can cause errors in the established model. Therefore, taking dead time in the model
into account, active and reactive power can be estimated based on the stator flux and rotor currents to
compensate for dead-time effects. The cost function in this prediction algorithm considers active power,
reactive power, and the error between the reference capacitor voltage and the actual. The algorithm
selects the optimal switching state of the minimum value function to achieve the purpose of reducing
the switching frequency and the common mode voltage.

A predictor structure derived from the filtered Smith predictor is discussed clearly in [71].
The structure is used to simplify the tuning in the robustness of model predictive controllers (MPCs)
and improve robustness. The stability and robustness of linear MPCs are analyzed, and this method is
extended to nonlinear MPCs of a class of nonlinear systems. The key idea of this method is to separate
the predictive structure from the optimization phase in order to guarantee input-to-state stability and
constraint satisfaction by using an equivalent dead-time free system.

Although the MPC technique can easily deal with the dead-time effect due to its internal prediction
structure, in order to improve robustness an appropriate predictor for the MPC algorithm needs to
be defined. A filter-based Smith prediction structure is put forward in [64]. This prediction structure
simplifies the traditional prediction algorithm and improves robustness. The key to this method is to
separate the predictor structure from the optimization phase so that stability can be guaranteed using
an equivalent system without dead time so that the constraints are satisfied.

A predictive method which allows the compensation of dead-time in a Voltage Source Inverter
(VSI) feeding an Induction Motor (IM) with the control of SVPWM is discussed in [72]. Based on
the step-by-step analytical prediction of the stator phase currents, the method modifies the reference
space vector of the feeding voltage. In this way, the effects of dead time can be taken into account
and compensated for. It is known that the predictive current control can be used to eliminate the
adverse effects of control delays. This method is essentially a control algorithm based on an accurate
mathematical model, and its control effect depends on the accuracy of the parameters of the
grid-connected converter and, especially, the accuracy of the filter inductor.

3.7. Dead-Time Compensation Method Based on Disturbance Observer

The basic idea of the disturbance observer is to construct a disturbance signal observer based on
the error between the actual model and the reference model. The dead-time compensation method
based on the disturbance observer uses a disturbance voltage observer based on making the output
current as the input of the observer, and to estimate the disturbance voltage caused by dead time.
The estimated disturbance voltage is used to compensate for dead time [73].

This method is implemented only with software; Figure 11 shows a schematic of the dead-time
compensation method based on the disturbance observer [74]. In Figure 11, the reference input voltage
usr* consists of the input reference and the disturbance voltage.



Electronics 2019, 8, 196 15 of 26
Electronics 2019, 8, 196 15 of 26 

ai bi ci r r

r*
si

r
si




deadu

r
su

r*
su





Dead Time Compensation

/  Transformationdq abc PWM VSI

/  Transformationabc dq

Dead Time
Compensation

Current Controller PMSM

 

Figure 11. Schematic diagram of disturbance observer method. 
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A novel procedure for PI feedback and lead-lag filter design is introduced in [75]. The proposed
controller uses a robust tuning rule that is complemented be filters and is used for improving reference
current and measurable disturbance responses. When perfect measurable disturbance compensation is
not possible due to dead time, the proposed control provides a smaller integral error.

In order to improve the static and dynamic output performance of Uninterrupted Power Supply
(UPS) inverters without adding sensors, a digital control strategy is proposed in [76]. This strategy uses
the area equivalence principle to equate the dead-time voltage with a square-wave disturbance voltage,
and regards the output current as the disturbance current of the control system, and the feed-forward
control is used to compensate voltage and current. Because this method uses the differential operation
of the output voltage to obtain the output filter capacitor current value, even if the current sensor is
not used, the quasi-double loop control of the UPS inverter is still achieved.

In [77], an auto-tuning control system based on the modified Smith-predictor is proposed for use
as an effective dead-time compensator. In order to improve the anti-interference ability, the system
adds a feedback loop, used in a cascade structure. At the same time, this study provides several
optimization rules of the main controller.

In the presence of interval parameter uncertainty, a novel method used to tune a PI compensator
with dead time has been proposed [78]. Based on the optimization of load disturbance rejection,
the method constrains the magnitude of the sensitivity and complementary sensitivity functions.

A simple and direct compensation technique to solve voltage distortion in a three-phase VSI
has been introduced [79]. The proposed method calculates the practical voltage drop of the power
devices in a sampling period according to the current polarity. The average voltage deviation is
calculated by the difference between the actual voltage and reference voltage. The SVPWM switching
intervals of each phase are derived by the average output voltages, and calculated according to
the current polarity and nonlinear voltage distortion to compensate for the output voltage errors.
The proposed compensation method is extremely easy to implement without any additional cost and
software burden.

