
electronics

Article

A Free Navigation of an AGV to a Non-Static Target
with Obstacle Avoidance

Daniel Teso-Fz-Betoño 1,* , Ekaitz Zulueta 1, Unai Fernandez-Gamiz 2 , Iñigo Aramendia 2

and Irantzu Uriarte 3

1 System Engineering and Automation Control Department, University of the Basque Country (UPV/EHU),
Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain; ekaitz.zulueta@ehu.eus

2 Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12,
01006 Vitoria-Gasteiz, Spain; unai.fernandez@ehu.eus (U.F.-G.); inigo.aramendia@ehu.eus (I.A.)

3 Department of Mechanical Engineering, University of the Basque Country (UPV/EHU), Nieves Cano, 12,
01006 Vitoria-Gasteiz, Spain; irantzu.uriarte@ehu.eus

* Correspondence: daniel.teso@ehu.eus

Received: 8 November 2018; Accepted: 23 January 2019; Published: 1 February 2019
����������
�������

Abstract: The industry is changing in order to improve the economy sector. This is the reason why
technology is improving and developing new devices. The autonomous guided vehicle with free
navigation is a new machine, which uses different techniques to move such as mapping, localization,
path planning, and path following. In this paper, a path following is proposed. The path following is
called moving to a point, which uses the proportional distance between the target and the autonomous
guided vehicles (AGV) to calculate the velocity and direction. If some obstacles appear in the trajectory,
however, the vehicle stops. Instead of stopping the machine, by using moving to a point logic,
an obstacle avoidance function will be implemented. In this implementation, different parameters
can be configured, such as: security distance, which determinates when the obstacle avoidance must
correct the pose; and proportional values, which modify the velocity and steering commands. It is
also compared to a dynamic window approach (DWA) obstacle avoidance solution. Additionally,
the AGV navigates to a non-static target with a path following algorithm.

Keywords: Industry 4.0; Cobots; autonomous guided vehicles; free navigation; path following;
moving to a point; obstacle avoidance; dynamic window approach; indoor mobile robots

1. Introduction

Nowadays, the industry is changing its organizational structure. This change is known as Industry
4.0, which is intended to improve the economy sector. Companies will become more intelligent by
using diverse techniques [1]. To make this possible, new programmable logic controller (PLC) devices
will be introduced, which will transfer huge calculation and information capabilities, and will also be
used to introduce more robots in production lines etc. Apart from introducing new devices, there will
also be increased connectivity into the same information system. As a result, production can be
adapted to demand and become more efficient [2]. In the end, the aim is to have a greater production
capability, better quality, and optimization in production resources.

Robotics is changing the production concept and adapting to this new era. Today, robots and
humans work in the same areas. Djuric et al. [3] commented that these robots are known as Cobots.
Thanks to power and force limitations, the employees can stay together in the same working area.
According to Cherubini et al. [4], when they are cooperating, ergonomic concerns can be reduced,
due to the physical job and cognitive loading. It also provides improvements on safety, quality,
and productivity.

Electronics 2019, 8, 159; doi:10.3390/electronics8020159 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2740-510X
https://orcid.org/0000-0001-9194-2009
https://orcid.org/0000-0002-4960-2729
https://orcid.org/0000-0002-6699-4197
http://www.mdpi.com/2079-9292/8/2/159?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8020159
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 159 2 of 17

In order to obtain greater flexibility and efficiency, not only will the robots change, but the
autonomous guided vehicle (AGV) also introduces new updates. Nowadays, these AGVs only move
using magnetic fields, so they do not have any intelligence, which makes it too difficult to change
logistics areas [5]. However, to introduce a free navigation intelligence, mapping, localization, path
planning, and path following aspects have to be implemented.

Mapping and localization are solved using simultaneous localization and mapping (SLAM) [6,7].
Considering the mobile robot has no idea about where it is and where it is going to be, with SLAM it is
possible to learn the environment characteristics in order to locate the vehicle. In the case that it was
necessary to move it, another algorithm would be required. Here is where path planning and path
following take part. Elsheikh et al. [8] confirmed, the differences between these, lie in how much the
robot can do.

In path planning, the start and end points are given and then the vehicle must plan the best
path. The robot navigation problem can be described as the process of determining a suitable and safe
path, avoiding obstacles and collisions [9], therefore, the AGV navigates without any path following
restrictions and moves wherever it wants to arrive at its goal position. There are different alternatives
which can be implemented, such as swarm optimization (SO), which is based on particle swarm
optimization as Ever [10] analysed, Hu et al. [11] studied dynamic path planning, and dynamic
movements primitives is explained by Mei et al. [12].

Apart from these, there are other well-known path planning algorithms, such as the dynamic
window approach developed by Fox et al. [13], vector field histogram related by Borenstein et al. [14],
TangentBug and PointsBug, as compared by Buniyamin et al. [15], and the rapidly exploring random tree,
as Adiyatov et al. [16] explained. Most of these well-known algorithms are used in actual applications.

Otherwise, in path following problems, the user gives the robot the path and it should only
follow it. According to Wang [17], these controllers are designed to obtain the minimal lateral distance,
as well as the heading between the vehicle and the command path to control the vehicle speed and
steering to follow a specified path. Algorithms like pure pursuit [18] mentioned, moving to a point [19],
and proportional navigation [20].

Sebi et al. [21] advised that apart from using SLAM, path following, and path planning, another
algorithm is required. Without any obstacle avoidance intelligence, the AGV makes a safety stop to
prevent collision with an object. This is the reason for the proposal of different obstacle avoidance
algorithms [22–24]. In most cases the obstacles are detected using cameras, LIDAR, or ultrasonic
sensors as Amin et al. [25] and Martinez et al. [26] explained. In the end, all of these sensors
are trying to avoid making contact with the obstacle. However, there are some cases, that when
the obstacle is detected as making a collision, the force is analyzed with piezoelectric sensors like
Wooten et al. [27] studied.

The main goal of the present study is to improve a simple path following algorithm introducing
an obstacle avoidance technique. This technique is implemented using simple equations, in order
to avoid large calculations in the controller. After developing the algorithm, it will be tested with
a traditional motion planning algorithm to analyze the differences between both.

2. Problem Formulation

The aim is to take a commercial AGV from industrial application and use its technology to
introduce an obstacle avoidance algorithm. This commercial AGV uses a LIDAR to take information
from the surroundings, a programable logic controller (PLC) to control AGV periphery (motors,
displays, lights, etc.) and an industrial personal computer (IPC) for the SLAM and path following
algorithm. It is remarkable that the only programable hardware is the PLC, and it does not have
enough capability to process huge calculations like optimization.

All hardware is connected via Ethernet to synchronize the information. The IPC sends speed

(‖
→
Vagv‖) and steering (γ) commands to the PLC, the PLC sends wheel-odometry information to the

IPC, and LIDAR sends information to both the PLC and IPC.

Electronics 2019, 8, 159 3 of 17

In the Industry, it is better to use known trajectories, which is why these vehicles use only path
following algorithms. In general, these algorithms are very simple and cannot avoid an obstacle.
Hence, it was decided to implement an obstacle avoidance term into the path following.

Furthermore, the AGV has to arrive at a conveyor transport and synchronize its speeds with
the moving target. The collaborative robot that was assembled in the AGV then takes an object from
conveyor transport and moves it to another point of the factory. The objective is not to stop the
conveyor transport to take that product, in order to reduce production time.

The idea of this paper is to take moving to a point mathematical equations and adapt them to
implement avoidance technique. Corke [19] studied a moving to a point path following algorithm,
in which the problem of moving towards a goal point (x∗, y∗) in the plane was analyzed. For this
solution, the velocity of the robot considered in Equation (1) is controlled proportionally to the distance
from the goal, as analysed in Equation (2).

‖
→
Vagv‖ = error·Kv (1)

error =
√
(x∗ − x)2 + (y∗ − y)2 (2)

To steer towards the goal, which is represented in Equation (3), it is considered that Kh is the
proportional controller, and the vehicle-relative angle is analyzed in Equation (4).

γ = Kh·(θ∗ − θ), Kh > 0 (3)

θ∗ = atan(
y∗ − y
x∗ − x

) (4)

Therefore, in the current study, a new obstacle avoidance strategy is proposed to be implemented
in the moving to a point technique. It is based on measurement between the vehicle and the obstacle.
Table 1 summarizes all terms and parameters used in this work.

Table 1. Terms and Parameters.

