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Abstract: Dental cone-beam computed tomography (CBCT) is a powerful tool in clinical treatment
planning, especially in a digital dentistry platform. Currently, the “as low as diagnostically acceptable”
(ALADA) principle and diagnostic ability are a trade-off in most of the 3D integrated applications,
especially in the low radio-opaque densified tissue structure. The CBCT benefits in comprehensive
diagnosis and its treatment prognosis for post-operation predictability are clinically known in
modern dentistry. In this paper, we propose a new algorithm called the selective anatomy analytic
iteration reconstruction (SA2IR) algorithm for the sparse-projection set. The algorithm was simulated
on a phantom structure analogous to a patient’s head for geometric similarity. The proposed
algorithm is projection-based. Interpolated set enrichment and trio-subset enhancement were used
to reduce the generative noise and maintain the scan’s clinical diagnostic ability. The results show
that proposed method was highly applicable in medico-dental imaging diagnostics fusion for the
computer-aided treatment planning, because it had significant generative noise reduction and
lowered computational cost when compared to the other common contemporary algorithms for
sparse projection, which generate a low-dosed CBCT reconstruction.

Keywords: cone-beam computerized tomography (CBCT); as low as diagnostically acceptable
(ALADA); selective anatomy analytic iteration reconstruction (SA2IR); low-dosed; sparse projections;
diagnostic ability

1. Introduction

Digital dentistry offers a comprehensive workflow in oral healthcare treatment and monitoring
for most of the daily clinical practical protocols [1,2]. Oral and dentition anatomy are key to the image
diagnostic efficiency, which would reduce complications in planning. This makes the operations more
accurate, predictable, and safer. This also benefits the clinical expectation, which would help improve
patient comfort. DICOM-based (Digital Imaging and Communications in Medicine) virtual planning
is the golden standard in dental implantology, orthodontics, maxillofacial surgery, and comprehensive
cosmetic dentistry. This method is used for systematic and specific computer-aided functionality.
Cone-beam computed tomography was first introduction in the 1990s for dental implantology.
Cone-beam computed tomography (CBCT) has been integrated into the current workflow of digital
dentistry and has been improved upon by computer-aided design and manufacturing (CAD/CAM)
solutions. These advancements have improved the clinical predictability and success rate; this is
evidence-based and has been studied in dental literature. It is currently recommended in the dental
professional community to use CBCT as a standard protocol [3–6]. Dental 3D imaging equipment
allows clinicians to view enhanced visual information to aid in the correct diagnosis of the patient.
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Newer imaging equipment has improved upon previous clinical results by producing reliable and
consistent treatment planning. Soft tissue surface morphology has been digitally reproduced through
3D scanned modeling via CBCT or oral 3D scanners, which includes intra-oral and desktop scanners.
Therefore, three-dimensional multi-modality fusion diagnosis is recommended to be applied for digital
treatment planning standardization in modern dentistry [5–7].

According to the latest radioactive safety directives, dental CBCT reconstruction algorithms
are being developed for dental hard and soft tissues attenuation density, and must be designed to
avoid excessive radiation exposure. Those are issued as limitations to the number of projections
and the exposure dosage, per a single revolution, or a couple revolutions. Recently, the standard for
dosage optimization has changed from “As Low As Reasonably Achievable” (ALARA) to “As Low As
Diagnostically Acceptable” (ALADA). This has caused a need for refined algorithms that lie within the
range of ALADA for the new acceptable dosage optimizations. At the 2014 NCRP (National Council on
Radiation Protection of United States) Annual Meeting, the term “ALADA” was first proposed by Dr.
Jerrold T. Bushberg as a variation of the acronym ALARA to emphasize the importance of optimization
in medical imaging [8]. ALADA began initially in pediatric imaging and then expanded into dental
imaging, in regard to the Image Gently® Campaign (for the pediatric population) [9] and Image Wisely®

Campaign (for the adult patients) to promote the clinician’s responsibility in both medico-dental
imaging indications and practices [8,10,11]. The “trade-off” constraints are between diagnostically
valuable and radioactive safe practices. Currently, these are coined as dose reduction and essential
informativeness enhancement. This makes it possible for three main approaches in 3D reconstruction
that have high computational efficiency. The first approach is based on the approximation and its
regularization. This is called the “regularized approach”. The second approach is based on statistical
modeling, in regard to the objects’ anatomy and the radiation exposure physics; this is called the
“statistical approach”. The last one is based on the efficiency of parallel computation for sparse
representation in the inverse problems, which is integrated with the graphical processing unit (GPU),
which is called the “GPU-based approach”. Over the past decade, difficulties in dental low-dosed
CBCT and sparse-projection 3D reconstruction have been studied extensively. The first issue, inefficient
input quality, is caused by generative blurring and defects, which are termed “generative noises”.
The second issue is ill-posed computation due to the sparsity of input projections. The aforementioned
issues are being worked on intensively. These issues are addressed by approximate solutions and
are iteratively solved by using compressed sensing theory for the under-defined sampling, or one
can use the sparse representation theory for general sparsity computation. This is most efficiently
implemented with GPU-based paralleling computation, during image post-processing [12]. As result,
the fusion solutions of both estimation and filtering have been used globally, locally, and adaptively.
These solutions are trended in technically prior-interpolated dictionary learning, and supervised and
unsupervised machine learning. Afterwards, it will be clinically verified by professionals or expertized
end-users in the field.

On the engineering side, it is not intuitive to understand clinical diagnostic uncertainties. This is due
to the lack of anatomical and pathologic knowledge, and also in part due to a lack of clinical experience
or understanding [13,14]. Similarly, the same situation is concerned in dental image diagnostics,
which has been subjectively evaluated by clinicians as the augmented tool for their individual visuality
experience, in which any uncertainties may cause clinical failures or non-manageable complications,
in the studies of Jacobs et al. (2018) [14] and Katsumata et al. (2007) [15]. The importance of application
understanding and experience for both sides is de facto essential to improve the clinical user’s
professionality and in vivo practical confidence. Additionally, with the recent advances in visualization
augmentation, multi-formatted data structural registering, computer-aided design, and manufacturing
integration, digitalization has been applied in modern dentistry. In fact, digitalization has been
proposed to be applied in most branches of dentistry such as implantology [2,16], maxillofacial surgery
(orthognathic or dentofacial cosmetic surgeries) [17], oral surgery, orthodontics, endodontics [18,19],
periodontics [20], and the viral digital smile design in some comprehensive applications [21]. However,
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comprehensive dental implantology and maxillofacial surgery have been pioneered and successfully
developed. It is recommended that modern digital diagnostic dentistry is used for dental implantology
and maxillofacial surgery [22].

