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Abstract: This paper proposes a motion planning algorithm for dynamic nonholonomic systems
represented in a second-order chained form. The proposed approach focuses on the so-called
holonomy resulting from a kind of motion that traverses a closed path in a reduced configuration
space of the system. According to the author’s literature survey, control approaches that make
explicit use of holonomy exist for kinematic nonholonomic systems but does not exist for dynamic
nonholonomic systems. However, the second-order chained form system is controllable. Also, its
structure analogizes with the one of the first-order chained form for kinematic nonholonomic systems.
These survey and perspectives brought a hypothesis that there exists a specific control strategy for
extracting holonomy of the second-order chained form system to the author. To verify this hypothesis,
this paper shows that the holonomy of the second-order chained form system can be extracted by
combining two appropriate pairs of sinusoidal inputs. Then, based on such holonomy extraction, a
motion planning algorithm is constructed. Furthermore, the effectiveness is demonstrated through
some simulations including an application to an underactuated manipulator.

Keywords: nonholonomic systems; second-order chained form; motion planning; holonomy;
sinusoidal inputs

1. Introduction

Nonholonomic systems—dynamical systems with non-integrable differential constraints—have
attracted attention as challenging robotic systems in the fields of motion planning and control [1–4].
The most symbolical control problem is characterized by Brockett’s theorem [5]. It provides a
well-known fact that nonholonomic systems cannot be stabilized by using pure smooth state feedback
control. According to the kind of constraints, the nonholonomic systems are generally classified
into two types: kinematic ones and dynamic ones. The former, which are subject to velocity
constraints, include a wheeled mobile robot without or with trailers [1], a snakeboard [1] and a trident
snake robot [6]; the latter, which are subject to acceleration constraints, include an underactuated
manipulator [7–10], a surface vessel [11,12], and a blimp [13].

Nonholonomic systems have an intrinsic property that a part of states is impossible to change
by an individual control input. The key to control such states is to combine the effects of multiple
control inputs in order to extract a kind of motion expressed by Lie brackets. For a class of kinematic
nonholonomic systems, holonomy (or geometric phase) is defined as “the extent to which a closed path in
the base space fails to be closed in the configuration space” [14], where the base space is a reduced
configuration space. The effect which corresponds to Lie brackets is generated by periodic control
inputs. It can be said as the essential motion of kinematic nonholonomic systems. In fact, several
control approaches utilize the holonomy [1,14–20].
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Table 1 summarizes main control approaches proposed so far for nonholonomic systems.
The control approaches are classified into three groups by the type of constraints and also, in each
group, sorted by the published year. From Table 1, the following points can be seen:

• As a canonical form for nonholonomic systems, the chained form is often used over all kinds
of constraints.

• Many studies have been attracted to a feedback control problem related Brockett’s theorem
independently of the type of constraints.

• For kinematic nonholonomic systems, there are some control approaches that explicitly use
holonomy especially in motion planning; for dynamic or third-order nonholonomic systems,
there is no such control approach.

Table 1. Comparison of conventional control approaches.

Constraints Reference Canonical Form Application∗ Control Approach Explicit Use
of Holonomy

Kinematic

[14] Partially FL Knife-edge, etc. MP w/sinusoids Yes
[20] 1st-order CF Vehicle, etc. MP w/sinusoids Yes

[1] 1st-order CF Multifingered
robot hand MP w/sinusoids Yes

[15] Left-invariant — MP w/sinusoids Yes
[21] Partially FL Acrobot, etc. Stab. by nonlinear FB No
[22] 1st-order CF Unicycle robot Traj. tracking No

[18] 1st-order
non-CF — Stab. by Switched FB Yes

[19] Cross CF — Stab. by Switched FB Yes
[16] — Knife-edge MP Yes
[17] — Rolling disk MP Yes
[23] 1st-order CF Firetruck, etc. Stab. by AISMC No
[24] — Rolling disk Traj. tracking No

Dynamic

[7] — Ra-Ru UAM Stab. to EM No
[11] — Surface vehicle Stab. to EM No
[8] 2nd-order CF 2Pa-Ru UAM Stab. to traj. No

[10] 3rd-link’s acc. 2Ra-Ru UAM Stab. to composite
traj. No

[9] 2nd-order CF 2Ra-Ru UAM Traj. design (≈MP) No

[25] 2nd-order CF 2Pa-Ru UAM Stab. by discont. FB
w/non-regular FL No

[26] Last-link’s PFL (n−1)Xa-Ru
UAM

Traj. tracking
w/dynamic FL No

[27,28] 2nd-order CF 2Pa-Ru UAM Traj. tracking
w/cascaded BS No

[28] 2nd-order CF 2Ra-Ru UAM Stab. by
Homogeneous FB No

[29] port-Hamiltonian 2Ra-Ru UAM Stab. by IDA-PBC No
[30] 2nd-order CF 2Pa-Ru UAM Traj. tracking & stab. No