Name Description

error (m) Gap between AGV and target∥∥∥∥→Vagv

∥∥∥∥(m/s) Speed setpoint

Kv (s−1) Proportional constant for speed
Kh (rad/m) Proportional constant for steering
γ (rad) Steering setpoint
θ (rad) AGV Rotation

(x∗, y∗, θ∗) (m, m, rad) Target POSE
Dobs (m) Distance to the obstacle

Dtarget (m) Distance between the AGV and target
→
P obs (m) Obstacle position
→
P agv (m) AGV position
VI (m/s) Left wheel speed
VD (m/s) Right wheel speed
Vc (m/s) Speed in the middle of the motorized axel

G(Vagv,
.
γ) DWA optimization function

heading(Vagv,
.
γ) Gap between AGV and goal for each trajectory

dist(Vagv,
.
γ) Distance to the obstacle for each trajectory

vel(Vagv,
.
γ) The speed of each trajectory

POSE AGV position and orientation
AGV Autonomous guided vehicle
POA Proposed obstacle avoidance
DWA Dynamic window approach

Electronics 2019, 8, 159 4 of 17

3. Implementation of Obstacle Avoidance

A new formulation is presented in this section, so the vehicle can autonomously correct the path
avoiding the obstacle. Considering the measurement of the LIDAR, it is possible to obtain the distance
between the AGV and the obstacle. According to Peng et al. [22], that distance is expressed in Equation (5).

Dobs =
√

x2
obs + y2

obs (5)

→
Pobs = (xobs yobs) (6)

→
P agv = (x y) (7)

Electronics 2018, 7, x FOR PEER REVIEW 4 of 17

3. Implementation of Obstacle Avoidance

A new formulation is presented in this section, so the vehicle can autonomously correct the path
avoiding the obstacle. Considering the measurement of the LIDAR, it is possible to obtain the distance
between the AGV and the obstacle. According to Peng et al. [22], that distance is expressed in
Equation (5).

Figure 1. Autonomous guided vehicle (AGV) and obstacle on a plane. 𝑥௢௕௦ and 𝑦௢௕௦ represent the relative coordinates of the distance between the AGV and the nearest
obstacle defined by 𝐷௢௕௦ in Figure 1. The output of the Equation (5) can be represented in a graph.
Figure 2 shows how the LIDAR measurement changes when some obstacle appears in the AGV’s
way.

Figure 2. Distance between the object and AGV.

To use that measurement information as a correction for the steering command, the graph must
start at 0 value. By subtracting the LIDAR maximum measurement range to 𝐷௢௕௦, the answer will
change. This way, when the AGV is approaching the obstacle, the value becomes more negative. This
expression is analysed in equation (8) and the solution is represented in Figure 3.

𝐷௢௕௦ = ට𝑥௢௕௦ଶ + 𝑦௢௕௦ଶ (5)

𝑃ሬ⃗௢௕௦ = (𝑥௢௕௦ 𝑦௢௕௦) (6) 𝑃ሬ⃗௔௚௩ = (𝑥 𝑦) (7)

Figure 1. Autonomous guided vehicle (AGV) and obstacle on a plane.

xobs and yobs represent the relative coordinates of the distance between the AGV and the nearest
obstacle defined by Dobs in Figure 1. The output of the Equation (5) can be represented in a graph.
Figure 2 shows how the LIDAR measurement changes when some obstacle appears in the AGV’s way.

Electronics 2018, 7, x FOR PEER REVIEW 4 of 17

3. Implementation of Obstacle Avoidance

A new formulation is presented in this section, so the vehicle can autonomously correct the path
avoiding the obstacle. Considering the measurement of the LIDAR, it is possible to obtain the distance
between the AGV and the obstacle. According to Peng et al. [22], that distance is expressed in
Equation (5).

Figure 1. Autonomous guided vehicle (AGV) and obstacle on a plane. 𝑥௢௕௦ and 𝑦௢௕௦ represent the relative coordinates of the distance between the AGV and the nearest
obstacle defined by 𝐷௢௕௦ in Figure 1. The output of the Equation (5) can be represented in a graph.
Figure 2 shows how the LIDAR measurement changes when some obstacle appears in the AGV’s
way.

Figure 2. Distance between the object and AGV.

To use that measurement information as a correction for the steering command, the graph must
start at 0 value. By subtracting the LIDAR maximum measurement range to 𝐷௢௕௦, the answer will
change. This way, when the AGV is approaching the obstacle, the value becomes more negative. This
expression is analysed in equation (8) and the solution is represented in Figure 3.

𝐷௢௕௦ = ට𝑥௢௕௦ଶ + 𝑦௢௕௦ଶ (5)

𝑃ሬ⃗௢௕௦ = (𝑥௢௕௦ 𝑦௢௕௦) (6) 𝑃ሬ⃗௔௚௩ = (𝑥 𝑦) (7)

Figure 2. Distance between the object and AGV.

To use that measurement information as a correction for the steering command, the graph must
start at 0 value. By subtracting the LIDAR maximum measurement range to Dobs, the answer will
change. This way, when the AGV is approaching the obstacle, the value becomes more negative.
This expression is analysed in equation (8) and the solution is represented in Figure 3.

C = Dobs − Lidarmax
range

(8)

Electronics 2019, 8, 159 5 of 17

Electronics 2018, 7, x FOR PEER REVIEW 5 of 17

𝐶 = 𝐷௢௕௦ − 𝐿𝑖𝑑𝑎𝑟௠௔௫ೝೌ೙೒೐ (8)

Figure 3. The correction of Figure 2.

In Equation (9), a safety distance term is introduced to prevent premature correction. This safety
distance maintains the AGV direction until the object is between the AGV and that distance. In case
of the object being far away, the obstacle avoidance stays in standby mode. In other words, it does
not interfere with the moving to a point algorithm. 𝐴𝑣𝑜𝑖𝑑 = 𝛽 · 𝐶 · 𝑒ఈି஽೚್ೞ (9) 𝛽 is a constant which adapts the intensity of the avoid function and 𝑒ఈି஽೚್ೞ is the safety
implementation with a 𝛼 parameter, which changes the safety distance. This avoid function adapts
the AGV direction to avoid the obstacle. Therefore, this term must interact with the 𝛾 value. Instead
of implementing directly the avoidance correction, it has been considered to introduce some logic
between the 𝛾 value and avoid value, using a sigmoid function as shown in Equation (10). 𝐶𝑜𝑚 = 11 + 𝑒ఈି஽೚್ೞ (10)

Regrouping all the equations, the Moving to a Point algorithm with obstacle avoidance can be
summarized with Equation (11). ‖𝜸‖ = 𝐾௛ · [𝛿 · 𝐶𝑜𝑚 · 𝐴𝑣𝑜𝑖𝑑 + (1 − 𝜑 · 𝐶𝑜𝑚) · (𝜃∗ − 𝜃)] (11)

where 𝛿, 𝑦, and 𝜑 are constants, which modify the interaction with the Com function. 𝐾௛ is a
proportional constant, which changes the measurement value to steering value. Until this point, the
AGV can avoid an obstacle and it always turns to the right. In some cases, however, it is better to turn
to the left so as not to lose too much time avoiding the obstacle. It can be done by analyzing the sign
of the angles as represented in Equation (12). 𝜸 = 𝑆𝑖𝑔𝑛൫𝐴𝑟𝑔(𝑃ሬ⃗௔௚௩) − 𝐴𝑟𝑔(𝑃ሬ⃗௢௕௦)൯ · ‖𝜸‖ (12)

The vehicle velocity can be modified considering the same logic. When the obstacle is close, the
AGV must reduce its speed. Taking Equation (9) as reference, Equation (13) can be made, which
considers a variation of speed changing 𝛽 by 𝜇. 𝐴𝑣𝑜𝑖𝑑௩௘௟ = 𝜇 · 𝐶 · 𝑒ఈି஽೚್ೞ (13)

In addition, this function has to interact with the moving to a point velocity command, which is
the reason why Equations (10) and (13) are combined to obtain Equation (14). ฮ𝑉 ሬሬሬ⃗ ௔௚௩ ฮ = 𝐾௩ · [𝛿ᇱ · 𝐶𝑜𝑚 · 𝐴𝑣𝑜𝑖𝑑௩௘௟ + (1 − 𝜑ᇱ · 𝐶𝑜𝑚) · 𝑒𝑟𝑟𝑜𝑟] (14)

Figure 3. The correction of Figure 2.

In Equation (9), a safety distance term is introduced to prevent premature correction. This safety
distance maintains the AGV direction until the object is between the AGV and that distance. In case of
the object being far away, the obstacle avoidance stays in standby mode. In other words, it does not
interfere with the moving to a point algorithm.

Avoid = β·C·eα−Dobs (9)

β is a constant which adapts the intensity of the avoid function and eα−Dobs is the safety
implementation with a α parameter, which changes the safety distance. This avoid function adapts
the AGV direction to avoid the obstacle. Therefore, this term must interact with the γ value. Instead
of implementing directly the avoidance correction, it has been considered to introduce some logic
between the γ value and avoid value, using a sigmoid function as shown in Equation (10).

Com =
1

1 + eα−Dobs
(10)

Regrouping all the equations, the Moving to a Point algorithm with obstacle avoidance can be
summarized with Equation (11).