In this work, the proposed algorithm focuses on projection-based processing prior to reconstruction.
The algorithm is made up of two parts: (a) projection-based pre-processing and (b) three-dimensional
reconstruction. Due to the sparsity and low-dosed effects, the initial input projections set is interpolated
to make a “pseudo up-sampling”; then, the interpolated pseudo-set is used as a dictionary to reweight
for the new set bilaterally, which is based on both prior and posterior projections. According to the
quadrant-based specifications, the anatomic containment in each projection is statistically metric
and verified in the orthogonal and complimentary paired sets per each quadrant. After enhancing,
a new pseudo-set is updated. This new set of projections is used to reconstruct iteratively the final
three-dimensional model, which is processed by the GPU for computational effectiveness. Therefore,
this algorithm is a combination of the regularization and statistical approaches and is implemented
by GPU-based computation. The proposed algorithm is named “selective anatomy analytic iteration
reconstruction” (SA2IR). This study proposes an alternative reconstruction algorithm for CBCT using
dental imaging diagnostics, which is used to prevent the clinical radiological imaging overexposure
and thus improve the radiation safety and assure the clinical diagnostic quality for the digital planned
treatments in dentistry. For the detailed factors, the algorithm will be clarified and demonstrated
further in the Methodology, Results, Discussion, and Conclusion.

2. Methodology

2.1. Equipment Configuration of the Duplicated Simulation

In order to lower the dosage radiation in image diagnostics, we propose a new approach using the
sparse set of the CBCT’s projections; this corresponds to the specific anatomical similarity analysis of
the orthogonal and complimentary paired sets. This is different from other inverse problems in CBCT
3D reconstruction. The key to our approach is focused on sparse projection reconstruction, using new
re-generatively interpolated projections to create a pseudo-set. This is based on their orthogonal
and complimentary constraints by making successive prior-et-posterior weight approximations.
The assumptions of our approach are as follows:

(1) Use a flat-panel imaging detector (FPID) to determine the CBCT modality.
(2) Set the number of the received projections to sparse.
(3) Scan the region of interest in dental anatomy structures for various diagnoses such as

head-and-neck, oral, and dentition anatomy.

To simulate a real CBCT system, the parameters of CBCT DCT100-0X0 (Taiwan Care Tech
Corporation (TCT), Taiwan, Integrated Biomedical System laboratory, STUST) is duplicated for the
experimental studies, as shown in Table 1.

Table 1. DCT100-0X0 cone-beam computed tomography (CBCT) technical configuration. FPID:
flat-panel imaging detector.

Technical Parameters
Information -

Notation Unit Value

Source-to-Detector Distance SDD cm 72 Term of “Patient”
position means

“Rotation Axis” position
Source-to-Patient Distance SPD cm 50

Patient-to-Detector Distance PDD cm 22

X-ray beam exposure size WE × HE cm × cm 12.8 × 12.8 Width × Height

Cone-beam opening of FPID βx
βz

(o) 9.15◦

9.15◦
Respected to xx and

yy axis
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Table 1. Cont.

Technical Parameters
Information -

Notation Unit Value

Detector’s size (Width × Length) W × L cm × cm 13 × 13 Amorphous Silicon
Receptor

Voxel size Vx mm 0.125 and 0.200 -

Rotation degree A (o) 180◦ or 360◦ Projection arch per scan

Field-of-View
(Diameter × Height)

FOV
(D × H) cm × cm 9 × 9 and 15 × 9 -

Projection rotation angular step αpst (o/step) 0.6 -

Number of projections Np projections 300 or 600 np = α/pp

2.2. Selective Anatomy Analytic Iteration Reconstruction (SA2IR)

In the overview, the regularization in CBCT reconstructed algorithms is used primarily in two
ways: as analytic and synthetic formulations. Generically, the regularization is to minimize the cost
function, with respect to the successive forward or backward projections per each projection, which are
defined in Equation (1) as

p̂ = argminp
{
Υ(p) , J(p) + λ ∗ψ(S ∗ p)

}
(1)

wherein J(·) represents data fidelity, ψ(·) is a functional regularization operator, S represents the sparse
transforming coefficient set, and λ is a regularization parameter to optimize the computing. Due to the
sparse view conditions for the low-dosed reconstruction, the regularized algorithms have trade-offs
between image quality, computational complexity, and diagnostic ability, as mentioned in the literature
reviews and studies [23–28]. However, excessively generating noise and significantly reducing the
diagnostic values of the reconstructed images, sparsity, and low-dose exposure per projection are
highly desirable in the recent studies. One such study is the sinogram-based dictionary learning
patched-based algorithms in reconstructed images denoising and enhancement, by Karimi and Ward
(2016) [23]. Another study by Zhu et al. (2013) applied compressed sensing (CS) algorithms when
violating the sampling theory in the discrete wavelet or discrete gradient transforms by using the
total-variation-based (TV-) CS algorithm to suppress the streaking artifacts significantly without any
image quality compromises [24]. Zhang et al. (2016) used the sinogram-based inpainting technique in
metal artifact reducing (MAR) [25]. In a different study Zhang et al. (2015) [26] used the combination of
compressed sensing and dictionary learning to regularize parameter determination via sparse constraint
of the TV minimization to reduce the computational cost. Du et al. (2019) [27] also used compressed
sensing image recovery through dictionary learning and thresholding shape-adaptiveness of the discrete
cosine transform (DCT). The sinogram-based and regularization solutions have been proved practically
efficient in sparse representative for low-dose CT reconstruction. Kim et al. (2018) [28] proposed the
iteration algorithm for the compressed-sensing reconstruction method to reduce the computational cost
regularized voxelization. Therefore, the proposed algorithm is implemented to generate a pseudo-set
from the input projections and the “prior-et-posterior” bounded coefficients are reweighed in order
to reconstruct the three-dimensional volume. The input projections set is implemented from a set
of preset angular-position-wise events in order to capture the projection. By means of the sparse
view conditions and in order to have a safer low-dose mode to approach the ALADA requirements,
the continuity of the input sequence is not efficient enough to reconstruct the diagnostic-able images.
To address this issue, we propose to enrich the optimum quantity of the projections set and enhance
the projection set quality before reconstructing the final three-dimensional model.

Firstly, the interpolation enrichment is implemented by Algorithm 1. The initial projection

set
{
pinit

i

}∣∣∣∣
ninit

projection

is sparse viewed, so the proposal of input set enrichment is implemented by the
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interpolation as a denser pseudo-set of projections with the projection number ninterp
projection = ninit

projection ∗

(kint + 1) − kint to adapt the completeness of the basic computed tomography (CT) reconstruction
fundamentals. Secondly, to enhance the projections set quality, our algorithm does not use the
prior regularization as the others, but a loop of an “estimating–filtering–verifying” process for the
regenerative interpolation (pseudo-) set of input projections is proposed to be applied with the same
projection number nregen

projection = ninterp
projection. This is based on the pseudo-complete interpolated projection

set before applying the final reconstruction. It is an enhancement process. The generative interpolation
set of the initial projections set is implemented by updating the successive trio projection subset per each
new projection. This is similar to a sliding window modulation. That regeneration is individualized
per each normalized view of the full revolution, as shown in Figure 1. The prior projection, as pinterp

i−1 ,

is used to estimate an in-flow overlapping of the successive one, as p̂new
i = Kin− f low

i ∗ pinterp
i−1 , in which

the Kin− f low
i maximization is focused, which is termed the “Bhattacharyya distance” (DB), as shown in

Equation (2). Based on the total similarity, proportional to Kin− f low
i , the updated projection for a new

(pseudo-) set is estimated and pre-enhanced by the first two projections of a trio subset, respectively
with the interpolated prior projection and the interpolated central projections, which is implemented
via the discretized probability distribution.