A new dead-time compensation method using the signal of the integrator output of the
synchronous d-axis current regulator has been proposed [80]. The method can reduce voltage distortion
by compensating for the output voltages of the d-q axis current regulator. This method does not
require an additional hardware circuit, and can be adapted not only for the steady state but also for
transient states.

This method relies on a simple principle and simple control structure, and needs few measurement
parameters. Though it is easy to implement, the tracking step size of the method cannot balance
response speed and accuracy. If the search step is too small, the search speed becomes slower; if the
search step is too long, it is easy to cause oscillation and affect system stability.

3.8. Invalid Switch Elimination Method

The invalid switch elimination method, which is only valid for switches needing anti-parallel
diodes such as IGBTs, has been the main method researched by scholars in recent years. The principle
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is that by analyzing the effective device of the converter, the invalid power device in the same bridge
arm can be turned off, and the anti-parallel diode is freewheeling, so that there is no need for adding
dead time. Therefore, the phenomenon of straight through of the upper and lower tubes of the same
bridge arm can be avoided [81]. Because wrong current polarity detection can cause severe voltage
distortion, even if the invalid switch elimination method does not consider turn on-off time and the
voltage drop of power devices, it requires high-accuracy current polarity detection. The single-phase
VSI circuit is an example for analyzing the mechanism of dead-time elimination.

The following is an analysis of the principle of an invalid switch elimination method outside the
threshold range. Instantaneously, the output current ia > 0, the driving signals of VT1, VT4 are turned
on, and the inverter is in the power device conducting-state, as shown in Figure 12a. VT1 and VT4 are
turned on, and VT2 and VT3 are turned off; when the driving signal of VT1 is turned off, the inverter
is in the diode freewheeling state, as shown in Figure 12b. At this time, VT1 is turned off and VD2

is freewheeling. From the above analysis, no matter whether VT2 has a driving signal, ia does not
flow through VT2, so VT2 can be called the invalid switch. Therefore, the driving signal of VT2 can be
closed when ia > 0. Similarly, when the output current ia < 0, the driving signal of VT1 can be closed.
This method not only ensures that the upper and lower power devices on the same bridge arm will
not pass through, it does not affect the inverter output current ia waveform.

Because the polarity of the current changes frequently around the zero-crossing point, the invalid
switch elimination method needs to add a threshold near the zero-crossing point [82]. Outside the
threshold range, the invalid power device driving signals are turned off; within the threshold range,
the inactive power device is reused, and the dead time is added to the driving signals of the upper
and lower power devices in the same bridge arm. The key to this kind of method is how to select the
threshold range. If the value is not accurate enough, the phenomenon of inaccurate compensation will
occur near the threshold value, thus introducing harmonics.
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Based upon the fact that the self-commutation switch device of an inverter phase would not
turn on even though the gate-driving signal is supplied, the dead-time minimization algorithm is
proposed in [83]. Using this method, the number of inverter switches is almost reduced to half that of
the conventional method.
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The invalid switch elimination method is adopted in dead-time compensation, used in the vector
controlled PMSM system [84]. Above the threshold, the control strategy is based on the invalid switch
elimination method; below the threshold, the dead-time compensation strategy is adopted to eliminate
the voltage error caused by the current fluctuations and zero-current-clamping phenomena. This new
strategy improves system stability and achieves desired control performance.

A novel IGBT gate-drive method is easily implemented in the IGBT gate driver of a PWM voltage
source converter [85]. Using this method, the upper and lower IGBT gate drivers on the same bridge
arm can receive the ideal complementary PWM signal without dead time. If the freewheeling diode
conducts current, the gate driver turns off the IGBT, which parallels with this diode. This novel method
can effectively operate with low current, low output frequency.

A dead-time elimination scheme for a converter that is controlled by PWM is proposed in [86].
The presented scheme proposes a current polarity detection circuit, which requires one power source
only for a converter and a PWM control method without dead time. The proposed method dramatically
improves output voltage loss and current distortion.

A novel strategy of dead-time elimination method for an H-bridge VSI and a new current polarity
detection circuit used to remove dead time between signals are presented in [87]. The proposed
detection circuit is based on the conduction states of two low anti-parallel diodes, and requires one
power supply. Moreover, this proposed circuit can accurately detect low current polarity even at low
output frequencies unlike current sensors.