‖γ‖ = Kh·[δ· Com·Avoid + (1− ϕ·Com)·(θ∗ − θ)] (11)

where δ, y, and ϕ are constants, which modify the interaction with the Com function. Kh is
a proportional constant, which changes the measurement value to steering value. Until this point,
the AGV can avoid an obstacle and it always turns to the right. In some cases, however, it is better to
turn to the left so as not to lose too much time avoiding the obstacle. It can be done by analyzing the
sign of the angles as represented in Equation (12).

γ = Sign(Arg(
→
P agv)− Arg(

→
Pobs))·‖γ‖ (12)

The vehicle velocity can be modified considering the same logic. When the obstacle is close,
the AGV must reduce its speed. Taking Equation (9) as reference, Equation (13) can be made,
which considers a variation of speed changing β by µ.

Avoidvel = µ·C· eα−Dobs (13)

Electronics 2019, 8, 159 6 of 17

In addition, this function has to interact with the moving to a point velocity command, which is
the reason why Equations (10) and (13) are combined to obtain Equation (14).

‖
→
V agv‖ = Kv·[δ′·Com·Avoidvel + (1− ϕ′·Com)·error] (14)

where δ′ and ϕ′ are constants, which modify the interaction with Com function. Finally, Kv is the
proportional value that changes the measurement value to velocity value.

4. AGV Kinematics Equations

In this case, a specific AGV was used, so it is necessary to specify the kinematics of that vehicle.
In some cases, it is possible to use defined kinematics like Corke [19] proposed in his study. This special
AGV has two motors in the front axle. The autonomous vehicle uses different speed values in each
motor to steer. Both axles are connected mechanically by means of a pulley mechanism to reduce the
steering radio.

The inputs of the kinematics block are the AGV velocity and direction. The output, however,
is the vehicle POSE. The velocity reference (Vagv) is in the middle of the vehicle. When the AGV goes
in a straight line, both motors (Vi and Vd) have the same velocity. However, if the AGV takes a curve,
the motors will have different velocities.

Electronics 2018, 7, x FOR PEER REVIEW 6 of 17

where 𝛿′ and 𝜑ᇱ are constants, which modify the interaction with Com function. Finally, 𝐾௩ is
the proportional value that changes the measurement value to velocity value.

4. AGV Kinematics Equations

In this case, a specific AGV was used, so it is necessary to specify the kinematics of that vehicle.
In some cases, it is possible to use defined kinematics like Corke [19] proposed in his study. This
special AGV has two motors in the front axle. The autonomous vehicle uses different speed values in
each motor to steer. Both axles are connected mechanically by means of a pulley mechanism to reduce
the steering radio.

The inputs of the kinematics block are the AGV velocity and direction. The output, however, is
the vehicle POSE. The velocity reference (𝑉௔௚௩) is in the middle of the vehicle. When the AGV goes in
a straight line, both motors (𝑉௜ 𝑎𝑛𝑑 𝑉ௗ) have the same velocity. However, if the AGV takes a curve,
the motors will have different velocities.

Figure 4. AGV dynamical behavior.

Hence, taking Figure 4 as a reference, wheel speed can be represented in Equations (15) and (16): 𝑉ூ = 𝜸ሶ · (𝐻 − 𝑏/2) (15) 𝑉஽ = 𝜸ሶ · (𝐻 + 𝑏/2) (16)

Where H is the distance between rotation point and 𝑉௖, and b is the size of the wheel axle. Taking
into account Equations (15) and (16), 𝜸ሶ can be defined by motors velocities presented in Equation
(17): 𝜸ሶ = 𝑉஽ − 𝑉ூ𝑏 (17)

The 𝑉஺ீ௏ is split in 𝑥ሶ and 𝑦ሶ absolute coordinates. 𝑉௫ = ฮ𝑉 ሬሬሬ⃗ ௔௚௩ ฮ · 𝑐𝑜𝑠 𝜃 (18) 𝑉௬ = ฮ𝑉 ሬሬሬ⃗ ௔௚௩ ฮ · 𝑠𝑖𝑛 𝜃 (19) 𝑉஼ and 𝑉௔௚௩ are related each other, since the vehicle is considered as a solid element and the
velocity propagates along all the structure, as illustrated in Figure 5.

Figure 4. AGV dynamical behavior.

Hence, taking Figure 4 as a reference, wheel speed can be represented in Equations (15) and (16):

VI =
.
γ·(H − b/2) (15)

VD =
.
γ·(H + b/2) (16)

where H is the distance between rotation point and Vc, and b is the size of the wheel axle. Taking into
account Equations (15) and (16),

.
γ can be defined by motors velocities presented in Equation (17):

.
γ =

VD −VI
b

(17)

The VAGV is split in
.
x and

.
y absolute coordinates.

Vx = ‖
→
V agv‖ ·cosθ (18)

Vy = ‖
→
V agv‖ ·sinθ (19)

VC and Vagv are related each other, since the vehicle is considered as a solid element and the
velocity propagates along all the structure, as illustrated in Figure 5.

Electronics 2019, 8, 159 7 of 17
Electronics 2018, 7, x FOR PEER REVIEW 7 of 17

Figure 5. Velocities in the front axle.

The velocity 𝑉௥௢௧ represented in Figure 5 turns the vehicle and generates the rotation in the
middle of the AGV. The rotation of the vehicle can be defined with Equations (21) and (22): 𝜃ሶ𝐿2 = 𝑉௥௢௧

(21)

𝑉௥௢௧ = 𝑉௖ · 𝑠𝑖𝑛 𝜸 (22)

Combining (21) and (22), Equation (23) is obtained. 𝜃ሶ = 2𝐿 · 𝑉௖ · 𝑠𝑖𝑛 𝜸 (23)

Considering Equations (18–20) and (23), it is possible to define the vehicle dynamics in Equation
(24):

ቮ𝑉௫𝑉௬𝜃ሶ ቮ = ተ𝑐𝑜𝑠 𝜸 · 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜸 · 𝑠𝑖𝑛 𝜃 2𝐿 · 𝑠𝑖𝑛 𝜸 ተ ∗ 𝑉௖

(24)

where L is the wheelbase, 𝜃 is the AGV angle position in absolute coordinates, and 𝛾 is the
value of the direction, which comes from the algorithm.

5. Implementation of Model

Once the dynamic block is ready, it is time to analyze this algorithm. Simulation software
predicts what would happen in a “real” situation. The example scenario that comes with it has been
modified and adapted to a more realistic surrounding.

Figure 6. Scenario representation.

ฮ𝑉 ሬሬሬ⃗ ௔௚௩ ฮ = 𝑉௖ · 𝑐𝑜𝑠 𝜸 (20)

Figure 5. Velocities in the front axle.

‖
→
V agv‖ = Vc·cosγ (20)

The velocity Vrot represented in Figure 5 turns the vehicle and generates the rotation in the middle
of the AGV. The rotation of the vehicle can be defined with Equations (21) and (22):

.
θL
2

= Vrot (21)

Vrot = Vc·sinγ (22)

Combining (21) and (22), Equation (23) is obtained.

.
θ =

2
L
·Vc·sinγ (23)

Considering Equations (18–20) and (23), it is possible to define the vehicle dynamics in Equation (24):∣∣∣∣∣∣∣
Vx

Vy.
θ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

cosγ·cosθ

cosγ·sinθ
2
L ·sinγ

∣∣∣∣∣∣∣ ∗Vc (24)

where L is the wheelbase, θ is the AGV angle position in absolute coordinates, and γ is the value of the
direction, which comes from the algorithm.

5. Implementation of Model

Once the dynamic block is ready, it is time to analyze this algorithm. Simulation software predicts
what would happen in a “real” situation. The example scenario that comes with it has been modified
and adapted to a more realistic surrounding.

Electronics 2018, 7, x FOR PEER REVIEW 7 of 17

Figure 5. Velocities in the front axle.

The velocity 𝑉௥௢௧ represented in Figure 5 turns the vehicle and generates the rotation in the
middle of the AGV. The rotation of the vehicle can be defined with Equations (21) and (22): 𝜃ሶ𝐿2 = 𝑉௥௢௧

(21)

𝑉௥௢௧ = 𝑉௖ · 𝑠𝑖𝑛 𝜸 (22)

Combining (21) and (22), Equation (23) is obtained. 𝜃ሶ = 2𝐿 · 𝑉௖ · 𝑠𝑖𝑛 𝜸 (23)

Considering Equations (18–20) and (23), it is possible to define the vehicle dynamics in Equation
(24):

ቮ𝑉௫𝑉௬𝜃ሶ ቮ = ተ𝑐𝑜𝑠 𝜸 · 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜸 · 𝑠𝑖𝑛 𝜃 2𝐿 · 𝑠𝑖𝑛 𝜸 ተ ∗ 𝑉௖

(24)

where L is the wheelbase, 𝜃 is the AGV angle position in absolute coordinates, and 𝛾 is the
value of the direction, which comes from the algorithm.