DB
(
pinterp

i , pinterp
i−1

)
= − ln

(
BC

(
pinterp

i , pinterp
i−1

))
(2)

wherein BC
(
pinterp

i , pinterp
i−1

)
=

∑interp
pi−1,pi ε{P}

√
pinterp

i ∗ pinterp
i−1 , 0 ≤ BC

(
pinterp

i , pinterp
i−1

)
≤ 1 is called a “total

similarity coefficient” (TSC), which is defined by “Bhattacharyya coefficient” (BC) of the pair of
interpolated projections, of pinterp

i and pinterp
i−1 , while Kin− f low

i is called the “estimated operator”, which is
defined as shown in Equation (3).

Kin− f low
i = 1−DB

(
pinterp

i , pinterp
i−1

)
(3)

The central projection, as a kernel of (pinterp
i ), is used to filter the result of p̂new

i , while the

posterior projection, as pinterp
i+1 , is used to verify the p̂new

i , the updated regenerative projection,

as pregen
i = p̂new

i = Kout− f low
i ∗ pinterp

i+1 , in which the minimization of Kout− f low
i is focused and termed

as Kullback–Leibler’s divergence conditioning, as its distance (DKL) is shown in Equation (4). Then,
the verification is implemented by the informative discrimination between the p̂new

i and the posterior

one, pinterp
i+1 , to update the regenerative projections as pregen

i = p̂new
i , if the informative discrimination is

not exceeded ξ (computational parameter). Otherwise, pregen
i =

(
p̂new

i

)∗
. The

(
p̂new

i

)∗
= (1− ξ) ∗ pinterp

i+1

is the proper state of p̂new
i , which is modified by the L2-norm of the relevant pinterp

i , p̂new
i to pinterp

i+1 , as
shown in Equation (5).

DKL
(
p̂new

i ‖ pinterp
i+1

)
= −

interp−regen∑
pi ,pi+1 ε{P}

(pinterp
i+1 log

 p̂new
i

pinterp
i+1

) (4)

wherein 0 ≤ DKL
(
p̂new

i ‖ pinterp
i+1

)
≤ DKL

(
pinterp

i ‖ pinterp
i+1

)
≤ 1, and Kout− f low

i is called “verification operator”.
Let ∆i

KL(·) be the “absolute informative discrimination” of the verification at the ith projection,
which is shown in Equation (5), as:

0 ≤ ∆i
KL

(
projectioni

∣∣∣∣pinterp
i+1

)
,‖ DKL

(
p̂new

i ‖ pinterp
i+1

)
−DKL

(
pinterp

i ‖ pinterp
i+1

)
‖2 . (5)
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Let 0 ≤ σi
r.i.d.

(
p̂new

i , pinterp
i

)
=

DKL

(
pinterp

i ‖pinterp
i+1

)
DKL

(
p̂new

i ‖pinterp
i+1

) , where σi
r.i.d. is called the “relative informative

discrimination” between the estimated and the origin of the ith interpolated projection p(·)i . Substituting
in Equation (6), we have:

0 ≤ ∆i
KL

(
projectioni ‖ pinterp

i+1

)
,‖ DKL

(
p̂new

i ‖ pinterp
i+1

)(
1− σi

r.i.d.

(
p̂new

i , pinterp
i

))
‖2 . (6)

So, the updated projection is assigned to the regenerated projections set by “verification operator”,
which is defined as shown in Equation (7):

0 ≤ Kout− f low
i =

 1, i f σi
r.i.d.

(
p̂new

i , pinterp
i

)
→ 1

∆i
KL(projectioni

∣∣∣∣pinterp
i+1

) (7)Electronics 2019, 8, 1381 6 of 19 
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Algorithm 1: “Densification enrichment process” or Pseudo-Set Interpolation

Input: Initial projection set captured by FPID, as follows:
{
pinit

i

}∣∣∣∣
ninit

projection

=

{
pinit

0 , pinit
1 , . . . , pinit

ninit
projection

}
Output: Interpolated pseudo-set for the reconstruction completeness availability, as

follows:
{
pinterp

i

}∣∣∣∣
ninterp

projection

=

pinterp
0 , pinterp

1 , . . . , pinterp

ninterp
projection


Begin Initialize necessary parameters. For k = 1 to k = maximum number of iterations:
1: pinterp

0 = pinit
0 ← pinit

0 , ninit
projection, kint and: ninterp

projection = ninit
projection ∗ (kint + 1) − kint. Find the common

projection angle coincidences of two sets:
{
pinit

i

}∣∣∣∣
ninit

projection

and
{
pinterp

j

}∣∣∣∣∣
ninterp

projection

2: Assign a kernel to remove the non-attenuated outer-cored region of interest (ROI). Implement the iteration
loop by ninterp

projection times. Then, assign the targeted pseudo-set with a denser viewed set, implanted with kint

more interpolated projections in each interval of
{
pinit

i

}∣∣∣∣
ninit

projection

, between pinit
i and pinit

i+1.

3: Correct iteratively the implanted interpolated projections’ sinograms quality by structural similarity and
mean squared errors with the given number of iterations. Assign the corrected ones as the final interpolated

pseudo-set
{
pinterp

i

}∣∣∣∣
ninterp

projection

.

End

Our proposed enhancement process of the pseudo-set is shown in Algorithm 2.

Algorithm 2: “Quality enhancement process” or Pseudo-Set Trio Subset Enhancement Operator

Input: Interpolated pseudo-set, as followed:
{
pinterp

i

}∣∣∣∣
ninterp

projection

=

pinterp
0 , pinterp

1 , . . . , pinterp

ninterp
projection


Output: Regenerative pseudo-set for reconstruction, as follows:{
pregen

i

}∣∣∣∣
nregen

projection

=

{
pregen

0 , pregen
1 , . . . , pregen

nregen
projection

}
Begin
1: pregen

0 = pinterp
0 ← pinterp

0 , ninterp
projection and: nregen

projection = ninterp
projection

2: Apply the trio subset’s “estimating–filtering–verifying” processing loop per each projection in the
interpolated pseudo-set iteratively.

1. Estimate the p̂new
i by the prior projection pinterp

i−1 and calculate the estimation operator
{
Kin− f low

i

}
,

using Equation (3).

2. Apply the convolutional filter the p̂new
i by the center projection pinterp

i and calculate the filtering operator

K f ilt
i . Update the

{
p̂new

i

}
with the filtered p̂new

i .

3. Verify the p̂new
i by the posterior projection pinterp

i+1 by “verification operator”
{
Kout− f low

i

}
,

using Equation (7).

3: Assign the corrected ones as the regenerative pseudo-set
{
pregen

i

}∣∣∣∣
nregen

projection

.