A SVPWM control method based on a hybrid voltage vector has been put forward to avoid the
effect of dead time [88]. This paper presents a novel method to compensate for dead-time effects by
combining the 180◦ conduction type and 120◦ conduction type. In this method, an arbitrary space
voltage vector is synthesized with the 12 basic voltage vectors. As a result, the novel control algorithm
without dead time reduces the waveform distortion and harmonic content of the output voltage and
improves the utilization of the DC bus voltage.

The invalid switch elimination method mainly relies on the accurate detection of the conduction
state of each power device, so a hardware detection circuit is introduced in [89]. Due to the
increase of hardware circuits, these methods have the disadvantages of increased experimental costs,
poor reliability, and noise generation.

Based on the dead-time elimination method, a new switching strategy for PWM power converters
has been proposed [90]. This strategy uses the polarity information of the reference current instead of
the real current.

In [91], in order to deal with the dead-time control around the zero-current-crossing points,
an immune algorithm based on the dead-time elimination PWM control strategy is proposed.
This algorithm restricts the control sequence to a specified level around the zero-crossing region.
Compared with traditional methods, the method can resolve the problem of detection around zero-the
crossing point without a hardware detection circuit.

The dead-time effect in a synchronous d-q reference frame is studied in [92], and an average model
of the inverter capable of capturing the low-frequency harmonic content in the load current along
with the fundamental component is also developed. The average models are shown to consume less
computation time.

In addition to the invalid switch method, other scholars proposed methods of not setting the
dead time from the perspective of the control method [93]. A new dead-time elimination method
for a nine-switch converter is proposed in [94]. The proposed method assumes that the unique
switching elements of the nine-switch converter to operate at several subintervals are divided during
a fundamental period. Due to the unidirectional conducting characteristics of the switching unit,
the nine-switch converter can operate without dead time. In addition, for a special subperiod in which
no switching unit can be used, a novel driving signal conversion method is proposed to eliminate dead
time. A non-dead-time SPWM control strategy for a grid-connected inverter based on a modulation
function is put forward in [95]. The phase separation control is used to achieve the decoupling of the
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three-phase grid-connected current and modulation function. Then the decoupled grid-connected
current modulation function is used to perform the dead-time SPWM control. This control strategy
is simple and effective, further guarantees the reliability of the dead-time modulation strategy,
and removes the dependence of the traditional method on the hardware detection circuit.

The invalid switch elimination method enables the driving pulses of the upper and lower
switching devices to alternate according to the current polarity. However, there is a certain
degree of ambiguity in current zero-crossing and it is difficult to measure. Because the double
second-order generalized integrator frequency-locked loop (DSOGI-FLL) has the noise-attenuation and
frequency-adaptability characteristics, it is used to detect the current polarity. The DSOGI-FLL-based
invalid switch elimination method is proposed in [96], and an improvement in the form of a delay
compensation term is inserted in the DSOGI-FLL to compensate for both the current measurement
delay and the control delay to minimize the current zero-crossing distortion. A dead-time elimination
method of PWM controlled inverter is introduced in [97]. This method accurately determines the
direction of the load current by detecting the operating conditions of the power devices and their
antiparallel diodes. A low-cost circuit used to detect the operation of anti-parallel diodes is introduced
in this study. Compared with complex compensators, this method has the characteristics of simple
logic and flexible implementation.

It is known that the control is simple and convenient, easy to implement, and feasible. But this
method cannot completely eliminate the influence of dead time, and it is necessary to set a certain
dead time in a special interval.

3.9. The Volt-Second Equilibrium Theory Method

The volt-second equilibrium theory method divides the factors that cause output voltage
distortion into the effects of dead time, switching time, and the voltage drop of the power device [98].
This method builds the converter circuit model off-line to achieve online compensation, and quantifies
the effect of each factor on voltage distortion, since current polarity, detection and voltage error at
the zero-crossing point of the current are the two key points of this method. Most of the dead-time
compensation methods based on the volt-second equilibrium theory directly use the current sensor to
detect the current polarity, but at the zero-crossing point, the current polarity detection is affected by
the zero drift and noise.

Accurate current polarity judgment is achieved by detecting the situation of the two freewheeling
diodes conducting in the same phase bridge [82]. However, the complicated hardware is required for
this solution.

A feed forward voltage-second balancing strategy used in online conditions for monitoring data
of SiC devices is employed in high frequency VSI applications [99]. The turn-off delay and rise/fall
time of drain-source voltage signals are sent to the micro-controller, which is used in an algorithm
to actively adjust the duty cycle of the driving signals to match the voltage-second of the non-ideal
output voltage with an ideal output voltage-second. The monitoring system also allows the method to
eliminate the need for accurate current detection.