5. Implementation of Model

Once the dynamic block is ready, it is time to analyze this algorithm. Simulation software
predicts what would happen in a “real” situation. The example scenario that comes with it has been
modified and adapted to a more realistic surrounding.

Figure 6. Scenario representation.

ฮ𝑉 ሬሬሬ⃗ ௔௚௩ ฮ = 𝑉௖ · 𝑐𝑜𝑠 𝜸 (20)

Figure 6. Scenario representation.

It is possible to add sensors to analyze the area in this program. In this case, a LIDAR sensor has
been implemented to take measurements from the surroundings. This sensor has 51 lines distributed

Electronics 2019, 8, 159 8 of 17

from –π/2 rad to π/2 rad and there is a measurement for each line. Hence, the centre line of the LIDAR
is located at 0 rad and it is the line 26. Figure 6 shows how the lines change the color from blue to
green, when the LIDAR detects some object.

There are two important blocks to interact with that library in Figure 7. One is to represent the
vehicle movement and the other one is to take measurements that form the area.

Electronics 2018, 7, x FOR PEER REVIEW 8 of 17

It is possible to add sensors to analyze the area in this program. In this case, a LIDAR sensor has
been implemented to take measurements from the surroundings. This sensor has 51 lines distributed
from –π/2 rad to π/2 rad and there is a measurement for each line. Hence, the centre line of the LIDAR
is located at 0 rad and it is the line 26. Figure 6 shows how the lines change the color from blue to
green, when the LIDAR detects some object.

There are two important blocks to interact with that library. One is to represent the vehicle
movement and the other one is to take measurements that form the area.

Figure 7. Block Diagram.

6. Results

Figure 8 shows the test area, which has three walls, two obstacles, and a moving point. This
moving point is the target for the AGV and it is a non-static point.

Figure 8. AGV Scenario.

Figure 9 shows the AGV trajectory after executing the simulation. It can be appreciated how the
vehicle avoids the objects and selects where to turn depending on the obstacle localization.

Figure 9. AGV Trajectory.

Figure 7. Block Diagram.

6. Results

Figure 8 shows the test area, which has three walls, two obstacles, and a moving point.
This moving point is the target for the AGV and it is a non-static point.

Electronics 2018, 7, x FOR PEER REVIEW 8 of 17

It is possible to add sensors to analyze the area in this program. In this case, a LIDAR sensor has
been implemented to take measurements from the surroundings. This sensor has 51 lines distributed
from –π/2 rad to π/2 rad and there is a measurement for each line. Hence, the centre line of the LIDAR
is located at 0 rad and it is the line 26. Figure 6 shows how the lines change the color from blue to
green, when the LIDAR detects some object.

There are two important blocks to interact with that library. One is to represent the vehicle
movement and the other one is to take measurements that form the area.

Figure 7. Block Diagram.

6. Results

Figure 8 shows the test area, which has three walls, two obstacles, and a moving point. This
moving point is the target for the AGV and it is a non-static point.

Figure 8. AGV Scenario.

Figure 9 shows the AGV trajectory after executing the simulation. It can be appreciated how the
vehicle avoids the objects and selects where to turn depending on the obstacle localization.

Figure 9. AGV Trajectory.

Figure 8. AGV Scenario.

Figure 9 shows the AGV trajectory after executing the simulation. It can be appreciated how the
vehicle avoids the objects and selects where to turn depending on the obstacle localization.

Electronics 2018, 7, x FOR PEER REVIEW 8 of 17

It is possible to add sensors to analyze the area in this program. In this case, a LIDAR sensor has

been implemented to take measurements from the surroundings. This sensor has 51 lines distributed

from –π/2 rad to π/2 rad and there is a measurement for each line. Hence, the centre line of the LIDAR

is located at 0 rad and it is the line 26. Figure 6 shows how the lines change the color from blue to

green, when the LIDAR detects some object.

There are two important blocks to interact with that library. One is to represent the vehicle

movement and the other one is to take measurements that form the area.

Figure 7. Block Diagram.

6. Results

Figure 8 shows the test area, which has three walls, two obstacles, and a moving point. This

moving point is the target for the AGV and it is a non-static point.

Figure 8. AGV Scenario.

Figure 9 shows the AGV trajectory after executing the simulation. It can be appreciated how the

vehicle avoids the objects and selects where to turn depending on the obstacle localization.

Figure 9. AGV Trajectory. Figure 9. AGV Trajectory.

Electronics 2019, 8, 159 9 of 17

In addition, the AGV can follow a moving goal using the moving to a point algorithm. As expected,
there is some error because this path following algorithm uses a proportional function. Therefore,
some error occurs when it has a non-static goal.

Figure 10 shows the error between the moving point and the AGV. The error has been calculated
as 0.4 m. This gap can be modified by adapting the Kv parameter.

Electronics 2018, 7, x FOR PEER REVIEW 9 of 17

In addition, the AGV can follow a moving goal using the moving to a point algorithm. As
expected, there is some error because this path following algorithm uses a proportional function.
Therefore, some error occurs when it has a non-static goal.

Figure 10 shows the error between the moving point and the AGV. The error has been calculated
as 0.4 m. This gap can be modified by adapting the 𝐾௩ parameter.

Figure 10. Following error.

After avoiding the obstacles, the system has some damping until it is stabilized. This damping
can be modified adapting the 𝐾௛ value. If the value of 𝐾௛ increases, the AGV moves faster and can
steer quicker. Figure 11 illustrates the trajectory of the AGV with different 𝐾௛ values.

Figure 11. AGV trajectory with different Kh values.

Apart from modifying the direction of the vehicle, the velocity is reduced to be more precise in
the avoidance maneuver. This speed variation is represented in Figure 12. The avoiding algorithm
calculates a velocity correction (red line) and this correction is implemented on the moving to a point
velocity term (blue Line). After avoiding the obstacle, the safety term stops actuating. In 20 sample
times, the avoidance stops correcting the speed.

Figure 10. Following error.

After avoiding the obstacles, the system has some damping until it is stabilized. This damping
can be modified adapting the Kh value. If the value of Kh increases, the AGV moves faster and can
steer quicker. Figure 11 illustrates the trajectory of the AGV with different Kh values.

Electronics 2018, 7, x FOR PEER REVIEW 9 of 17

In addition, the AGV can follow a moving goal using the moving to a point algorithm. As

expected, there is some error because this path following algorithm uses a proportional function.

Therefore, some error occurs when it has a non-static goal.

Figure 10 shows the error between the moving point and the AGV. The error has been calculated

as 0.4 m. This gap can be modified by adapting the 𝐾𝑣 parameter.

Figure 10. Following error.

After avoiding the obstacles, the system has some damping until it is stabilized. This damping

can be modified adapting the 𝐾ℎ value. If the value of 𝐾ℎ increases, the AGV moves faster and can

steer quicker. Figure 11 illustrates the trajectory of the AGV with different 𝐾ℎ values.

Figure 11. AGV trajectory with different Kh values.

Apart from modifying the direction of the vehicle, the velocity is reduced to be more precise in

the avoidance maneuver. This speed variation is represented in Figure 12. The avoiding algorithm

calculates a velocity correction (red line) and this correction is implemented on the moving to a point

velocity term (blue Line). After avoiding the obstacle, the safety term stops actuating. In 20 sample

times, the avoidance stops correcting the speed.

Figure 11. AGV trajectory with different Kh values.

Apart from modifying the direction of the vehicle, the velocity is reduced to be more precise in
the avoidance maneuver. This speed variation is represented in Figure 12. The avoiding algorithm
calculates a velocity correction (red line) and this correction is implemented on the moving to a point
velocity term (blue Line). After avoiding the obstacle, the safety term stops actuating. In 20 sample
times, the avoidance stops correcting the speed.

Electronics 2019, 8, 159 10 of 17Electronics 2018, 7, x FOR PEER REVIEW 10 of 17

Figure 12. Velocity Adaption.

7. Dynamic Window Approach Comparison

The next step after testing the avoidance algorithm consists of comparing it with a classic motion

planning solution. A well-known dynamic window approach (DWA) [13] algorithm is used. DWA is

divided into two parts: The first part is search space, in which the different possible Vagv and 𝛄̇ are

considered. This section is subdivided into three steps: circular trajectories, where it is calculated a

two-dimensional velocity(Vagv, γ̇) space, admissible velocities to restrict the admissible velocities

ensuring safe trajectories, and dynamic window, which analyses only those velocities that can be

reached on a short time interval considering robot acceleration limitations.

The second part is an optimization. The optimization is represented by Equation (25):

G(Vagv, γ̇) = σD (αD · heading(Vagv, γ̇) + βD · dist(Vagv, γ̇) + γD · vel(Vagv, γ̇)) (25)

Moreover, this second part is also subdivided into three steps: target heading, which is a

measure of progress toward the goal, clearance, which is the distance to the closest obstacle, and

velocity, which is considered the forward velocity of the robot.