End

Finally, the output three-dimensional reconstruction is computed by our proposed variation
of simultaneous iterative reconstruction technique (SIRT), which is called SA2IT (selective anatomy
analytic iteration technique). The SIRT-based solution is chosen due to its advantage on the
higher precision imaging quality reconstruction from the less accurate set of the appropriate
noise-patterned projections, which is firstly introduced for medical computed tomography applications.
However, its disadvantages are also mentioned in numerous studies, including (1) the expensive
computational cost of the iteration, (2) the normalized blurring effect at the transition boundary of the
less-intensity-discriminated levels, and (3) globalized intensity scale shifting, bandwidth truncating,
and warping intensity distribution. Additionally, the effects of the background intensity levels affect
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the global contrast of an image, and the human-stimulated vision (as Weber’s Law) will be ignored
in this study. The proposed SA2IT is conceptualized as a SIRT variation with constraints regarding
the post-reconstruction average volumetric stabilization coefficients, which is recalled from any view
of the prime input projections. This is constructed by the complimentary paired and the orthogonal
paired projections. The proposed workflow is shown in Algorithm 3. As an iterative reconstruction
technique, the generalization of Equation (8) for SA2IT is applied in this algorithm.

Fk+1 = Fk
− γ ∗C ∗AT

∗R ∗
(
A ∗ Fk

− P
)

(8)

wherein: 
AM x N = ai, j

∣∣∣
i=[1,M], j=[1,N]

Ci,i =
1∑M

j=1 ai, j
, and R = 1∑N

j=1 ai, j
, where C and R anddiagonal

Bi, j =
Ai, j

√
Ai+∗A j+

, converge when : BT
∗ B < 2, and (Vcalib

0 −VGD
SIRT) < ε

where k is the iteration number, γ is a noise reduction relaxation parameter, C =
{
Ci,i

}
and R =

{
Ri,i

}
are

weighted coefficients for the back-projection and correction computation of the projection, successively,
and

(
A ∗ Fk

− P
)

is the correction computation based on the forward projection. The B =
{
Bi,i

}
is the

convergence condition recommended by Byrne et al. [29]. Additionally, the orthogonality featured
convergence condition, (Vcalib

0 −VGD
SIRT) < ε, is proposed by our SA2IT, in which Vcalib

0 and VGD
SIRT are

known as the orthogonality-featured bounded volume and the gradient descent SIRT (GD-SIRT)
reconstructed volume. The corresponded correction computation is indicated in the term of the denser

pseudo-set (
{
pregen

i

}∣∣∣∣
nregen

projection

), which is enriched, and enhanced by trio-subset principle as above.

Algorithm 3: SA2IT algorithm

Input: Regenerative pseudo-set, as follows:
{
pregen

i

}∣∣∣∣
nregen

projection

=

{
pregen

0 , pregen
1 , . . . , pregen

nregen
projection

}
Output: The SA2IT results
Begin Initialize necessary parameters. For k = 1 to k = maximum number of iterations:
1: Apply the conventional SIRT algorithm to compute forward projection

(
A ∗ Fk

)
, correction computation

(A ∗ Fk
− P), back-projection, and the reconstructed volume (Vrec

SIRT = V
{
F(k+1)

}
), by Equations (8) and (9).

2: Apply the gradient descent to the reconstructed Vrec
SIRT → VGD

SIRT.
3: Assign the corrected ones, adapted (Vcalib

0 −VGD
SIRT) < ε.

End

3. Experimental Setup

3.1. Phantom Reconstruction Experiments

As mentioned in dental literature and professional protocols, dental cone-beam computed
tomography is used to give more clinical evidence for treatment planning and monitoring, which is
anatomically relevant to hard tissues and various sinuses and air cavities of the maxillofacial region
as well as dental structures. In ALADA’s radiation safety standard, the exposure dose is accurately
managed to maintain the quality of diagnostic ability while strictly conforming to the patient’s radiation
safety. Therefore, the experiments are designed as a sparse–viewed exposure of X-ray to lower the
dosage per projection. This is different from the other algorithms; the proposed SA2IR enriches the
input projection set with various sparsity, which is formulated with the densifying factorization or
pseudo-up-sampling, to implant the possible slice into the sinogram of the original input. The specific
number of input projections is set to minimum due to the trio-subset featured enhancement (a subset of
three projections’ enhancement) and the orthogonality (periodic quadrant orthogonality per revolution)
of the algorithm. When then SA2IR algorithm is applied, the pseudo-set is quantitatively enriched
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and qualitatively enhanced. Its reconstruction is based on SA2IT and was introduced in Part 4.
In this work, the modified Shepp–Logan phantom, a variant of the numerical phantom for computed
tomography simulation suggested by Shepp and Logan (1974) [30], was used to simulate the studied
experiment results. For the clinical simulation, the realistic digital three-dimensional head phantom
for C-Arm computed tomography supported by Aichert et al. (2013) [31] was used to simulate the
clinical applicability of the algorithm in dental diagnostic imaging.

3.2. Comparison with the Other Reconstruction Algorithms

The reconstructed result of the proposed SA2IR algorithm is compared to the results of
other algorithms, such as the Feldkamp–Davis–Kress (FDK) Algorithm [32], simultaneous iterative
reconstruction technique (SIRT) [33], simultaneous algebraic reconstruction technique algorithm
(SART) [34], order-subset SART (OS-SART) [35], total variation SART (TV-SART), adaptive steepest
descent projection onto convex sets (ASD-POCS) [36], order-subset ASD-POCS (OS-ASD-POCS) [36],
and conjugated gradient least square algorithm (CGLS) [37], and fast iterative shrinkage-thresholding
algorithm (FISTA). Furthermore, the application of the trio-subset enhancement process to the sparse
input of those is also implemented and studied.

4. Results and Discussions

4.1. Results of the SA2IR Algorithm’s Reconstruction Simulation

The simulated results of the proposed SA2IR are demonstrated into three parts: (a) the pseudo-set
enrichment process, (b) the trio-subset enhancement process, and (c) the SA2IT reconstruction,
respectively. The results are conducted on the modified Shepp–Logan phantom and the realistic
patient’s head data. The simulations are implemented in the MATLAB environment (MATLAB 2017b,
The MathWorks Inc., Natick, Massachusetts, USA) and tomographic iterative GPU-based reconstruction
framework [38]. The simulations are based on the configuration of DCT100-0x0 CBCT (shown in Table 1)
and implemented with the compilation support of the Nvidia CUDA toolkit 10.1, accelerated by Nvidia
GTX 1650 GPU. Corresponding to the experimental setup, the specific number of input projections is
simulated at the minimum of 12 projections (conducted by the ksparse = 6), which was demonstrated
with the odd and even quadrant-bases number. The simulation results are conducted with ksampling
values of 3, 8, and 14, which successively corresponded to the number of interpolated projections
of 36, 96, and 168. The relevant sinograms of the enrichment process for the cases, including those
sparse projections, denser projections, and enriched projections sets, are shown in Figure 2. Obviously,
the lesser number of projection input is, the lower the reconstruction quality. Therefore, our proposed
algorithm inserts the common between a sparse input to the denser expectation, with the given ksampling
values of 3, 8, and 14, respectively as the number of projections in the enriched pseudo-sets. That made
no changes in the histograms. However, it made a bounding enhancement. The generative noise
is patterned as two parts, as external and internal patterned effects. The external patterned effect is
shown as the bright streaked bounded frames and the aliased interfere, which is proportional to the
times of overlapping, in terms of the common interaction of those, while the internal patterned effect is
shown as a cumulative “edge-blurring”. It causes an effect, which is similar to contrast diffusion from
the internal patterned out to the external patterned part, in the meaning of gradient, while preserving
the histogram. That is partly also discussed by Perona and Malik regarding the Perona–Malik diffusion,
which is known as a nonlinear anisotropic diffusion and is equivalent to Gaussian blurring in the
case of constant diffusion coefficient, as a conventional heat equation [39]. In the case of SA2IR
enrichment, the noise pattern is disturbed by the spacing of the interpolation. The densification
of those depends on the overlapping of the common projections of the initial and the pseudo-set,
which would be normally distributed (ninterp = 96 and 144) or partly compressed (ninterp = 168). Due to
the symmetricity of the phantom, the orthogonality repetition base on equilateral segments is studied,
which shows the behavior of the pseudo-set’s cumulative noise pattern. That orthogonality of the