[13] 2nd-order CF Underactuated
AUV

Stab. by
discontinuous FB

No

[31] 2nd-order CF — Stab. based on MPC No

[32] 2nd-order CF Underactuated
hovercraft

Stab. by Hölder
continuous FB No

[23] 2nd-order CF 2Pa-Ru UAM Stab. by AISMC No
This paper 2nd-order CF 2Ra-Ru UAM MP w/sinusoids Yes

3rd [23] 3rd-order CF 2Pa-Ru UAM
w/jerk Stab. by AISMC No

* Note: As for the type of UAM, this table adopts the same notation as in Reference [26]. For instance, (n− 1)Xa-Ru means
that the first n− 1 actuated joints are prismatic (Pa) or revolute (Ra) and the last unactuated joint is revolute (Ru).
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On the other hand, by comparing the first- and second-order chained form systems, it can be
found that the structures are similar unless the number of integrators is different. This perspective and
the above-mentioned survey led the author to a hypothesis that there exists an appropriate pair of
sinusoids to extract holonomy of the second-order chained form system.

Motivated by the hypothesis, this paper addresses a motion planning problem for the second-order
chained form system. A class of dynamic nonholonomic systems can be represented as the second-order
chained form by transforming the generalized coordinates and control inputs appropriately [8,9,12].
The second-order chained form system is described as a type of affine systems which is nonlinear
controllable. Inspired by the structural difference and analogy between the first- and second-order
chained form systems, it is found that a combination of two appropriate pairs of sinusoidal inputs
can be used to extract the holonomy. This verifies the hypothesis. The idea of holonomy extraction is
available directly to motion planning. The proposed motion planning algorithm can be applied to an
underactuated manipulator. Its effectiveness is demonstrated by some simulation results.

The main contributions of the proposed approach are emphasized as follows:

• A specific way to extract holonomy of the second-order chained form system was proposed.
Based on holonomy extraction, a motion planning algorithm was constructed.

• The holonomy-based motion planning algorithm was applied to an underactuated manipulator.
The usefulness of the proposed algorithm was validated through some simulation results.

• To the best of the author’s knowledge, no control approach that makes explicit use of the holonomy
for the second-order chained form system has been previously reported as shown in Table 1.

This paper has improved the preliminary results of the author’s previous studies [33,34].
In Reference [33], the author has first proposed a specific strategy of holonomy extraction for the
second-order chained form system. In addition to that, this paper presents another strategy (see
Remark 1). The holonomy obtained in each strategy was also visualized in some phase spaces
to understand the differences (see Figures 2 and 4). In Reference [34], the author has applied
the holonomy-based motion planning algorithm into an underactuated manipulator and discussed
singularities of the system transformation therein. Instead of such discussion, this paper examine an
effect from the parameters of control inputs (see the second last paragraph in Section 4, that is, the
paragraph before Remark 5).

The rest of the paper is organized as follows. In Section 2, a system representation of the
second-order chained form system is given and then its controllability is confirmed. In Section 3,
to extract the holonomy of the system, appropriate pairs of sinusoids is concretely provided; based on
the maneuver of holonomy extraction, a motion planning algorithm is also proposed. In Section 4,
the algorithm is applied to an underactuated manipulator. In the last section, the paper is concluded
with directions for future work.

2. Second-Order Nonholonomic Chained Form System and Its Controllability

Consider the following second-order chained form system:
ξ̈1 = u1

ξ̈2 = u2

ξ̈3 = ξ2 u1,
(1)

which is one canonical representation for a class of dynamic nonholonomic systems. This system
can be obtained from the original dynamical model via an appropriate transformation
of the generalized coordinates and control inputs. By defining a state vector by
z = [ z1, z2, . . . , z6 ]

> := [ ξ>, ξ̇
>
]> (ξ := [ ξ1, ξ2, ξ3 ]

>), in state space form, (1) is represented as
an affine nonlinear system

d
dt

z = f (z) + g1(z) u1 + g2(z) u2, (2)
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where

f (z) := [ z4, z5, z6, 0, 0, 0 ]>, (3)

g1(z) := [ 0, 0, 0, 1, 0, z2 ]
>, (4)

g2(z) := [ 0, 0, 0, 0, 1, 0 ]>. (5)

Note that the system (2) has equilibrium points at ze := [(ξ?)>, 0>3 ]
>, ξ? ∈ R3 with u1 = u2 = 0.