Before starting the simulation of both algorithms, there are some aspects that can be appreciated

without any execution. On the one hand, DWA uses an optimization term and normally these

equations require a high computational capability. For the AGV that is used in our application, it is

impossible to execute and process this optimization over a short period of time. That is the reason for

the development of POA. Otherwise, with DWA it is possible to generate a proper trajectory, as it

always selects the best path according to the space conditions. Furthermore, POA does not consider

the vehicle kinematics, hence it makes a simpler calculation to avoid the obstacle. In order words,

POA does not calculate a trajectory, it just modifies the path following command to change the

direction and velocity when some obstacle appears in front of the vehicle. As a result, when some

object is detected, the speed will be reduced to avoid it safely. DWA, however, always selects a

trajectory considering the top speed value and minor acceleration loss.

On the other hand, in both cases adjustable gains are used to optimize the algorithms, making it

more flexible to adapt to different surroundings or kinematics conditions. In addition, DWA can

select which side turns the vehicle, in order to avoid the obstacle using the trajectory optimization.

POA, such as the other algorithm, makes the same action. Otherwise, it uses Equation (12) to

determinate which side turns the AGV.

In order to perform an easy comparison between both algorithms, a new simple scenario has

been designed. There are three elements in the scenario: an object, a moving obstacle, and the static

goal position. With the moving obstacle, it is possible to analyze human–robot collaboration. This

moving obstacle is considered to be a human and the AGV must avoid the collision.

Figure 12. Velocity Adaption.

7. Dynamic Window Approach Comparison

The next step after testing the avoidance algorithm consists of comparing it with a classic motion
planning solution. A well-known dynamic window approach (DWA) [13] algorithm is used. DWA
is divided into two parts: The first part is search space, in which the different possible Vagv and

.
γ

are considered. This section is subdivided into three steps: circular trajectories, where it is calculated
a two-dimensional velocity (Vagv,

.
γ) space, admissible velocities to restrict the admissible velocities

ensuring safe trajectories, and dynamic window, which analyses only those velocities that can be
reached on a short time interval considering robot acceleration limitations.

The second part is an optimization. The optimization is represented by Equation (25):

G(Vagv,
.
γ) = σD(αD·heading(Vagv,

.
γ) + βD·dist(Vagv,

.
γ) + γD·vel(Vagv,

.
γ)) (25)

Moreover, this second part is also subdivided into three steps: target heading, which is a measure
of progress toward the goal, clearance, which is the distance to the closest obstacle, and velocity,
which is considered the forward velocity of the robot.

Before starting the simulation of both algorithms, there are some aspects that can be appreciated
without any execution. On the one hand, DWA uses an optimization term and normally these equations
require a high computational capability. For the AGV that is used in our application, it is impossible
to execute and process this optimization over a short period of time. That is the reason for the
development of POA. Otherwise, with DWA it is possible to generate a proper trajectory, as it always
selects the best path according to the space conditions. Furthermore, POA does not consider the vehicle
kinematics, hence it makes a simpler calculation to avoid the obstacle. In order words, POA does
not calculate a trajectory, it just modifies the path following command to change the direction and
velocity when some obstacle appears in front of the vehicle. As a result, when some object is detected,
the speed will be reduced to avoid it safely. DWA, however, always selects a trajectory considering the
top speed value and minor acceleration loss.

On the other hand, in both cases adjustable gains are used to optimize the algorithms, making it
more flexible to adapt to different surroundings or kinematics conditions. In addition, DWA can select
which side turns the vehicle, in order to avoid the obstacle using the trajectory optimization. POA,
such as the other algorithm, makes the same action. Otherwise, it uses Equation (12) to determinate
which side turns the AGV.

In order to perform an easy comparison between both algorithms, a new simple scenario has been
designed (see Figure 13). There are three elements in the scenario: an object, a moving obstacle, and the
static goal position. With the moving obstacle, it is possible to analyze human–robot collaboration.
This moving obstacle is considered to be a human and the AGV must avoid the collision.

Electronics 2019, 8, 159 11 of 17Electronics 2018, 7, x FOR PEER REVIEW 11 of 17

Figure 13 Comparison scenario.

Using Table 2 variables, the result of both algorithm executions is shown in Figure 14. Where the
black ∗ represents the static obstacle, the red ∗ draws goal point, the pink ∗ represents the moving
obstacle, the pink dashed line shows moving obstacle trajectory, green lines represent DWA possible
trajectories, and blue lines represent the algorithm trajectory.

Table 2. Variables and Constant.

Name Description Constant Value 𝐾௛ (rad/m) Proportional constant for steering 0.9 𝐾௩ (sିଵ) Proportional constant for speed 0.9 𝐿𝑖𝑑𝑎𝑟୫ୟ୶ೝೌ೙೒೐ (m) Lidar maximum range 10 𝛼 (m) Security distance 0.5 𝛽 Intensity of the avoid function 0.5 𝜇 Intensity of the speed function 0.5 𝛿, 𝜑, 𝛿ᇱ𝑎𝑛𝑑 𝜑′ Constants for Sigmoid functions 𝛿 = 𝛿ᇱ = 1; 𝜑 = 𝜑ᇱ = 0.5
L (m) Distance between axles 1.8
b (m) Axle distance 0.2 𝜎஽, αୈ, 𝛽஽ and 𝛾஽ DWA configurable constants

𝜎஽ = 0.1; αୈ = 0.2 ; 𝛽஽ = 0.1 ; 𝛾஽ = 3.0

(a) (b)

Figure 14. Both algorithm executions with the same conditions. (a) Dynamic window approach
(DWA) trajectory execution and (b) proposed obstacle avoidance (POA) trajectory execution.

For this particular example, the DWA algorithm had more problems to avoid the moving

obstacle than POA. DWA, with Table 3 optimization constant values, cannot fit an optimal trajectory

Figure 13. Comparison scenario.

Using Table 2 variables, the result of both algorithm executions is shown in Figure 14. Where the
black ∗ represents the static obstacle, the red ∗ draws goal point, the pink ∗ represents the moving
obstacle, the pink dashed line shows moving obstacle trajectory, green lines represent DWA possible
trajectories, and blue lines represent the algorithm trajectory.

Table 2. Variables and Constant.

Name Description Constant Value

Kh (rad/m) Proportional constant for steering 0.9
Kv (s−1) Proportional constant for speed 0.9

Lidarmax
range

(m) Lidar maximum range 10
α (m) Security distance 0.5

β Intensity of the avoid function 0.5
µ Intensity of the speed function 0.5

δ, ϕ, δ′and ϕ′ Constants for Sigmoid functions δ = δ′ = 1;
ϕ = ϕ′ = 0.5

L (m) Distance between axles 1.8
b (m) Axle distance 0.2

σD, αD, βD and γD DWA configurable constants σD = 0.1; αD = 0.2 ;
βD = 0.1; γD = 3.0

Electronics 2018, 7, x FOR PEER REVIEW 11 of 17

Figure 13 Comparison scenario.

Using Table 2 variables, the result of both algorithm executions is shown in Figure 14. Where the

black ∗ represents the static obstacle, the red ∗ draws goal point, the pink ∗ represents the moving

obstacle, the pink dashed line shows moving obstacle trajectory, green lines represent DWA possible

trajectories, and blue lines represent the algorithm trajectory.

Table 2. Variables and Constant.

Name Description Constant Value

𝐾ℎ (rad/m) Proportional constant for steering 0.9

𝐾𝑣 (s
−1) Proportional constant for speed 0.9

𝐿𝑖𝑑𝑎𝑟max
𝑟𝑎𝑛𝑔𝑒

 (m) Lidar maximum range 10

𝛼 (m) Security distance 0.5

𝛽 Intensity of the avoid function 0.5

𝜇 Intensity of the speed function 0.5

𝛿, 𝜑, 𝛿′𝑎𝑛𝑑 𝜑′ Constants for Sigmoid functions
𝛿 = 𝛿′ = 1;
𝜑 = 𝜑′ = 0.5

L (m) Distance between axles 1.8

b (m) Axle distance 0.2

𝜎𝐷, αD, 𝛽𝐷 and 𝛾𝐷 DWA configurable constants
𝜎𝐷 = 0.1; αD = 0.2 ;

𝛽𝐷 = 0.1 ; 𝛾𝐷 = 3.0

(a) (b)

Figure 14. Both algorithm executions with the same conditions. (a) Dynamic window approach

(DWA) trajectory execution and (b) proposed obstacle avoidance (POA) trajectory execution.

For this particular example, the DWA algorithm had more problems to avoid the moving

obstacle than POA. DWA, with Table 3 optimization constant values, cannot fit an optimal trajectory

Figure 14. Both algorithm executions with the same conditions. (a) Dynamic window approach (DWA)
trajectory execution and (b) proposed obstacle avoidance (POA) trajectory execution.