Electronics 2019, 8, 1381 10 of 20

post-enrichment processing interpolated pseudo-set is also shown via eight equilateral segments of
one scanning revolution (45 degrees per each segment), which are named successively as Ω1, Ω2,
. . . , Ω7 and Ω8. The pattern and deterioration of the orthogonality per each segment are detected.
The noise distribution changes per one scanning revolution; especially at the transition points at
0 degrees and 360 degrees, the flattened effect is observed. Otherwise, the shifting effects and blurring
are differentiated per orthogonality pattern and the deterioration of each segment.

The parameters of trio-subset enhancement processing, such as the estimation operator
(
{
Kin− f low

i

}
), filtering operator (

{
K f ilter

i

}
), verification operator (

{
Kout− f low

i

}
), and their representation,

are called ‘total trio-subset enhancement operator’ (
{
Ktotal

i

}
), which is shown quantitively in

Table 2. The contribution of the operators on the total enhancement operator (
{
Ktotal

i

}
) is calculated,

which corresponded to the overlapped indices of each projection with its prior and posterior projections.
The results show the efficiency of the bilateral approximation to construct a new pseudo-set of the
same interpolated projections. The results and the relationship between the estimation and verification
processes of three cases A, B, and C, with the specific common views or projections in each segment Ωi

are shown in Table 2, between Di
B, Kin− f low

i , ∆i
KL, and Kout− f low

i . Those specific common views are
categorized as the first, middle, and last projections groups; these describe the behavior of each process
per each segment Ωi and per different cases, which are set with 96, 144, and 168 projections to generate
a new pseudo-set prior to the reconstruction.
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Figure 2. The reconstruction and sinograms illustration of the enrichment process of a sparse 12
projections (original, the first row), at the denser interpolated set of 36 (upper-left) (the second row),
96 (upper-right), and 168 projections (the third row).

Additionally, the results also show that the overlapping coefficient, koverlapping, is meaningful
in relation to the values regarding the number of projections and the operators in the trio sub-set
enhancement. This coefficient is defined in Equation (9).
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koverlapping = DSO ∗
(

Wdetector
2∗DSO − tan

(
arctan

(Wdetector
2∗DSO

)
−

2∗π
2∗ninterp

))
∗

∗

(
1 + cos

(
2 ∗ arctan

(Wdetector
2∗DSO

)
−

2∗π
ninterp

)) (9)

wherein DSO is the distance between the detector and subject, Wdetector is the width of the detector,
and ninterp is the number of interpolated projections of the pseudo-set.

Table 2. The trio-subset enhancement operators of the simulated results.

Simulated Results Based on the Modified Shepp–Logan Phantom

Processes Estimation Process Verification Process koverlap

Studied Segments Di
B Kin−flow

i
∆i

KL Kout−flow
i

-

Ω1

A
1,6,12

0.1634 0.8366 2.4442 2.4442 ± 2.0901 × 10−14

0.32150.0050 0.9950 2.4575 2.4575 ± 1.3341 × 10−14

0.0063 0.9937 2.4577 2.4577 ± 1.4675 × 10−14

B
1,9,18

0.1283 0.8717 2.4576 2.4576 ± 2.2235 × 10−14

0.21390.0052 0.9948 2.4575 2.4575 ± 4.4470 × 10−16

0.0046 0.9954 2.4575 2.4575 ± 2.1790 × 10−14

C
1,11,21

0.1008 0.8992 2.4575 2.4576 ± 1.2451 × 10−14

0.18330.0028 0.9972 2.4575 2.4575 ± 8.4492 × 10−15

0.0023 0.9977 2.4574 2.4575 ± 6.6704 × 10−15

Ω2

A
12,18,24

0.0063 0.9937 2.4577 2.4577 ± 1.4675 × 10−14

0.32150.0041 0.9959 2.4577 2.4577 ± 2.3569 × 10−14

0.0019 0.9981 2.4577 2.4577 ± 2.0011 × 10−14

B
18,27,36

0.0046 0.9954 2.4575 2.4575 ± 2.1790 × 10−14

0.21390.9324 0.9991 2.4575 2.4575 ± 7.5598 × 10−15

0.1033 0.9999 2.4575 2.4575 ± 8.4492 × 10−15

C
21,32,42

0.0023 0.9977 2.4575 2.4575 ± 6.6704 × 10−15

0.18330.0041 0.9959 2.4575 2.4575 ± 1.4230 × 10−14

0.3650 1.0000 2.4575 2.4575 ± 1.5120 × 10−14

Ω3

A
24,30,36

0.0019 0.9981 2.4577 2.4577 ± 2.0011 × 10−14

0.32150.3053 0.9997 2.4576 2.4576 ± 2.2401 × 10−14

0.9441 0.9999 2.4576 2.4576 ± 1.9122 × 10−14

B
36,45,54

0.1033 0.9999 2.4575 2.4575 ± 8.4492 × 10−15

0.21390.0016 0.9984 2.4575 2.4575 ± 5.7810 × 10−15

0.0056 0.9944 2.4575 2.4575 ± 1.6009 × 10−14

C
42,53,63

0.3650 1.0000 2.4575 2.4575 ± 1.5120 × 10−14

0.18330.1337 0.9999 2.4575 2.4575 ± 1.2451 × 10−14

0.0125 0.9875 2.4575 2.4575 ± 2.0901 × 10−14

Ω4

A
36,42,48

0.9441 0.9999 2.4576 2.4576 ± 1.9122 × 10−14

0.32150.0015 0.9985 2.4576 2.4576 ± 1.2451 × 10−14

0.0036 0.9964 2.4576 2.4576 ± 2.3124 × 10−14

B
54,63,72

0.0056 0.9944 2.4575 2.4575 ± 1.6009 × 10−14

0.21390.0102 0.9898 2.4575 2.4575 ± 1.9122 × 10−14

0.0060 0.9940 2.4575 2.4575 ± 1.0228 × 10−14

C
63,74,84

0.0125 0.9875 2.4575 2.4575 ± 2.0901 × 10−14

0.18330.6270 0.3730 2.4575 2.4575 ± 1.1562 × 10−14

0.0022 0.9978 2.4575 2.4575 ± 1.7343 × 10−14
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Table 2. Cont.