According to Sussmann’s theorem [35], the small-time local controllability (STLC) of the affine
system (2) is easily confirmed. For a Lie bracket h, let δ0(h), δ1(h) and δ2(h) be defined as the number
of times that f , g1 and g2 occur in h, respectively. If δ0(h) is odd and δi(h) is even for each i = 1, 2,
the bracket h is called “bad”; otherwise, the bracket h is called “good”. Also, let ∑2

i=0 δi(h) be defined
as the degree of h. Then, in the Philip Hall bases [1] of (2), the non-zero vector fields at ze are as follows:

g1(ze) = [ 0, 0, 0, 1, 0, z?2 ]
>, (6)

g2(ze) = [ 0, 0, 0, 0, 1, 0 ]>, (7)

[ f , g1](ze) = [−1, 0, −z?2 , 0, 0, 0 ]>, (8)

[ f , g2](ze) = [ 0, −1, 0, 0, 0, 0 ]>, (9)

[g2, [ f , g1]](ze) = [ 0, 0, 0, 0, 0, 1 ]>, (10)

[g1, [ f , g2]](ze) = [ 0, 0, 0, 0, 0, 1 ]>, (11)

[g2, [ f , [ f , g1]]](ze) = [ 0, 0, −2, 0, 0, 0 ]>, (12)

[[ f , g1], [ f , g2]](ze) = [ 0, 0, −1, 0, 0, 0 ]>. (13)

Six appropriate vector fields out of (6)–(13) can span R6, which means that the system is locally
accessible. In other words, the so-called Lie Algebra Rank Condition (LARC) is satisfied. On the other
hand, all bad brackets , f , [g1, [ f , g1]] and [g2, [ f , g2]], are zero vector fields at ze. This obviously can
be expressed by linear combinations of good brackets of lower degree Thus the second-order chained
form system (1) is small-time local controllable at ze.

From the above-mentioned controllability analysis, there exists an admissible control input such
that the system can be steered from any equilibrium point to its neighborhood for a small time. This,
however, does not imply that a specific control input is obtained. As a specific solution, the subsequent
section presents a motion planning algorithm that makes use of holonomy extraction.

3. Motion Planning Based on Holonomy Extraction

This section considers a motion planning problem of the second-order chained form system and
presents an algorithm to solve it. The key idea is to extract holonomy of the system by using sinusoidal
inputs. Based on that, the proposed algorithm can be simply constructed.

3.1. Problem Formulation

The following motion planning problem is addressed in this paper:

Problem 1. Suppose that the second-order chained form system (1) (or (2)) is given. Then, find a control
input u(t) = [ u1(t), u2(t) ]> which steers the system between initial and final equilibrium points:
(ξ(t0), ξ̇(t0)) = (ξ0, 03) and (ξ(t f ), ξ̇(t f )) = (ξ?, 03), on a given time interval [t0, t f ].

The affine system (2) can be divided into two parts: the double-integrator part with respect to
(z1, z2, z4, z5) (= (ξ1, ξ2, ξ̇1, ξ̇2)); and the residual part with respect to (z3, z6) (= (ξ3, ξ̇3)). The former
is linear controllable, so it is easy to control the four states. The latter nonlinear part is what we
should focus on here. According to the controllability analysis in the last section, displacement of only
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z6 (= ξ̇3) requires the third-order Lie brackets such as (10) and (11); displacement of only z3 (= ξ3)

requires the fourth-order Lie brackets such as (12) and (13). In general, however, handling higher-order
Lie brackets is quite difficult [6].

3.2. Holonomy Extraction by Using Sinusoidal Inputs

For the difficulty to obtain displacement of ξ3 and ξ̇3, this subsection presents how to break it
through by using sinusoidal inputs.

What we should do for verifying the hypothesis presented in Section 1 is to find an appropriate
pair of sinusoids such that displacement of ξ3 and ξ̇3 is obtained as holonomy—a kind of motion
that traverses a closed path in a reduced configuration space of (ξ1, ξ2, ξ̇1, ξ̇2). Note that the motion
planning problem we address is based on the equilibrium points, that is, ξ̇ = 03. So, the desired
holonomy is the one to excite ξ3 to be a certain value and ξ̇3 to be zero.

Now consider two control inputs of zero-mean sinusoidal functions with angular frequency ω,
that is, period T = 2π/ω and amplitude a ω2, b ω2, where a and b are positive constants. The time
span for applying control inputs is also assumed to be composed of two periods: [0, T) and [T, 2T].
By direct calculation, we analyze how the system is steered by a pair of given sinusoidal inputs over
each period. First, let the initial equilibrium point be ξ(0) = ξ0 := [ ξ10, ξ20, ξ30 ]

>, ξ̇(0) = 03 and let
the pair of control inputs over the first period [0, T) be

u1(t) = a ω2 sin ωt, u2(t) = b ω2 cos ωt. (14)

Then, the trajectories of ξ1, ξ2 and their time derivatives become

ξ̇1(t) = a ω− a ω cos ωt, (15)

ξ1(t) = ξ10 + a ωt− a sin ωt, (16)

ξ̇2(t) = b ω sin ωt, (17)

ξ2(t) = ξ20 + b− b cos ωt. (18)

Consequently, the values at t = T are

ξ̇1(T) = 0, (19)

ξ1(T) = ξ10 + a ωT = ξ10 + 2πa︸︷︷︸
∆ξ1(T)

, (20)

ξ̇2(T) = 0, (21)

ξ2(T) = ξ20 (22)