For this particular example, the DWA algorithm had more problems to avoid the moving obstacle
than POA. DWA, with Table 3 optimization constant values, cannot fit an optimal trajectory to
avoid the moving obstacle. To have a better idea of how the algorithms act with the mobile object,
Figure 15 represents different time instants of the AGV trajectory. In the end, the algorithm does not

Electronics 2019, 8, 159 12 of 17

avoid the moving obstacle, until the obstacle is a particular distance away from the AGV. Hence,
it would be a problem if the vehicle did not have enough Dobs.

Electronics 2018, 7, x FOR PEER REVIEW 12 of 17

to avoid the moving obstacle. To have a better idea of how the algorithms act with the mobile object,

Figure 15 represents different time instants of the AGV trajectory. In the end, the algorithm does not

avoid the moving obstacle, until the obstacle is a particular distance away from the AGV. Hence, it

would be a problem if the vehicle did not have enough 𝐷𝑜𝑏𝑠.

(a)

(b)

(c)

(d)

Figure 15. DWA different instant captured figures from the trajectory. (a) First time, (b) second

time, (c) third time, and (d) fourth time.

Figure 16 shows the avoidance progress for POA. The POA algorithm tries to avoid the moving

obstacle until the sign of Equation (12) changes. When that sign changes, the AGV continues to the

goal without any problem.

Figure 15. DWA different instant captured figures from the trajectory. (a) First time, (b) second time,
(c) third time, and (d) fourth time.

Figure 16 shows the avoidance progress for POA. The POA algorithm tries to avoid the moving
obstacle until the sign of Equation (12) changes. When that sign changes, the AGV continues to the
goal without any problem.

Electronics 2019, 8, 159 13 of 17

Electronics 2018, 7, x FOR PEER REVIEW 12 of 17

to avoid the moving obstacle. To have a better idea of how the algorithms act with the mobile object,

Figure 15 represents different time instants of the AGV trajectory. In the end, the algorithm does not

avoid the moving obstacle, until the obstacle is a particular distance away from the AGV. Hence, it

would be a problem if the vehicle did not have enough 𝐷𝑜𝑏𝑠.

(a) (b)

(c) (d)

Figure 15. DWA different instant captured figures from the trajectory. (a) First time, (b) second

time, (c) third time, and (d) fourth time.

Figure 16 shows the avoidance progress for POA. The POA algorithm tries to avoid the moving

obstacle until the sign of Equation (12) changes. When that sign changes, the AGV continues to the

goal without any problem.

(a) (b)

Electronics 2018, 7, x FOR PEER REVIEW 13 of 17

(a) (b)

(c) (d)

Figure 16. POA different instant captured figures from the trajectory. (a) first time, (b) second time,

(c) third time, and (d) fourth time.

In order to stop simulating, new different starting points for the AGV are implemented. This

makes it possible to analyze and compare what happens with the vehicle on different cases. Apart

from this, DWA configurable constants are changed to reduce the speed window size. 𝛾𝐷 = 2.0 is

used, in order to reduce the effect that is shown in Figure 15, in which the AGV needed more 𝐷𝑜𝑏𝑠

to avoid the obstacle.

Table 3. Analytics Results.

Test

Start

Pose

(m)

Algorithm
Odometer

(m)

𝐦𝐢𝐧 𝐃𝐨𝐛𝐬

(m)
𝐓𝐨𝐭𝐚𝐥 𝐓𝐢𝐦𝐞

(𝐬)

Mean

Speed

(m/s)

Speed

arriving at

goal (m/s)

1 (0,0,0)
POA 43.85 0.80 47.55 0.96 0.36

DWA 36.42 2.00 35.45 0.92 0.81

2 (0,1,0)
POA 41.45 0.58 45.65 0.94 0.36

DWA 36.43 2.00 35.5 0.91 0.8

3 (0,2,0)
POA 25.29 0.34 22.95 0.93 0.36

DWA 36.34 2.00 35.4 0.91 0.8

4 (0,3,0)
POA 24.85 0.52 22.45 0.93 0.36

DWA 36.21 2.00 35.25 0.91 0.81

5 (0,4,0)
POA 24.50 0.67 22.15 0.93 0.36

DWA 36.08 1.94 35.1 0.91 0.81

6 (0,5,0)
POA 24.30 0.77 21.9 0.93 0.36

DWA 36.41 1.84 35.45 0.91 0.81

7 (0,6,0)
POA 24.18 0.79 21.8 0.92 0.36

DWA 36.88 1.78 35.9 0.91 0.82

8 (0,7,0)
POA 24.16 0.71 21.85 0.93 0.36

DWA 36.94 1.86 35.95 0.91 0.83

9 (0,8,0)
POA 24.29 0.50 22.05 0.93 0.36

DWA 24.21 0.54 39.65 0.51 0.82

10 (0,9,0)
POA 24.65 0.50 22.6 0.93 0.35

DWA 24.05 0.71 32.45 0.62 0.81

11 (0,10,0)
POA 24.91 0.96 24.5 0.93 0.33

DWA 28.67 1.2 27.6 0.89 0.81

Figure 16. POA different instant captured figures from the trajectory. (a) first time, (b) second time,
(c) third time, and (d) fourth time.

In order to stop simulating, new different starting points for the AGV are implemented.
This makes it possible to analyze and compare what happens with the vehicle on different cases.
Apart from this, DWA configurable constants are changed to reduce the speed window size. γD = 2.0
is used, in order to reduce the effect that is shown in Figure 15, in which the AGV needed more Dobs to
avoid the obstacle.

Table 3. Analytics Results.

Test Start Pose
(m) Algorithm Odometer

(m)
min Dobs

(m)
Toal Time

(s)
Mean Speed

(m/s)
Speed Arriving

at Goal (m/s)

1 (0,0,0)
POA 43.85 0.80 47.55 0.96 0.36
DWA 36.42 2.00 35.45 0.92 0.81

2 (0,1,0)
POA 41.45 0.58 45.65 0.94 0.36
DWA 36.43 2.00 35.5 0.91 0.8

3 (0,2,0)
POA 25.29 0.34 22.95 0.93 0.36
DWA 36.34 2.00 35.4 0.91 0.8

4 (0,3,0)
POA 24.85 0.52 22.45 0.93 0.36
DWA 36.21 2.00 35.25 0.91 0.81

5 (0,4,0)
POA 24.50 0.67 22.15 0.93 0.36
DWA 36.08 1.94 35.1 0.91 0.81

6 (0,5,0)
POA 24.30 0.77 21.9 0.93 0.36
DWA 36.41 1.84 35.45 0.91 0.81

Electronics 2019, 8, 159 14 of 17

Table 3. Cont.

Test Start Pose
(m) Algorithm Odometer

(m)
min Dobs

(m)
Toal Time

(s)
Mean Speed

(m/s)
Speed Arriving

at Goal (m/s)

7 (0,6,0)
POA 24.18 0.79 21.8 0.92 0.36
DWA 36.88 1.78 35.9 0.91 0.82

8 (0,7,0)
POA 24.16 0.71 21.85 0.93 0.36
DWA 36.94 1.86 35.95 0.91 0.83

9 (0,8,0)
POA 24.29 0.50 22.05 0.93 0.36
DWA 24.21 0.54 39.65 0.51 0.82

10 (0,9,0)
POA 24.65 0.50 22.6 0.93 0.35
DWA 24.05 0.71 32.45 0.62 0.81

11 (0,10,0)
POA 24.91 0.96 24.5 0.93 0.33
DWA 28.67 1.2 27.6 0.89 0.81

12 (0,11,0)
POA 23.74 0.5 21.4 0.93 0.35
DWA 28.60 1.14 27.55 0.9 0.8

13 (0,12,0)
POA 23.62 0.67 21.2 0.93 0.36
DWA 28.37 1.04 27.35 0.89 0.79

14 (0,13,0)
POA 23.74 0.57 21.30 0.93 0.36
DWA 28.17 0.90 27.1 0.89 0.8

15 (0,14,0)
POA 24.56 0.5 24.15 0.85 0.23
DWA 24.63 1.6 24.15 0.85 0.81

16 (0,15,0)
POA 25.35 0.5 24.20 0.8 0.16
DWA 25.17 1.82 24.6 0.86 0.81

17 (0,16,0)
POA 25.94 0.5 24.4 0.93 0.33
DWA 25.66 1.97 24.85 0.87 0.82

18 (0,17,0)
POA 26.54 0.5 25.55 0.93 0.36
DWA 26.18 1.9 25.05 0.88 0.82

19 (0,18,0)
POA 27.75 0.5 27.25 0.93 0.36
DWA 26.38 1.33 25.25 0.88 0.82

20 (0,19,0)
POA 27.68 0.75 26.7 0.93 0.36
DWA 25.51 0.69 25.3 0.85 0.82

In Table 3 different simulation results are shown, and it is necessary to consider that speed arriving
at goal is the speed value at 1 s before arriving to the goal. Additionally, a static object is implemented,
which is an x = 8 and y = 9 position, and a moving point, which starts in x = 0 and y = 20 position and
ends in x = 40 and y = −20 position with 0.92 m/s constant speed. In addition, the goal is located in
an x = 20 y = 20 position. All of these parameters also are used in the Figure 14 simulation.