Simulated Results Based on the Modified Shepp–Logan Phantom

Processes Estimation Process Verification Process koverlap

Studied Segments Di
B Kin−flow

i
∆i

KL Kout−flow
i

-

Ω5

A
48,54,60

0.0036 0.9964 2.4576 2.4576 ± 2.3124 × 10−14

0.32150.0055 0.9945 2.4576 2.4576 ± 9.3386 × 10−15

0.0050 0.9950 2.4576 2.4576 ± 1.3786 × 10−14

B
72,81,90

0.0060 0.9940 2.4575 2.4575 ± 1.0228 × 10−14

0.21390.0045 0.9955 2.4575 2.4575 ± 1.3341 × 10−14

0.0013 0.9987 2.4575 2.4575 ± 1.5120 × 10−14

C
84,95,105

0.0022 0.9978 2.4575 2.4575 ± 1.7343 × 10−14

0.18330.0055 0.9945 2.4575 2.4575 ± 5.3363 × 10−15

0.1044 0.9999 2.4575 2.4575 ± 1.0228 × 10−14

Ω6

A
60,66,72

0.0050 0.9950 2.4576 2.4576 ± 1.3786 × 10−14

0.32150.0086 0.9914 2.4576 2.4576 ± 1.1562 × 10−14

0.0054 0.9946 2.4576 2.4576 ± 1.2007 × 10−14

B
90,99,108

0.0013 0.9987 2.4575 2.4575 ± 1.5120 × 10−14

0.21390.8497 0.9999 2.4575 2.4575 ± 1.8677 × 10−14

0.0022 0.9978 2.4575 2.4575 ± 9.3386 × 10−15

C
105,116,126

0.1044 0.9999 2.4575 2.4575 ± 1.0228 × 10−14

0.18330.3272 0.9997 2.4575 2.4575 ± 1.2007 × 10−14

0.0108 0.9892 2.4575 2.4575 ± 1.8677 × 10−14

Ω7

A
72,78,84

0.0054 0.9946 2.4576 2.4576 ± 1.2007 × 10−14

0.32150.0027 0.9973 2.4576 2.4576 ± 2.9456 × 10−14

0.0019 0.9981 2.4576 2.4576 ± 8.8939 × 10−15

B
108,117,126

0.0022 0.9978 2.4575 2.4575 ± 9.3386 × 10−15

0.21390.0056 0.9944 2.4575 2.4575 ± 6.2257 × 10−15

0.0077 0.9923 2.4575 2.4575 ± 6.2257 × 10−15

C
126,137,147

0.0108 0.9892 2.4575 2.4575 ± 1.8677 × 10−14

0.18330.0031 0.9969 2.4575 2.4575 ± 6.2257 × 10−15

0.0057 0.9943 2.4575 2.4575 ± 3.5576 × 10−15

Ω8

A
84,90,96

0.0019 0.9981 2.4576 2.4576 ± 8.8939 × 10−15

0.32150.0012 0.9988 2.4576 2.4576 ± 1.4657 × 10−14

- - 2.4532 2.4532 ± 6.2257 × 10−15

B
126,

135,144

0.0077 0.9923 2.4575 2.4575 ± 6.2257 × 10−15

0.21390.0060 0.9940 2.4575 2.4575 ± 4.8917 × 10−15

- - 2.4576 2.4575 ± 2.0011 × 10−14

C
147,158,168

0.0057 0.9943 2.4575 2.4575 ± 3.5576 × 10−15

0.18330.0054 0.9946 2.4575 2.4575 ± 1.6898 × 10−14

- - 2.4575 2.4575 ± 1.0228 × 10−15

Three cases A, B, and C, defined as sparse 12 projections’ input, and the ninterp = 96, 144, and 168.
The A, B, and C result sets are quoted at the first, middle, and last projections of each segment
Ωi (i = [1,8], I ∈ N). The Ωi is defined in degrees of (0,45), (45,90), (90,135), . . . (270,315), (315,360).
The notation explanation of the common first, middle, and last projections represented for each segment
of those cases is shown in Table 3.
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Table 3. The notation of the common projections for eight segments, notation of the common projections
of three cases A, B, and C for eight segments Ωi (sparse 12 projections input and the ninterp = 96, 144,
and 168).

Segment Ωi
Case A Case B Case C

First Middle Last First Middle Last First Middle Last

Ω1 1 6 12 1 9 18 1 11 21
Ω2 12 18 24 18 27 36 21 32 42
Ω3 24 30 36 36 45 54 42 53 63
Ω4 36 42 48 54 63 72 63 74 84
Ω5 48 54 60 72 81 90 84 95 105
Ω6 60 66 72 90 99 108 105 116 126
Ω7 72 78 84 108 117 126 126 137 147
Ω8 84 90 96 126 135 144 147 158 168

4.2. Comparison to the Other Reconstruction Algorithms

The reconstructed results are implemented on the sparse 12-projection set, the result of the
proposed SA2IR is compared to different algorithms, as mentioned above, included FDK, SIRT,
SART, OS-SART, TV-SART, ASD-POCS, OS-ASD-POCS, β-ASD-POCS, CGLS, and FISTA. Obviously,
the sparse set is unable to be implemented with FDK; the other results are shown in Figure 3. The result
of our proposed algorithm (Figure 3(k1)) for the sparse case shows the transition quality between
the results of SIRT (Figure 3(b1)) and SART (Figure 3(c1)). The edge preservation of the proposed
algorithm is better than that of the conventional SIRT and nearly the same as that of SART. The external
generative noise is a little bit thinner than the result of SIRT, while the internal generative noise is
likely homogenous and better than the result of SART. Furthermore, the proposed algorithm shows
that the edge preservation and global homogeneity are significantly better than the other results of
OS-SART (intensity reducing), TV-SART (informative loss of edge and intensity), ASD-POCS (structural
similarity reducing), OS-ASD-POCS (blurring), β-ASD-POCS (edge and intensity deterioration), CGLS
(edge blurring), and FISTA (total image quality reducing) (in Figure 3, from (d1) to (j1)). Consequently,
in the case of sparse projection input, the proposed algorithm reduced the generative noise significantly,
compared to the other algorithms, as mentioned above, while preserving the edge and intensity; thus,
had diagnostic ability.

The reconstructed results are implemented on the denser projection set of 48, as shown in Figure 3
(from (a2) to (l2). The result of the SA2IR algorithm is compared to different algorithms, as mentioned
above, included SIRT, SART, OS-SART, TV-SART, ASD-POCS, OS-ASD-POCS, β-ASD-POCS, CGLS,
and FISTA. In this section, we implemented both results of the proposed algorithm, as the origin and
the modified ones, successively shown in Figure 3(k2,l2). The results are shown to be the same as what
was discussed in the case of the sparse projection input.