From (18), the trajectories of ξ3 and its time derivative are given by

ξ̇3(t) = a ω

(
ξ20 +

3
4

b
)
− a ω (ξ20 + b) cos ωt +

1
4

ab ω cos 2ωt, (23)

ξ3(t) = ξ30 + a ω

(
ξ20 +

3
4

b
)

t− a(ξ20 + b) sin ωt +
1
8

ab sin 2ωt. (24)

Hence, we obtain the values of ξ3 and ξ̇3 at t = T as follows:

ξ̇3(T) = 0, (25)

ξ3(T) = ξ30 + a ω

(
ξ20 +

3
4

b
)

T = ξ30 + 2πa
(

ξ20 +
3
4

b
)

︸ ︷︷ ︸
∆ξ3(T)

. (26)
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At this moment, each non-zero displacement from the initial value is expressed as ∆ξ1(T) and ∆ξ3(T)
in (20) and (26), respectively. As one of a pair of control inputs such that ξ1(2T) = ξ10, ξ2(2T) = ξ20

and ξ3(2T) 6= ξ30 at t = 2T, we choose the following pair of sinusoidal functions over the second
period [T, 2T]:

u1(t) = −a ω2 sin ωt, u2(t) = −b ω2 cos ωt. (27)

Note that (27) is the sign inversion of (14). By using (19)–(22), the trajectories of ξ1, ξ2 and their time
derivatives can be written as

ξ̇1(t) = −a ω + a ω cos ωt, (28)

ξ1(t) = ξ10 + 4πa− a ωt + a sin ωt, (29)

ξ̇2(t) = −b ω sin ωt, (30)

ξ2(t) = ξ20 − b + b cos ωt. (31)

Their values at t = 2T are also computed as

ξ̇1(2T) = 0, (32)

ξ1(2T) = ξ10, (33)

ξ̇2(2T) = 0, (34)

ξ2(2T) = ξ20. (35)

Since the trajectory of ξ2 behaves according to (31), ξ3 and ξ̇3 over [T, 2T] can be expressed by

ξ̇3(t) = −a ω

(
ξ20 −

3
4

b
)
+ a ω (ξ20 − b) cos ωt +

1
4

ab ω cos 2ωt, (36)

ξ3(t) = ξ30 + 2a ωξ20T − a ω

(
ξ20−

3
4

b
)

t + a(ξ20 − b) sin ωt +
1
8

ab sin 2ωt. (37)

Finally, from (36) and (37), the reaching values at t = 2T are provided as

ξ̇3(2T) = 0, (38)

ξ3(2T) = ξ30 +
3
2

ab ωT = ξ30 + 3πab︸ ︷︷ ︸
∆ξ3(2T)

. (39)

Therefore, the results (32)–(35), (38) and (39) mean that combining two pairs of sinusoidal inputs (14)
and (27), that is,{

u1(t) = a ω2 sin ωt and u2(t) = b ω2 cos ωt, for t ∈ [0, T)

u1(t) = −a ω2 sin ωt and u2(t) = −b ω2 cos ωt, for t ∈ [T, 2T],
(40)

provides the desired holonomy. This verified the hypothesis. Although this approach is heuristic and
constructive, it brings the obvious relationship between parameters of the inputs and the magnitude
of the holonomy. In fact, the displacement of ξ3 at t = 2T, that is, ∆ξ3(2T) with the parameters: a and
b; the displacement of ξ3 at t = T, that is, the ∆ξ3(T) state, depends on not only a and b but also ξ20.

Figure 1 shows the control inputs with a = b = 0.1, ω = 2π (i.e., T = 1), the resultant velocities
and positions. Also, Figure 2 depicts the trajectories in various phase spaces. Trajectories of velocities
and positions were (not analytically but) numerically obtained. The simulator was developed in C
with the GNU Scientific Library [36]. The embedded eight-th order Runge-Kutta Prince-Dormand
method with nine-th order error estimate (rk8pd) was selected as an ODE solver, where an absolute
and relative errors were set to 10−12 and 0, respectively.
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Figure 1. Time plots, derived from Reference [33].

From Figure 1b,c, it can be observed that a positive displacement with respect to ξ3 is obtained
by two-period motion. Since a = b = 0.1 in (39), the magnitude of the holonomy is computed as
∆ξ3(2) ≈ 9.4× 10−2. Figure 2 shows the holonomy in six different types of phase spaces, which
visualizes that the displacement of ξ3 results from a kind of motion that traverses a closed path in
a reduced configuration space of (ξ1, ξ2, ξ̇1, ξ̇2). In particular, Figure 2b,f present that the motion to
extract the holonomy is characterized by two closed circular paths in the reduced configuration space.