Looking at Table 3, in general, DWA needs more space to avoid the obstacles with this configuration.
That is why the value of Dobs is larger than POA. Hence, the odometry in DWA is going to be higher,
because both parameters are proportional.

If total time is compared, however, the situation changes. POA uses more time to arrive at the
goal position. When AGV is approximating the goal, it will reduce the speed more dramatically,
as represented by the speed arriving at goal column. In the end, the difference between both
approximation speeds is around 0.46 m/s. Otherwise, POA has the best mean speed and the difference
between both mean speeds is about 0.07 m/s, which is negligible.

To give a general idea about algorithms failure, Figure 17, which represents the worst trajectory
of POA in comparison with DWA, and Figure 18, which analyzes the worst trajectory of DWA in
comparison with POA, are shown. To consider which is the worst trajectory, the largest odometry was
analyzed, due to AGV diverting more from the ideal path, which is a straight line from the starting
point to the goal.

Electronics 2019, 8, 159 15 of 17

Electronics 2018, 7, x FOR PEER REVIEW 14 of 17

12 (0,11,0)
POA 23.74 0.5 21.4 0.93 0.35

DWA 28.60 1.14 27.55 0.9 0.8

13 (0,12,0)
POA 23.62 0.67 21.2 0.93 0.36

DWA 28.37 1.04 27.35 0.89 0.79

14 (0,13,0)
POA 23.74 0.57 21.30 0.93 0.36

DWA 28.17 0.90 27.1 0.89 0.8

15 (0,14,0)
POA 24.56 0.5 24.15 0.85 0.23

DWA 24.63 1.6 24.15 0.85 0.81

16 (0,15,0)
POA 25.35 0.5 24.20 0.8 0.16

DWA 25.17 1.82 24.6 0.86 0.81

17 (0,16,0)
POA 25.94 0.5 24.4 0.93 0.33

DWA 25.66 1.97 24.85 0.87 0.82

18 (0,17,0)
POA 26.54 0.5 25.55 0.93 0.36

DWA 26.18 1.9 25.05 0.88 0.82

19 (0,18,0)
POA 27.75 0.5 27.25 0.93 0.36

DWA 26.38 1.33 25.25 0.88 0.82

20 (0,19,0)
POA 27.68 0.75 26.7 0.93 0.36

DWA 25.51 0.69 25.3 0.85 0.82

In Table 3 different simulation results are shown, and it is necessary to consider that speed

arriving at goal is the speed value at 1 s before arriving to the goal. Additionally, a static object is

implemented, which is an x = 8 and y = 9 position, and a moving point, which starts in x = 0 and y =

20 position and ends in x = 40 and y = −20 position with 0.92 m/s constant speed. In addition, the goal

is located in an x = 20 y = 20 position. All of these parameters also are used in the Figure 14 simulation.

Looking at Table 3, in general, DWA needs more space to avoid the obstacles with this

configuration. That is why the value of Dobs is larger than POA. Hence, the odometry in DWA is

going to be higher, because both parameters are proportional.

If total time is compared, however, the situation changes. POA uses more time to arrive at the

goal position. When AGV is approximating the goal, it will reduce the speed more dramatically, as

represented by the speed arriving at goal column. In the end, the difference between both

approximation speeds is around 0.46 m/s. Otherwise, POA has the best mean speed and the difference

between both mean speeds is about 0.07 m/s, which is negligible.

To give a general idea about algorithms failure, Figure 17, which represents the worst trajectory

of POA in comparison with DWA, and Figure 18, which analyzes the worst trajectory of DWA in

comparison with POA, are shown. To consider which is the worst trajectory, the largest odometry

was analyzed, due to AGV diverting more from the ideal path, which is a straight line from the

starting point to the goal.

(a)

(b)

Figure 17. POA worst case: (a) DWA trajectory for POA worst case, and (b) POA worst trajectory.

In Figure 17, POA had a greater difficulty deciding where to avoid the moving obstacle. AGV
tried to follow it until the obstacle was so far away that the vehicle stopped detecting it. A similar
occurrence is observed in Figure 18. Instead of POA failing to avoid the obstacle, this time DWA
failed. The dynamic window did not have enough space to pass the obstacle and it waited until having
enough distance to avoid it. In both cases, the algorithms have a bad reaction with the moving obstacle,
hence for future work it could be possible to analyze the space and detect moving obstacles. In case
that some moving obstacle appears, the AGV stops and wait until the obstacle disappears.

Electronics 2018, 7, x FOR PEER REVIEW 15 of 17

Figure 17. POA worst case: (a) DWA trajectory for POA worst case, and (b) POA worst trajectory.

In Figure 17, POA had a greater difficulty deciding where to avoid the moving obstacle. AGV

tried to follow it until the obstacle was so far away that the vehicle stopped detecting it. A similar

occurrence is observed in Figure 18. Instead of POA failing to avoid the obstacle, this time DWA

failed. The dynamic window did not have enough space to pass the obstacle and it waited until

having enough distance to avoid it. In both cases, the algorithms have a bad reaction with the moving

obstacle, hence for future work it could be possible to analyze the space and detect moving obstacles.

In case that some moving obstacle appears, the AGV stops and wait until the obstacle disappears.

(a)

(b)

Figure 18. DWA worst case: (a) DWA worst trajectory and (b) POA trajectory for DWA worst case.

Overall, both algorithms work in the same conditions, though depending on the algorithm

configuration the answer of the simulation can change. There are some cases in which the DWA

trajectories are worst, and other times the POA’s paths are not good enough. Generally, DWA

approximates the goal with a higher speed and, depending on the application, this speed must be

controlled to safely arrive. POA, however, gives less space between the AGV and object. In the end,

this could be a problem if the AGV moves around humans.

8. Conclusions

The solution proposed in this paper can highly improve a simple path following algorithm

behavior. It gives more intelligence to the AGV, a result of the obstacle avoidance parameters.

Moreover, it introduces more flexibility to the algorithm, because there are some variables which

change the performance. Additionally, POA uses a simple equation to implement on a PLC, which is

the only hardware available on the selected AGV. This hardware limitation is an important feature,

because not all equipment supports large calculation capabilities, such as DWA, which uses an

optimization function to select the best trajectory.

The optimization function gives the opportunity to analyze some trajectories and then select the

best one. However, POA just modifies the path following trajectory depending on the gap between

the AGV and obstacle. In other words, the algorithm does not optimize the trajectory.

In addition, POA has a good performance compared with traditional DWA algorithms. Both

have similar behavior in avoiding the static obstacle. Furthermore, both can select which side turns

the vehicle, in order to avoid the obstacle. DWA, however, tries to divert more from the obstacle,

hence the AGV needs more space to avoid the obstacle. To solve this divergent, the algorithm always

tries to go at maximum speed and it arrives faster than POA.

Apart from that, there is a considerable arriving speed value difference between both algorithms.

For this application, the AGV must be able to cooperate with humans. Hence it would be safer for the

Figure 18. DWA worst case: (a) DWA worst trajectory and (b) POA trajectory for DWA worst case.

Overall, both algorithms work in the same conditions, though depending on the algorithm
configuration the answer of the simulation can change. There are some cases in which the DWA
trajectories are worst, and other times the POA’s paths are not good enough. Generally, DWA
approximates the goal with a higher speed and, depending on the application, this speed must
be controlled to safely arrive. POA, however, gives less space between the AGV and object. In the end,
this could be a problem if the AGV moves around humans.

8. Conclusions

The solution proposed in this paper can highly improve a simple path following algorithm
behavior. It gives more intelligence to the AGV, a result of the obstacle avoidance parameters. Moreover,
it introduces more flexibility to the algorithm, because there are some variables which change the

Electronics 2019, 8, 159 16 of 17

performance. Additionally, POA uses a simple equation to implement on a PLC, which is the only
hardware available on the selected AGV. This hardware limitation is an important feature, because
not all equipment supports large calculation capabilities, such as DWA, which uses an optimization
function to select the best trajectory.

The optimization function gives the opportunity to analyze some trajectories and then select the
best one. However, POA just modifies the path following trajectory depending on the gap between the
AGV and obstacle. In other words, the algorithm does not optimize the trajectory.