Due to the shape-ness characteristics, the noise distributions are shown patterned per segments.
The boundary ripple causes the edge detail loss, and the shifting causes the intensity loss. The image
quality metrics of the reconstructed results are qualitatively evaluated in Table 4. The qualitative
metrics of image quality are proposed to be measured in root mean square error (RMSE), structural
similarity (SSIM), peak signal-to-noise ratio (PSNR), and signal-to-noise (SNR), and the entropy of
the results are shown in Figure 3. According to Table 4, the quantitative metric benefits of SA2IR are
indicated as asterisked. Those metrics are divided into two main groups, included (1) the Referral
metrics group, included RMSE, SSIM, PSNR, and SNR, which is referred to the original phantom,
and (2) the Individual metrics group, as the entropy measurement. Corresponding to the results
in Figure 3 and Table 4, the proposed SA2IR algorithm is proved to reduce the generative noise,
both external and internal of the edges, or inner or outer of the edge, compared to the other algorithms.
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Figure 3. The Shepp–Logan phantom reconstructed results, based on sparse 12-projection input (from 
(a1) to (k1)) and sparse 48-projection input (from (a2)–(l2)), such as: (a1,a2)–Origin phantom, (b1,b2)–
SIRT (simultaneous iterative reconstruction technique), (c1,c2)–SART (simultaneous algebraic 
reconstruction technique algorithm), (d1,d2)–OS-SART (order-subset SART), (e1,e2)–TV-SART (total 
variation SART), (f1,f2)–ASD-POCS (adaptive steepest descent projection onto convex sets), (g1,g2)–
OS-ASD-POCS (order-subset ASD-POCS), (h1,h2)–β-ASD-POCS, (i1,i2)–CGLS (conjugated gradient 
least square algorithm), (j1,j2)–FISTA (fast iterative shrinkage-thresholding algorithm) and (k1,k2)–
SA2IR. 

Figure 3. The Shepp–Logan phantom reconstructed results, based on sparse 12-projection
input (from (a1) to (k1)) and sparse 48-projection input (from (a2)–(l2)), such as: (a1,a2)–Origin
phantom, (b1,b2)–SIRT (simultaneous iterative reconstruction technique), (c1,c2)–SART (simultaneous
algebraic reconstruction technique algorithm), (d1,d2)–OS-SART (order-subset SART), (e1,e2)–TV-SART
(total variation SART), (f1,f2)–ASD-POCS (adaptive steepest descent projection onto convex sets),
(g1,g2)–OS-ASD-POCS (order-subset ASD-POCS), (h1,h2)–β-ASD-POCS, (i1,i2)–CGLS (conjugated
gradient least square algorithm), (j1,j2)–FISTA (fast iterative shrinkage-thresholding algorithm) and
(k1,k2)–SA2IR.

Table 4. Qualitative image quality metric evaluation of the reconstructed results in Figure 3 (from (a2)
to (l2)). RMSE: root mean square error, SSIM: structural similarity, PSNR: peak signal-to-noise ratio,
SNR: signal-to-noise.

Algorithms RMSE SSIM PSNR SNR Entropy

SIRT 0.0082 * 0.6401 * 20.8486 * −1.7900 5.1575
SART 0.0057 * 0.6517 * 22.4720 * −0.9387 5.3968 *
OS-SART 0.0055 0.7024 22.6087 * −1.0994 5.1386 *
TV-SART 0.0156 0.5216 18.0633 −1.8817 5.8063
ASD-POCS 0.0063 * 0.5802 21.9976 * −0.9116 5.3289 *
OS-ASD-POCS 0.0053 0.7150 22.7878 * −0.91174 4.7335
β-ASD-POCS 0.0081 0.4037 20.8905 −0.5470 5.8491
CGLS 0.0058 0.6488 22.3796 −1.3787 5.6202
FISTA 0.0509 0.1795 12.9291 −25.0662 1.7108
SA2IR 0.0079 * 0.6452 * 21.0202 * −1.9962 5.0969 *

The asterisks (*) mean the concerned values of the other algorithms in comparison to SA2IR.

For the patient head data clinical simulation, the reconstructed results are implemented and
demonstrated into the different section of maxillofacial and mandibular structures (shown in Figure 4).
The reconstruction was done with the initial sparse set of 68 projections. The enrichment ratio was
chosen as ksampling = 8 for doubling scan angular rotation. Those results are addressed as the upper
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jaw region (basal palatine bone), lower arch, mid-facial region, and temporomandibular joint region,
respectively to the 68th, 52nd, 108th, and 112nd slices of the used patient head data (shown in Figure 5).
The boxing volumetric size of the head data reconstruction is 360 × 360 × 360 (in mm). According to
the simulation results of the phantom in Table 4, the qualitative image quality metric evaluation of
those is shown in Table 5. Regarding the meaning of image quality indexes and computational time
“trade-off”, the significant benefit of using the proposed algorithm compared to the other common
contemporary algorithms for sparse projection reconstruction was observed. According to the results
in Figure 3, the reconstructed results of the clinical simulation is to compare SA2IR to SIRT, SART,
OS-SART, ASD-POCS, OS-ASD-POCS, and CGLS algorithms. The remainder were omitted, because of
their disadvantages when compared to the SA2IR. To clarify the trade-off beneficiary of SA2IR to the
others, the differentiation beneficiary is shown in Table 5.
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(a)–Upper jaw region (at slice #68), (b)–Lower arch (at slice #52), (c)–Mid-facial region (at slice #108),
(d)–Temporomandibular joint region (at slice #112).

According to Table 5, the results of the proposed algorithm are significantly beneficiary in
balancing between the ALADA adaptation and computation time (in seconds) in comparison to the
other referred algorithms. To evaluate the “clinical diagnostic-ability”, the mean square error (MSE),
structural similarity (SSIM), entropy (E), and the signal-to-noise ratios (PSNR and SNR) are used.
In the complicative structures of the mid-facial and temporomandibular joint regions, the results of
SA2IR are shown to be better than those of SART and ASD-POCS. The results are shown to have
no meaningful diagnostic-able visual differences compared to OS-SART and OS-ASD-POCS. Except
for the computation time of the SIRT and CGLS algorithms, SA2IR took less time to implement than
the others. The computation time that the SA2IR algorithm took was 4.8, 5.0 and 5.3 s, which are
significantly less when compared to SART (30.2, 30.2 and 35.1 s) and ASD-POCS (32.0, 35.9 and 37.1 s),
while arithmetically less than that of OS-SART (5.4, 5.3 and 5.8 s) and OS-ASD-POCS (5.3, 5.3 and 5.6 s).
However, the image quality of SIRT and CLGS is lower and has more blurring than the other algorithms,
as shown in Figure 5. The SA2IR result has similar effects to the ordered-subset regularizations of
both ASD-POCS and SART in generative noise reduction, contrast equalization, and cost-effective
computation. Furthermore, the generative noise reduction in SA2IR is less than all the other algorithms
shown in Figure 5. This is due to the “chirp soft ablation” effect of the trio subsets enhancement
of SA2IR.

The proposed algorithm shows good agreement with the trade-off problem when using sparse
projections to design low-dosed CBCT reconstructions. The results are promising when compared to
other algorithms due to the balanced image quality, diagnostic potential, along with more cost-effective
computation, and lowered exposure. The generative noise reduction effect is significantly reduced
due to the initial projects set densification (enrichment) and trio subset enhancement. The structural
features and contrast are maintained as able to be diagnostic. The computation time has been
reduced significantly in comparison to the other algorithms such as SART, OS-SART, ASD-POCS,
and OS-ASD-POCS.
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Figure 5. The reconstructed results of others algorithms compared to SA2IR, with respect to the
different anatomical regions, as: (a)–Upper jaw region (the first row), (b)–Lower arch (the second row),
(c)–Mid-facial region (the third row), and (d)–Temporomandibular region (the fourth row).