In fact, it is verified that the same displacement as in (39) is obtained by combining two pairs of
sinusoidal inputs (14) and (27) in the reverse order of (40), that is,{

u1(t) = −a ω2 sin ωt and u2(t) = −b ω2 cos ωt, for t ∈ [0, T)

u1(t) = a ω2 sin ωt and u2(t) = b ω2 cos ωt, for t ∈ [T, 2T].
(41)

Let us synthesize (40) and (41) as follows:{
u1(t) = ±a ω2 sin ωt and u2(t) = ±b ω2 cos ωt, for t ∈ [0, T)

u1(t) = ∓a ω2 sin ωt and u2(t) = ∓b ω2 cos ωt, for t ∈ [T, 2T].
(42)
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Also, we can easily confirm that the following pairs of control inputs other than (42) yield a positive
displacement of ξ3:{

u1(t) = ±a ω2 cos ωt and u2(t) = ∓b ω2 sin ωt, for t ∈ [0, T)

u1(t) = ∓a ω2 cos ωt and u2(t) = ±b ω2 sin ωt, for t ∈ [T, 2T].
(43)

Moreover, two appropriate pairs of sinusoidal inputs such that a negative displacement with respect
to ξ3 can be obtained include the following forms:{

u1(t) = ±a ω2 sin ωt and u2(t) = ∓b ω2 cos ωt, for t ∈ [0, T)

u1(t) = ∓a ω2 sin ωt and u2(t) = ±b ω2 cos ωt, for t ∈ [T, 2T],
(44){

u1(t) = ±a ω2 cos ωt and u2(t) = ±b ω2 sin ωt, for t ∈ [0, T)

u1(t) = ∓a ω2 cos ωt and u2(t) = ∓b ω2 sin ωt, for t ∈ [T, 2T].
(45)
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Remark 1. The common strategy among (42)–(45) is, in the second period, to keep ∆ξ3(T) while canceling
∆ξ1(T) or ∆ξ2(T) arisen over the first period. To accomplish it, (42)–(45) in the second period make use of the
sinusoidal inputs which are the sign inversion of those over the first period. Alternatively, we can employ a fact
that ξ3 and ξ̇3 are not driven by only either u1 or u2. For example, if we adopt

u1(t) = −a ω2 sin ωt, u2(t) = 0 (46)

instead of (27), then ∆ξ3(2T) = (3/2)πab. Note that the magnitude of the holonomy resulted from a pair of
(14) and (46) is half of the one resulted from a pair of (14) and (27). The control inputs and the resultant states
with a = b = 0.1, ω = 2π are shown in Figure 3. Then, the magnitude of the holonomy is computed as
∆ξ3(2) ≈ 4.7× 10−2. Figure 4 visualizes the holonomy of this case in six different types of phase spaces. By
contrast with Figure 2b,f, it can be seen that the holonomy in Figure 4b,f is extracted by traversing one closed
circular path in the reduced configuration space. The alternative way such as (46) is applicable not only to (42)
but also to (43)–(45) as follows:{

u1(t) = ±a ω2 sin ωt and u2(t) = ±b ω2 cos ωt, for t ∈ [0, T)

u1(t) = ∓a ω2 sin ωt and u2(t) = 0, for t ∈ [T, 2T],
(47){

u1(t) = ±a ω2 cos ωt and u2(t) = ∓b ω2 sin ωt, for t ∈ [0, T)

u1(t) = 0 and u2(t) = ±b ω2 sin ωt for t ∈ [T, 2T],
(48){

u1(t) = ±a ω2 sin ωt and u2(t) = ∓b ω2 cos ωt, for t ∈ [0, T)

u1(t) = ∓a ω2 sin ωt and u2(t) = 0, for t ∈ [T, 2T],
(49){

u1(t) = ±a ω2 cos ωt and u2(t) = ±b ω2 sin ωt, for t ∈ [0, T)

u1(t) = 0 and u2(t) = ∓b ω2 sin ωt, for t ∈ [T, 2T].
(50)

3.3. Holonomy-Based Motion Planning Algorithm

Based on the holonomy extraction of the previous subsection, a motion planning algorithm can
be easily constructed.

Here, let us assume the following points:

• The entire motion planning consists of three phases: P1, P2 and P3. Also, the periods of P1 and P2

are T, whereas that of P3 is 2T.
• At the beginning and end of each phase, the system (1) stops; that is to say, each velocity is zero.
• Let ũi(t), i = 1, 2, be an appropriate sinusoidal function whose period is T.

The basic algorithm of motion planning to steer from an equilibrium point (ξ0, 03),
ξ0 = [ ξ10, ξ20, ξ30 ]

> to the other equilibrium point (ξ?, 03), ξ? = [ ξ?1 , ξ?2 , ξ?3 ]
> is as follows

(see Figure 5 as the corresponding flowchart):

Step 1: Set the initial state of the system, that is, (ξ(0), ξ̇(0)) = (ξ0, 03).
Step 2: In P1, steer only ξ1 from ξ10 to ξ?1 by using u1 = ũ1(t), u2 = 0.
Step 3: In P2, steer only ξ2 from ξ20 to ξ?2 by using u1 = 0, u2 = ũ2(t).
Step 4: In P3, steer only ξ3 from ξ30 to ξ?3 by using one out of (42)–(45) and (47)–(50).

Note that Steps 1–3 are replaceable.
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Figure 3. Time plots.