A technique to compensate the effect of dead time in sinusoidal a PWM VSI is proposed in [100].
In order to avoid unfeasible pulse-widths of the driving signals, the compensation is implemented by
adjusting the switching frequency. The variation of the switching frequency is defined by a simple
scalar equation that can easily be included in the software of any drive system.

A feedback–feedforward phase voltage compensation method, based on derived expression of
error voltage is proposed in [101]. Using a simple hardware circuit is used to obtain the actual output
of the VSI as feedback with which precise compensation amplitude can be calculated. This method can
also detect the current polarity by reconstructing the phase current from filtered current components
with a Kalman filter. Using this method to compensate for dead time can improve the system stability.

For the duty cycle error of the drive signal, most studies use off-line compensation methods;
however, these take a lot of time. In order to achieve online measurement of the error of the voltage
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duty cycle, a simple hardware circuit is designed in [102]. However, due to the parasitic capacitor of
the power device, the slope of the terminal voltage will change at the zero-crossing point of the current.
At the same time, this kind of hardware circuit will produce more duty cycle errors.

Based on the power device circuit, some models are formulated in [103]. These models mainly
consider the parasitic capacitance, but rely on current detection, so the accuracy of the voltage error
calculation at the zero-crossing point of current is still relatively low. Although the methods based on
the principle of volt-second equilibrium seem to be accurate, this method needs to solve the problem
of weak current measurement in a noisy environment.

A new method of deadtime effect compensation based on additional current measurements
realized by analog-to-digital converters is proposed in [104]. Because the measurements are carried
out at the time instants specified by a PWM strategy, they can easily estimate the voltage error caused
by dead time. The voltage error is compensated for during the next switching period by modification
of a reference voltage. Experimental results prove that the change of the time instant of additional
measurements will give better results in the case of other low-pass filter parameters.

3.10. Repetitive Control

Dead time can be seen as a periodic disturbance signal that can be compensated by a repetitive
controller [105]. Repetitive control is based on the internal model principle [106]. The internal model
principle means that if the signal generator contains a reference command in a stable closed-loop
system, the controlled output can follow the reference command without a steady-state error. If the
system requires a zero steady-state error for the sinusoidal input, the model of the sine function should
be included in the stable closed-loop transfer function. Due to the limited system bandwidth, it is
impossible to eliminate all harmonics. The repetitive controller is mainly used to reduce the low-order
harmonic distortion caused by dead time.

Figure 13 is a discrete block diagram of a repetitive controller used to compensate dead-time,
where r(k) is the reference sinusoidal signal, y(k) is the output voltage of the inverter, d(k) is the
disturbance signal caused by the dead-time, e(k) is the error voltage, and rc(k) is the reference instruction
after being compensated. The transfer function P(z−1) represents the SPWM inverter model, Q(z−1) is
a band limited filter, and S(z−1) is a compensator of the repetitive control loop. The repetitive controller
calculates the compensation voltage according to the output voltage error, and the compensation
voltage is added to the initial sinusoidal reference value for dead-time compensation.
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Repetitive control can effectively suppress the harmonic current of the grid due to the infinite
gain at each harmonic of the full frequency band. However, because repetitive control is equivalent
to an infinite number of resonant terms connected in parallel, it also has problems, such as a narrow
resonant frequency band and poor resistance to frequency fluctuation. Therefore, there is a control
delay, which will affect the dynamic response of the system.

4. Discussion and Conclusion

The advantages and disadvantages of dead-time compensation methods and the inadequacies of
various compensation methods are summarized in this article.
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For the pulse-width adjustment method, due to the ambiguity of the zero-crossing point, the pulse
width needs to be adjusted in each switching cycle in order to improve the accuracy of the current
polarity determination. The existing method is either computationally complicated or increases the
complexity of the system, so is still difficult to apply industrially.

Compared with the pulse-width adjustment method, the average voltage compensation technique
is simple and convenient to control, and easy to implement. However, if the zero-crossing point
detection accuracy is insufficient, the error compensation phenomenon will still occur. To solve this
intractable problem, the voltage error is estimated online as a disturbance. The estimated value is fed
back to the closed-loop control to avoid direction detection of the zero-crossing point or to reduce the
accuracy requirement for direction detection.

In order to avoid the inaccuracy of current detection, the voltage feedback compensation technique
directly detects the deviation voltage to eliminate the error caused by the dead-time effect. This method
needs to add a complicated voltage detection circuit, and the detection circuit in actual industry will
reduce the reliability and stability of system, so this method has almost no application.