Table 5. Qualitative image quality metric evaluation of the patient data simulation results.

Algorithms RMSE SSIM PSNR SNR Entropy Computation Time (secs.)

Upper Jaw Arch Region–Head

SIRT 0.0013 * 0.6139 29.0292 −0.2467 4.1147 3.00
SART 0.0013 * 0.5423 28.9282 −0.0218 4.2795 * 30.20 *
OS-SART 0.0009 * 0.6005 * 30.5914 * −0.0514 4.1238 5.40
ASD-POCS 0.0011 * 0.5625 * 29.6087 * −0.0906 4.1928 * 32.00 *
OS-ASD-POCS 0.0006 0.6747 32.4155 −0.0827 3.712 5.30 *
CGLS 0.0022 * 0.4164 26.5544 −0.0671 5.6606 1.80
SA2IR 0.0009 * 0.5988 * 30.2784 * −0.1543 4.2824 * 4.80 *

Lower Jaw Arch Region–Head

SIRT 0.0012 * 0.6003 29.254 −0.2533 3.8695 2.80
SART 0.0012 * 0.5412 29.22 −0.0383 4.0492 * 30.20 *
OS-SART 0.0008 * 0.5976 * 30.7944 * −0.0614 3.9003 * 5.30 *
ASD-POCS 0.0010 * 0.5557 29.8809 * −0.1041 4.072 * 35.90 *
OS-ASD-POCS 0.0006 0.6596 32.2566 −0.0931 3.5123 5.30 *
CGLS 0.0020 * 0.4042 26.8865 −0.0846 5.4896 1.90
SA2IR 0.0009 * 0.5865 * 30.3070 * −0.1638 4.0506 * 5.00 *

Mid-Facial Region–Head

SIRT 0.0011 * 0.6161 29.7068 −0.2359 3.885 2.80
SART 0.0011 * 0.5509 29.4622 * −0.0267 4.0768 * 29.40 *
OS-SART 0.0008 * 0.6062 * 31.108 * −0.0526 3.9013 * 5.40 *
ASD-POCS 0.0010 * 0.5662 30.1793 * −0.0919 3.9817 * 31.60 *
OS-ASD-POCS 0.0005 0.6764 32.8669 −0.0823 3.5258 5.20 *
CGLS 0.0019 * 0.4185 27.162 −0.0628 5.5153 1.80
SA2IR 0.0008 * 0.6037 * 30.8624 * −0.1472 4.0744 * 4.80 *
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Table 5. Cont.

Algorithms RMSE SSIM PSNR SNR Entropy Computation Time (secs.)

Temporomandibular joint Region–Head

SIRT 0.0040 * 0.5173 23.9879 −0.5294 4.7749 3.00
SART 0.0027 0.5377 * 25.6691 * −0.0972 4.9691 * 35.10 *
OS-SART 0.0021 0.5889 26.8414 −0.1208 4.7041 5.80 *
ASD-POCS 0.0026 * 0.5494 * 25.8782 * −0.1777 4.9102 * 37.10 *
OS-ASD-POCS 0.0018 0.6166 27.4522 −0.1851 4.6107 5.60 *
CGLS 0.0053 * 0.3314 22.7355 −0.2227 6.1786 1.90
SA2IR 0.0030 * 0.5151 * 25.1978 * −0.3472 5.0687 * 5.30 *

The asterisks (*) mean the concerned values of the other algorithms in comparison to SA2IR.

5. Conclusions

In this paper, the SA2IR is proposed as a specific iterative method for dental CBCT reconstruction
problems. This algorithm is made up of two parts: the pre-reconstruction processing and the 3D
reconstruction of a CBCT projection set. The pre-reconstruction process is composed of the pseudo-set
enrichment and the trio-subset enhancement processes. Experimental simulation was implemented
with (1) a minimum projection set of 12 projections and (2) the sparse cases of 48 projections, on a
phantom. Clinical simulation was implemented with the sparse projections set of 68 projections,
with respect to the diagnostic anatomy differentiation of four regions. These regions are the upper
jaw arch, lower jaw arch, mid-facial, and temporomandibular. The results have shown that when
compared to previous conventional algorithms (SIRT, SART, OS-SART, ASD-POCS, OS-ASD-POCS,
and CGLS), the SA2IR method produces comparable diagnostic ability image quality compared to
the other conventional methods. SA2IR reduces generative noise, can preserve structural features,
and has enhanced global contrast when compared to SART, OS-SART, ASD-POCS, and OS-ASD-POCS.
The SA2IR’s computation time is significantly better than all of the other methods, especially when
compared to SART and ASD-POCS. The clinical simulation has shown the compatibility of the
algorithm with many applied dental image diagnostics, especially for dental implantology and
maxillofacial surgery.

The proposed algorithm is shown to be highly applicable in the sparse projection and low-dose
CBCT reconstruction, adapting the ALADA concept, as “radiation safer and imaging diagnostic-ability
optimization”. That is more humane for the patients and clinicians, regarding both heath and
responsibility. This approach is also available to be applied in other medical CBCT reconstruction
applications. This selective anatomical analytic iteration reconstruction (SA2IR) algorithm uses a
combination of the regularization approach and statistical approach, and utilizes the robustness
of GPU-based computation. To improve upon this study, further research will be conducted on
human head and body anatomy structures and properties. That study will help to enhance the
SA2IR’s trio subset enhancement process. The bio-physical relationship will aid in modeling between
exposure–direction and various other anatomical structures. The outcome of this experiment is expected
to reduce generative noise as well as computational uncertainties, and enhance the imaging of the soft
tissue structure.
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Abbreviations

The following abbreviations are used in this manuscript:

ALADA As Low As Diagnostically Acceptable
ALARA As Low As Reasonably Achievable
(OS)-ASD-POCS (Order-Subset) Adaptive Steepest Descent Projection On Convex Sets
CAD/CAM Computer-Aided Design/ Computer -Aided Manufacturing
CBCT Cone-Beam Computed Tomography
CGLS Conjugated Gradient Least Square
CT Computed Tomography
DICOM Digital Imaging and Communication in Medicine
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
FPID Flat Panel Imaging Detector
FDK Feldkamp - Davis - Kress
GPU Graphical Processing Unit
NCRP National Council on Radiation Protection (United States)
RMSE Root Mean Square Error
SA2IR Selective Anatomy Analytic Iteration Reconstruction
SA2IT Selective Anatomy Analytic Iteration Technique
(OS)-SART (Order-Subset) Simultaneous Algebraic Reconstruction Technique
SIRT Simultaneous Iterative Reconstruction Technique
SNR Signal-To-Noise Ratio
PSNR Peak Signal-To-Noise Ratio
SSIM Structural Similarity
TSC Total Similarity Coefficient
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