Now let us consider an example of motion planning from an initial state (0, 0, 0, 0, 0, 0) to a desired
state (1, 1, 1, 0, 0, 0) for four seconds (i.e., T = 1). As control inputs such that the control objective is
achieved, we adopt

u1(t) = aP1
ω2 sin ωt and u2(t) = 0, for t ∈ [0, 1)

u1(t) = 0 and u2(t) = bP2 ω2 sin ωt, for t ∈ [1, 2)

u1(t) = aP3 ω2 sin ωt and u2(t) = bP3 ω2 cos ωt, for t ∈ [2, 3)

u1(t) = −aP3 ω2 sin ωt and u2(t) = −bP3 ω2 cos ωt, for t ∈ [3, 4].

(51)

The system starts to move from the initial state at t = 0, through

ξ1(1) = ξ1(0) + 2πaP1
+ ξ̇1(0) = 2πaP1

, (52)

ξ2(1) = ξ2(0) = 0, (53)

ξ3(1) = ξ3(0) = 0, (54)

ξ̇i(1) = ξ̇i(0) = 0, i = 1, 2, 3, (55)
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at t = 1 and

ξ1(2) = ξ1(1) = 2πaP1
, (56)

ξ2(2) = ξ2(1) + 2πbP2 + ξ̇2(1) = 2πbP2 , (57)

ξ3(2) = ξ3(1) = 0, (58)

ξ̇i(2) = ξ̇i(1) = 0, i = 1, 2, 3, (59)

at t = 2 and lastly reaches the following final states:

ξ1(4) = ξ1(2) = 2πaP1
, (60)

ξ2(4) = ξ2(2) = 2πbP2 , (61)

ξ3(4) = ξ3(2) + 3πaP3 bP3 = 3πaP3 bP3 , (62)

ξ̇i(4) = ξ̇i(2) = 0, i = 1, 2, 3. (63)
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Start

Step 1 : Set the initial state of the system,
i.e., (ξ(0), ξ̇(0)) = (ξ0, 03).

Step 2 : In P1, steer only ξ1 from ξ10 to
ξ?1 by using u1 = ũ1(t), u2 = 0.

Step 3 : In P2, steer only ξ2 from ξ20 to
ξ?2 by using u1 = 0, u2 = ũ2(t).

Step 4 : In P3, steer only ξ3 from ξ30 to
ξ?3 by using one out of (42)–(45)
and (47)–(50).

Stop

Figure 5. The algorithm of motion planning.

Therefore, the results (60)–(62) indicate the following things:

• to realize ξi(4) = 1 (i = 1, 2), aP1
and bP2 must be{

aP1
= 1

2π , for t ∈ [0, 1)

bP2 = 1
2π , for t ∈ [1, 2),

(64)

• to realize ξ3(4) = 1, aP3 and bP3 should be assigned as, for example,

aP3 = bP3 =
1√
3π

, for t ∈ [2, 4]. (65)

Figure 6 depicts the control inputs with (64) and (65), the resultant velocities and positions.
From Figure 6b,c, it can be confirmed that the state arrives at (1, 1, 1, 0, 0, 0), that is, the desired
motion is successfully planned.
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Figure 6. Time plots.

Remark 2. The control inputs with (64) and (65) have switching points between P1 and P2, between P2 and P3

and in the middle of P3. The corresponding effect cannot be found in the resultant velocities and positions. In a
practical situation, however, a combination with feedback control should be required to compensate the occurred
error. This is included in future work.

Remark 3. Note that there exists freedom to choose aP3 and bP3 . The freedom can be utilized for designing
the motion of the system. Under the above-mentioned control objective, you can choose aP3 and bP3 such that
aP3 bP3 = 1/(3π). Its example of use will be shown in the next section.

4. Application to Rest-to-Rest Motion of a Three-Joint Manipulator with Passive Third Joint

This section applies the proposed algorithm into a rest-to-rest motion of an underactuated planar
manipulator that moves in a horizontal plane. The manipulator has three joints whose third joint is
passive (i.e., unactuated) as depicted in Figure 7.
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Y

XO

3rd revolute joint
(unactuated)

2nd revolute joint
(actuated)

1st revolute joint
(actuated)

d1

d2

d3

θ

ℓ1

ℓ2

ℓ3

y

x

K

center of percussion
of 3rd link

:

: center of mass
of each link

Figure 7. A three-joint manipulator with passive third joint, derived from Reference [29].

The main variables and parameters are defined as in Table 2.

Table 2. Definition of main variables and parameters.

qi : (relative) angle of the i-th joint (i = 1, 2, 3);
τi : torque for the i-th joint (i = 1, 2);
`i : length of the i-th link (i = 1, 2, 3);
di : distance between the i-th joint and the center of mass of the i-th link (i = 1, 2, 3);
mi : mass of the i-th link (i = 1, 2, 3);
Ii : moment of inertia mass of the i-th link (i = 1, 2, 3);
K : distance between the third joint and the center of percussion of the third link;

(x, y) : position of the center of percussion of the third link in the frame O− XY;
θ : orientation of the third link with respect to the X-axis;
α1 : linear acceleration along the third link;
α2 : angular acceleration with respect to θ.

