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Abstract: With the rapid development of Internet of Things Technology, speech recognition has been
applied more and more widely. Chinese Speech Recognition is a complex process. In the process
of speech-to-text conversion, due to the influence of dialect, environmental noise, and context, the
accuracy of speech-to-text in multi-round dialogues and specific contexts is still not high. After the
general speech recognition technology, the text after speech recognition can be detected and corrected
in the specific context, which is helpful to improve the robustness of text comprehension and is a
beneficial supplement to the speech recognition technology. In this paper, a text processing model after
Chinese Speech Recognition is proposed, which combines a bidirectional long short-term memory
(LSTM) network with a conditional random field (CRF) model. The task is divided into two stages:
text error detection and text error correction. In this paper, a bidirectional long short-term memory
(Bi-LSTM) network and conditional random field are used in two stages of text error detection and
text error correction respectively. Through verification and system test on the SIGHAN 2013 Chinese
Spelling Check (CSC) dataset, the experimental results show that the model can effectively improve
the accuracy of text after speech recognition.

Keywords: error detection; error correction; LSTM; CRF; Chinese speech recognition

1. Introduction

With the development of wireless networks, Internet of Things applications emerge in endlessly [1–6].
Among them, speech recognition technology is one of the most widely used. However, the accuracy
of speech recognition technology still needs to be improved. Due to the complexity of Chinese, this
problem is more prominent. Fortunately, with the development of Internet technology and artificial
intelligence, speech recognition technology has received more and more attention. However, due to
the accuracy of speech recognition technology and the grammatical habits of the language itself, the
results of speech conversion often have some errors. These errors not only affect the subsequent speech
recognition, but also increase the difficulty for the recipient to understand the semantics of the speech
text. Therefore, it is an important research direction to improve the performance of speech recognition
technology to use natural language processing technology for text processing after speech recognition.

At present, the common text processing methods after speech recognition are mainly divided
into three categories: dictionary-based, traditional machine learning, and deep learning method. The
dictionary-based method [7] aims to build a huge dictionary, find the corresponding words in the
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dictionary through string matching, and then check and correct the possible errors [8]. Chiu et al. [9]
proposed a Chinese text error correction model based on a combination of rules and statistical methods.
They use a rule-based detection model to identify errors in Chinese text and then use statistical machine
translation models to provide the most appropriate corrections for erroneous text. Yeh et al. [10]
proposed a Chinese spelling check method based on a string matching algorithm and Chinese model.
First, the probability of the sentence constructed by the author was detected using the n-gram, and
then the string matching algorithm Knuth–Morris–Pratt (KMP) was used to detect and correct the
error. Hasan et al. [11] used a character-based statistical machine translation model to correct user
search query errors in the e-commerce world. Instead of using the common method of segmenting
Chinese sentences first, they used character-by-character processing of Chinese sentences to obtain
better performance than the former. Hsieh et al. [12] proposed a word lattice decoding model to solve
the Chinese spell check problem. They prevent word segmentation errors and misspelling errors
by including all confusing characters in the word grid to improve the accuracy of rule matching.
Siklósi et al. [13] proposed a method for automatically correcting spelling errors in Hungarian clinical
records. They modeled the spelling correction problem as a translation task, using the error text as the
source language, the target text as the corrected text, using the statistical machine translation model to
perform the error correction task, and modeling the lexical context using a 3-gram-based language
model. However, the accuracy of error detection and error correction based on dictionary is very
high, but with a poor robustness. The dictionary requires a lot of manual maintenance. With the
rapid development of Internet technology, network vocabulary and new vocabulary emerges endlessly,
which brings great difficulties to the maintenance of dictionaries.

With the weakness of dictionary-based methods, many researches adopted traditional machine
learning methods. They mainly extract the correlations and features between words from a large
number of corpora, train the language model, and finally obtain the optimal correction of words
through the language model [14]. Han et al. [15] proposed a Chinese spelling check model based on
maximum entropy (ME). The ME was trained as a Chinese spell check model by importing a large
original corpus. Zhao et al. [16] used a hybrid model based on a graph-based generic error model and
two independently trained specific error models to detect Chinese spelling errors. In the graph-based
generic error model, a directed acyclic graph was generated for each sentence, and then a single
source shortest path algorithm was used to detect and correct common spelling errors in the sentence.
Chen et al. [17] proposed a new Chinese Spelling Check (CSC) probability framework based on the
advantages of alternative models and language models. An unsupervised way was used to integrate
the topic language model into the CSC system so that semantic information under a very large span
could be obtained in a string. In addition, the CSC framework and web resources are integrated to
further improve the overall performance of the framework. Liu et al. [18] proposed a Chinese spelling
check framework that automatically detects and corrects Chinese spelling errors. Machine translation
models and language models were used as part of the framework to generate correction candidates,
and then the candidate correction candidates generated by statistical machine translation (SMT) and
language model (LM) were sorted by support vector machine (SVM) classifiers. Yeh et al. [19] proposed
a method for detecting and correcting Chinese spelling errors using an inverted index table with a
reordering mechanism. To reduce the search space and computational complexity of the framework,
the context-dependent confidence-based pruning method was applied. With the class-like language
model and the maximum entropy correction model, the correlation model between the original input
and the expected input was obtained. However, the functions used by the traditional machine learning
model in the modeling process are relatively simple, and there are certain limitations on the feature
extraction of complex problems.