In addition, POA has a good performance compared with traditional DWA algorithms. Both have
similar behavior in avoiding the static obstacle. Furthermore, both can select which side turns the
vehicle, in order to avoid the obstacle. DWA, however, tries to divert more from the obstacle, hence the
AGV needs more space to avoid the obstacle. To solve this divergent, the algorithm always tries to go
at maximum speed and it arrives faster than POA.

Apart from that, there is a considerable arriving speed value difference between both algorithms.
For this application, the AGV must be able to cooperate with humans. Hence it would be safer for
the AGV to arrive to the goal with less speed. Otherwise humans may interpret the fast approach
as harmful. There is another similar situation, in which the vehicle is avoiding the human and it
maintains a gap during the maneuver as an avoidance strategy.

It is remarkable that both algorithms can avoid a moving obstacle. Otherwise, they would need to
be improved to avoid these kinds of obstacles. In future work, they could be improved using dynamic
parameter values to change algorithm behavior depending on the situation. In some cases, it would be
better to reduce AGV speed and wait until the obstacle disappears, while in other ones it would be possible
to increase the speed to reduce commute time. In other situations, it could be possible to maintain a gap with
the obstacle, for example, when the AGV has to avoid a box which is in its way. Moreover, it is important
to control how much the AGV diverts from the obstacle, depending on the scenario this feature must be
controlled. In industrial areas, for example, there is not much space to avoid the obstacle.

Author Contributions: D.T.-F.-B., E.Z. and U.F.-G. developed and programmed the simulation set up. They also
wrote the manuscript. I.A. and I.U. made constructive contributions in the process of preparing the paper.

Acknowledgments: The funding from the Government of the Basque Country and the University of the Basque
Country UPV/EHU through the SAIOTEK (S-PE11UN112) and EHU12/26 research programs, respectively,
is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept.
Procedia Manuf. 2017, 13, 1206–1214. [CrossRef]

2. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0:
A Review. Engineering 2017, 3, 616–630. [CrossRef]

3. Djuric, A.M.; Urbanic, R.J.; Rickli, J.L. A Framework for Collaborative Robot (CoBot) Integration in Advanced
Manufacturing Systems. SAE Int. J. Mater. Manuf. 2016, 9, 457–464. [CrossRef]

4. Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical
human–robot interaction. Robot. Comput.-Integr. Manuf. 2016, 40, 1–13. [CrossRef]

5. Cardarelli, E.; Digani, V.; Sabattini, L.; Secchi, C.; Fantuzzi, C. Cooperative cloud robotics architecture for the
coordination of multi-AGV systems in industrial warehouses. Mechatronics 2017, 45, 1–13. [CrossRef]

6. Mustafa, M.; Stancu, A.; Delanoue, N.; Codres, E. Guaranteed SLAM—An interval approach. Robot. Auton. Syst.
2018, 100, 160–170. [CrossRef]

7. Nakajima, K.; Premachandra, C.; Kato, K. 3D environment mapping and self-position estimation by a small flying
robot mounted with a movable ultrasonic range sensor. J. Electr. Syst. Inf. Technol. 2017, 4, 289–298. [CrossRef]

8. Elsheikh, E.A.; El-Bardini, M.A.; Fkirin, M.A. Practical path planning and path following for a non-holonomic
mobile robot based on visual servoing. In Proceedings of the 2016 IEEE Information Technology, Networking,
Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016; pp. 401–406.

http://dx.doi.org/10.1016/j.promfg.2017.09.032
http://dx.doi.org/10.1016/J.ENG.2017.05.015
http://dx.doi.org/10.4271/2016-01-0337
http://dx.doi.org/10.1016/j.rcim.2015.12.007
http://dx.doi.org/10.1016/j.mechatronics.2017.04.005
http://dx.doi.org/10.1016/j.robot.2017.11.009
http://dx.doi.org/10.1016/j.jesit.2017.01.007

Electronics 2019, 8, 159 17 of 17

9. Bonin-Font, F.; Ortiz, A.; Oliver, G. Visual Navigation for Mobile Robots: A Survey. J. Intell. Robot. Syst. 2008,
53, 263–296. [CrossRef]

10. Ever, Y.K. Using simplified swarm optimization on path planning for intelligent mobile robot.
Procedia Comput. Sci. 2017, 120, 83–90. [CrossRef]

11. Hu, X.; Chen, L.; Tang, B.; Cao, D.; He, H. Dynamic path planning for autonomous driving on various roads
with avoidance of static and moving obstacles. Mech. Syst. Signal Process. 2018, 100, 482–500. [CrossRef]

12. Mei, Z.; Chen, Y.; Jiang, M.; Wu, H.; Cheng, L. Mobile Robots Path Planning Based on Dynamic Movement
Primitives Library. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28
July 2017. [CrossRef]

13. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag.
1997, 4, 23–33. [CrossRef]

14. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots.
IEEE Trans. Robot. Autom. 1991, 7, 278–288. [CrossRef]

15. Buniyamin, N.; Ngah, W.A.J.W.; Mohamad, Z. PointsBug versus TangentBug algorithm, a performance
comparison in unknown static environment. In Proceedings of the 2014 IEEE Sensors Applications
Symposium (SAS), Queenstown, New Zealand, 17 April 2014; pp. 278–282.

16. Adiyatov, O.; Varol, H.A. Rapidly-exploring random tree based memory efficient motion planning. In Proceedings
of the 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 4–7 August 2013;
pp. 354–359.

17. Aravindan, A.; Zaheer, S.; Gulrez, T. An integrated approach for path planning and control for autonomous
mobile robots. In Proceedings of the 2016 International Conference on Next Generation Intelligent Systems
(ICNGIS), Kottayam, India, 1–3 September 2016; pp. 1–6.

18. Wang, W.J.; Hsu, T.M.; Wu, T.S. The improved pure pursuit algorithm for autonomous driving advanced
system. In Proceedings of the 2017 IEEE 10th International Workshop on Computational Intelligence and
Applications (IWCIA), Hiroshima, Japan, 11–12 November 2017; pp. 33–38.

19. Corke, P. Robotics, Vision and Control: Fundamental Algorithms In MATLAB® Second, Completely Revised, Extended and
Updated Edition, 2nd ed.; Springer International Publishing AG: Gewerbestrasse, Switzerland, 2011.

20. Heller, C.; Yaesh, I. Proportional Navigation with integral action. In Proceedings of the Melecon 2010—2010
15th IEEE Mediterranean Electrotechnical Conference, Valletta, Malta, 26–28 April 2010; pp. 1546–1550.

21. Sebi, S.A.; Sunny, D. Obstacle Avoidance in Mobile Robotic Sensors and Establishing Connection.
Procedia Technol. 2016, 25, 364–371. [CrossRef]

22. Peng, Y.; Qu, D.; Zhong, Y.; Xie, S.; Luo, J.; Gu, J. The obstacle detection and obstacle avoidance algorithm
based on 2-D lidar. In Proceedings of the 2015 IEEE International Conference on Information and Automation,
Lijiang, China, 8–10 August 2015; pp. 1648–1653.

23. Catapang, A.N.; Ramos, M. Obstacle detection using a 2D LIDAR system for an Autonomous Vehicle.
In Proceedings of the 2016 6th IEEE International Conference on Control System, Computing and Engineering
(ICCSCE), Batu Ferringhi, Malaysia, 25–27 November 2016; pp. 441–445.

24. Lee, D.; Lu, Y.; Kang, T.; Choi, I.; Lim, M. 3D vision based local obstacle avoidance method for humanoid
robot. In Proceedings of the 2012 12th International Conference on Control, Automation and Systems,
JeJu Island, Korea, 17–21 October 2012; pp. 473–475.

25. Amin, N.; Borschbach, M. Quality of obstacle distance measurement using Ultrasonic sensor and precision
of two Computer Vision-based obstacle detection approaches. In Proceedings of the 2015 International
Conference on Smart Sensors and Systems (IC-SSS), Bangalore, India, 21–23 December 2015; pp. 1–6.

26. Martínez, M.; Martínez, J.; Morales, J. Motion Detection from Mobile Robots with Fuzzy Threshold Selection
in Consecutive 2D Laser Scans. Electronics 2015, 4, 82–93. [CrossRef]

27. Wooten, J.; Bevly, D.; Hung, J. Piezoelectric Polymer-Based Collision Detection Sensor for Robotic
Applications. Electronics 2015, 4, 204–220. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10846-008-9235-4
http://dx.doi.org/10.1016/j.procs.2017.11.213
http://dx.doi.org/10.1016/j.ymssp.2017.07.019
http://dx.doi.org/10.23919/ChiCC.2017.8028446
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1109/70.88137
http://dx.doi.org/10.1016/j.protcy.2016.08.119
http://dx.doi.org/10.3390/electronics4010082
http://dx.doi.org/10.3390/electronics4010204
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Implementation of Obstacle Avoidance
	AGV Kinematics Equations
	Implementation of Model
	Results
	Dynamic Window Approach Comparison
	Conclusions
	References