For simplicity, assume that there is no external disturbance such as load, friction, linear and
nonlinear damping acting on each joint. Then, based on Lagrange’s equation of motion, the dynamics
of the manipulator is given by

M(q)q̈ + c(q, q̇) =

[
τ12

0

]
, (66)

where q = [ q1, q2, q3 ]
> and τ12 = [ τ1, τ2 ]

> are vectors of joint angles and torques, respectively.
Note that (66) does not include the gravitational term because the dynamics is not affected from
gravitational forces. See Appendix A for the details of the inertia matrix M(q) and the centrifugal and
Coriolis term c(q, q̇).

Yoshikawa, et al. [9] considered the same case, and also gave a set of coordinate and input
transformation that can transform system (66) to

χ̈ =

cos θ 0
sin θ 0

0 1

 α, (67)
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where χ := [ x, y, θ ]> and α = [ α1, α2 ]
>. In addition, using the coordinate transformationξ1

ξ2

ξ3

 =

x− K
tan θ

y

 , (68)

where K := (I3 + m3d2
3)/(m3d3) and the input transformation[

α1

α2

]
=

[
u1 sec θ

u2 cos2 θ − 2θ̇2 tan θ

]
(69)

can transform system (67) to the second-order chained form system (1) [9]. Note that both
transformation are singular at θ = ±π/2.

We here suppose a motion from (χ(0), χ̇(0)) = (χ0, 03) to (χ(t f ), χ̇(t f )) = (χ?, 03) that is subject
to θ(t) 6= ±π/2 for t = 0, t f . The correspondence between (67) and (1) implies that the system (67)
with the input transformation (69) can be controlled by the motion planning algorithm presented in
Section 3.3. Then, a control procedure for achieving such motion is as follows (see Figure 8 as the
corresponding diagram):

Step 1: For a given initial position χ0 and a desired position χ?, compute their corresponding
positions ξ0 and ξ? by using (68).

Step 2: Plan motion so as to steer the system (1) from (ξ(0), ξ̇(0)) = (ξ0, 03) to (ξ(t f ), ξ̇(t f )) =

(ξ?, 03) by using the holonomy-based motion planning algorithm presented in the last
section. As a result, the corresponding sinusoidal inputs u is obtained.

Step 3: Apply the sinusoidal inputs u to the system (67) through the input transformation (69).

For System (67) For System (1)

Initial & desired states:
(χ0, 03) and (χ?, 03)

Initial & desired states:
(ξ0, 03) and (ξ?, 03)

Step 1

coordinate
transformation (68)

Control input u

Step 2 holonomy-based
motion planning

Control input α
Step 3

input
transformation (69)

Figure 8. Diagram for holonomy-based motion planning with (68) and (69).

Remark 4. Suppose that the state and input of the system (1) are bounded and also both θ(0) and θ(t f ) are
not ±π/2. Then, θ(t), t ∈ (0, t f ) does not reach either singular points ±π/2 because the singular points
corresponds to ξ2 = ±∞. See a simple solution in Reference [34] if a rest-to-rest motion problem with either
θ(0) = ±π/2 or θ(t f ) = ±π/2 is addressed.

Let us consider that a three-joint underactuated manipulator with m3 = 0.6 kg, `3 = 0.6 m,
d3 = `3/2, I3 = 4.5× 10−3 kg·m2, that is, K = 3.3× 10−1 m conducts a rest-to-rest motion from



Electronics 2019, 8, 1337 16 of 21

χ0 = [ 0, 0, 0 ]> to χ? = [ 1 m, 1 m, 0 ]>. Then, χ0 and χ? correspond to ξ0 = [−3.3× 10−1, 0, 0 ]>

and ξ? = [ 6.7× 10−1, 0, 1 ]>, respectively. The following set of control inputs to (1) can be applied:
u1(t) = aP1

ω2 sin ωt and u2(t) = 0, for t ∈ [0, 1]

u1(t) = aP2 ω2 cos ωt and u2(t) = −bP2 ω2 sin ωt, for t ∈ (1, 2]

u1(t) = 0 and u2(t) = bP2 ω2 sin ωt, for t ∈ (2, 3]

with aP1
= 1/(2π) and (aP2 , bP2) such that aP2 bP2 = 2/(9π) holds.

Simulations were performed for three kinds of (aP2 , bP2): (2/3, 1/(3π)), (
√

2/(3
√

π),
√

2/(3
√

π))

and (1/(3π), 2/3). As the simulation results, Figures 9–11 show positions, velocities, and control
inputs of (67). From Figure 9, the following facts can be observed:

• the desired rest-to-rest motion on (χ, χ̇) is achieved;
• If aP2 is greater than bP3 , then, on the basis of the case when aP2 = bP3 ,

∣∣∫ 2
1 x(t)dt

∣∣ becomes bigger
and

∣∣∫ 3
1 θ(t)dt

∣∣ becomes smaller; that is to say, the third link moves broadly in direction of x-axis
while its orientation varies slightly smaller.