The compensation effect of the current feedback compensation method is greatly affected by the
accuracy of voltage or current detection. The accuracy of the current zero-crossing-point detection
becomes the decisive factor determining the compensation effect. However, compared with the
voltage feedback compensation technique, since the current needs to be detected in the control system,
this method can estimate the feedback current without additional hardware, and the current detection
is easier than the voltage detection. This method is simple in structure and easy to implement, and is
widely used in practical industries, but requires increased detection accuracy.

The volt-second balance principle also relies on correct detection of the polarity of the current,
and current polarity detection is greatly affected by zero drift and noise, which can easily cause false
compensation. At the same time, this method requires a significant amount of software calculation,
occupies lot of space resources, and is not easy to implement.

Due to the presence of high-frequency noise in the current detection channel, in the vicinity of
the current zero-crossing point, error compensation will occur following error detection, which will
aggravate the influence of the dead time. Therefore, all the above traditional compensation schemes
have a common problem, namely, solving the current zero-crossing detection problem. In order to
improve the traditional current detection methods, methods such as the invalid switch elimination
method, the predictive current control method, and the adaptive method are proposed. However,
these methods all require complicated software calculations, so are difficult to implement.

As with the voltage feedback compensation method, in order to avoid the direction detection of the
current zero-crossing-point or to reduce the accuracy requirement for the direction detection, the invalid
switch elimination method can eliminate dead time in most cases based on the optimization of the
on/off state of a switching device, but cannot completely eliminate the dead-time effect. The method
needs to set a certain dead time in a special interval by setting a threshold. For improvement of
the invalid switch elimination method, one method is to set the threshold value, with the linear
compensation within the threshold and the fixed value compensation beyond the threshold. Another
method is to calculate the zero-crossing area width to improve zero-crossing detection.

Dead-time compensation methods based on disturbance observation means the disturbance
voltage vector is no longer related to the polarity of the three-phase current, avoids detecting the
polarity of the phase current, and can realize online real-time compensation for the dead-time effect.
The method is simple to implement, better suppresses the zero-current-clamping phenomenon, and is
widely used in industry, but requires a large amount of software calculation.

Similar to the disturbance observer, predictive current control does not need to detect the current
direction, greatly simplifies the calculation process, and saves system resources. It is a low-cost and
high-efficiency dead-time compensation method. Compared with traditional methods, it effectively
improves the dynamic performance and steady state accuracy of the system. However, errors of system
parameters can have a detrimental effect on dead-time compensation.
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Similarly, the adaptive dead-time compensation method does not need to detect the current
direction, which can effectively suppress the zero-current-clamping phenomenon. This improves the
low-speed running performance of the system, which is simple and easy to implement. At the same
time, this method can observe and compensate the dead-time effect in real time online, and avoid the
undesired phenomenon of dead time caused by offline measurement. However, the fuzzy processing
of information will lead to the reduction of control precision and dynamic quality of the system.

The repetitive control theory was developed for the characteristics of the dead zone effect and the
periodicity of the output voltage distortion caused by phase-controlled rectification. It is applied to the
control of the output voltage waveform of the inverter. Since this control operation is simple and has
good reliability, the repetitive control technique has been widely used. However, repetitive control
only suppresses periodic disturbances, and does not work for non-periodic disturbances.

Looking at the various dead-time effect compensation methods mentioned in the paper, we can
clearly identify the research hotspots and trends of the dead-time compensation methods:

(1) The traditional dead-time compensation schemes need to solve the zero-crossing-point current
direction detection problem to avoid the zero-current-clamping phenomenon and the detection
error of current direction. This problem can be solved in one of two ways: one is to develop
a new method to avoid current detection, while the other is to improve the detection accuracy of
current zero-crossing from the perspective of software and hardware.

(2) Combining the intelligent control theory with the dead-time compensation algorithm optimizes
the existing dead-time compensation methods and improves the compensation effect. The existing
relevant literature attempts to combine intelligent control theory with dead-time compensation,
but only in the laboratory stage, and is far from reaching the point of industrial application.

(3) Develop higher-precision voltage and current detection instruments to improve detection
accuracy. Hence, the existing compensation methods can be further applied.

Finally, the dead-time compensation is a key part for power converter, which directly affects
the output performance, stability and reliability of the control system. Although in-depth research
on dead-time compensation has been conducted and many solutions have been proposed, there are
still certain problems or limitations for these algorithms in practical applications, especially for high
and very high switching frequency operation of power converters with SiC and GaN devices [107].
The principles of various compensation methods have been comprehensively introduced and discussed
in this article. This paper provides a useful reference regarding the selection and further research of
dead-time compensation methods for power converters.
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