• If aP2 is less than bP3 , then, on the basis of the case when aP2 = bP3 ,
∣∣∫ 2

1 x(t)dt
∣∣ becomes smaller

and
∣∣∫ 3

1 θ(t)dt
∣∣ becomes bigger; that is to say, the third link moves narrowly in direction of x-axis

while its orientation varies slightly larger.
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Figure 10. Time plot of control inputs.

The last two facts indicate that the freedom in choosing aP3 and bP3 can be used for obstacle
avoidance. If there is an obstacle in the gray-hatched area of Figure 11, choosing aP3 and bP3 such that
aP3 is less than bP3 can make the third link avoid colliding to the obstacle. Therefore, the simulation
results illustrated the effectiveness of the proposed algorithm.
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Figure 11. Motion trajectories of the third link.
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Remark 5. To avoid a collision with an obstacle in the real world, it is necessary to detect the obstacle and
measure the distance between the obstacle and the manipulator. For achieving such things, e.g., an optical 3D
laser measurement system [37] and a stereo vision system [38] would be useful.

5. Conclusions

In this paper, a holonomy-based motion planning algorithm for the second-order chained form
system was proposed. First, it was shown that a combination of two appropriate pairs of sinusoidal
inputs extracts the holonomy. This verified the hypothesis that motivated this study. Next, the
idea of holonomy extraction was directly used to construct a motion planning algorithm. Finally,
the effectiveness of the proposed algorithm was confirmed from the simulation results including an
application to an underactuated manipulator.

This algorithm is heuristic but simple and useful. By adopting specific sinusoids as control
inputs, the relationship between parameters of control inputs and the magnitude of the holonomy was
revealed. Also, it was found that the freedom to choose the parameters can be utilized for designing
the motion of the system. Accordingly, the proposed algorithm will provide a new perspective on how
to control dynamic nonholonomic systems.

Future work will include experimental validation and generalization of the controlled systems
and control inputs. In particular, a combination with feedback control should be needed in practice
to make the proposed approach robust against the modeling error and external disturbance. Also,
to enlarge applicable systems, an extension to an underactuated system under the gravity will be
considered.
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Abbreviations

The following abbreviations are used in Table 1:

AISMC Adaptive Integral Sliding Mode Control
AUV Autonomous Underwater Vehicle
BS BackStepping
CF Chained Form
EM Equilibrium Manifold
FB FeedBack
FL Feedback Linearization/Linearized
IDA-PBC Interconnection and Damping Assignment Passivity-Based Control
MP Motion Planning
MPC Model Predictive Control
UAM UnderActuated Manipulator

Appendix A. The Details of the Inertia Matrix and the Centrifugal and Coriolis Term in (66)

For the three-joint manipulator depicted in Figure 7, the inertia matrix M(q) and the centrifugal
and Coriolis term c(q, q̇) are given as

M(q) =

m11(q) m12(q) m13(q)
m12(q) m22(q) m23(q)
m13(q) m23(q) m33

 , c(q, q̇) =

c1(q, q̇)
c2(q, q̇)
c3(q, q̇)

 ,
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where

m11(q) = m1d2
1 + I1 + m2(`

2
1 + d2

2 + 2`1d2 cos q2) + I2

+ m3{`2
1 + `2

2 + d2
3 + 2`1`2 cos q2 + 2`2d3 cos q3 + 2`1d3 cos(q2 + q3)}+ I3,

m12(q) = m2(d2
2 + `1d2 cos q2) + I2

+ m3{`2
2 + d2

3 + `1`2 cos q2 + 2`2d3 cos q3 + `1d3 cos(q2 + q3)}+ I3,

m13(q) = m3{d2
3 + `2d3 cos q3 + `1d3 cos(q2 + q3)}+ I3,

m22(q) = m2d2
2 + I2 + m3(`

2
2 + d2

3 + 2`2d3 cos q3) + I3,

m23(q) = m3(d2
3 + `2d3 cos q3) + I3, m33 = m3d2

3 + I3,

c1(q, q̇) = −(m2d2 + m3`2)`1q̇2(2q̇1 + q̇2) sin q2

−m3`2d3q̇3(2q̇1 + 2q̇2 + q̇3) sin q3 −m3`1d3(q̇2 + q̇3)(2q̇1 + q̇2 + q̇3) sin(q2 + q3),

c2(q, q̇) = (m2d2 + m3`2)`1q̇2
1 sin q2 −m3`2d3q̇3(2q̇1 + 2q̇2 + q̇3) sin q3 + m3`1d3q̇1 sin(q2 + q3),

c3(q, q̇) = m3d3{`2(q̇1 + q̇2)
2 sin q3 + `1q̇2

1 sin(q2 + q3)}.
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