In recent years, many researches have applied deep learning methods to natural language
processing. The deep learning method mainly extracts the features of the large-scale corpus through
the neural network model, and then uses the trained model to judge the optimal corrective words [20].
The traditional machine learning model extracts sample features usually in the form of numbers,
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so only shallower data features can be extracted, while the deep neural network can better fit the data
by combining the underlying features into a more abstract high-level feature representation [21,22].
Therefore, deep neural networks usually have more efficient performance than traditional machine
learning models [23]. Wang et al. [24] proposed a method for automatically generating CSC corpus based
on optical character recognition (COR) and automatic speech recognition (ASR). They implemented a
supervised bidirectional long short-term memory (LSTM) model that turned Chinese spelling questions
into a sequence tag problem. Li et al. [25] proposed a nested recurrent neural network (RNN) model
for misspelling correction and trained the model using pseudo data generated from speech similarity.
Liao et al. [26] proposed a Bi-LSTM-CRF generation sequence model in Chinese grammatical error
diagnosis (CGED) to CGED into a sequence tag problem. In the CGED task, Zhou et al. [27] proposed a
traditional linear CRF model and an LSTM-CRF model that add combination features such as positional
features and syntactic features. Li et al. [28] proposed a sequence labeling method based on the strategy
gradient LSTM model for the traditional model facing the imbalance of positive and negative samples
and the disappearance of gradient. They used a strategy-based deep reinforcement learning approach
in model training. Ren et al. [29] proposed a convolution-based sequence-to-sequence model in the
Chinese grammar correction task of The Seventh CCF International conference on Natural Language
Processing and Chinese Computing. They combine the advantages of convolutional neural networks
and sequence-to-sequence models to treat GEC tasks as translating erroneous Chinese into correct
Chinese and using CNN to capture local word sequences.

In the actual application of speech to text, we find that there are many errors in the text after speech
recognition, which brings great difficulties to the text processing. This paper combines the advantages
of traditional machine learning and deep learning method to correct the errors in the text converted
from speech, so as to facilitate further text processing. The common text processing technology after
speech recognition usually puts the error detection and correction of the speech text into the same
model. In this paper, we divide the post-speech text processing task into two sub-tasks: speech text
error detection and speech text error correction. In addition, we train different models separately.
In the text error detection subtask, we divide the text characters to be detected into 0 and 1 categories,
0 means that the character is correct, 1 means the character is wrong, and then combined with LSTM
and CRF [30] technology to train the Bi-LSTM model to handle the text error detection task. In the text
error correction subtask, we first construct the replacement character set of the wrong character, then
construct the Bi-LSTM model, input the replacement character of the wrong character detected in the
text detection subtask into the Bi-LSTM model, and output the optimal corrected character.

The rest of the paper is organized as follows: Section 2 will elaborate on the text processing
technology after speech recognition we use from two aspects: text error detection and text error
correction. Section 3 will present experiments on text error detection and text error correction sub-tasks
and describe the experimental results in detail. We will discuss and summarize the experimental
conclusions in Sections 4 and 5.

2. Materials and Methods

In our two sub-tasks, the text error correction model relies on the detection result of the text error
detection model, and the text error correction model corrects the error position word output by the text
error detection model. The specific flowchart of the process is shown in Figure 1.
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Figure 1. Speech text error detection and error correction flowchart.

In this section, we will elaborate on the model we use in the two subtasks of text error detection
and text correction.

2.1. Text Error Detection

Text error detection is to mark out the errors of homophones and similar characters in the text.
In order to improve the accuracy of Chinese text error detection, we combined the advantages

of the LSTM neural network model [31] and CRF technology [32], and proposed our Chinese error
detection model BLSTM-CRF. The model consists of three layers: an embedded layer, a bidirectional
LSTM layer, and a CRF layer. The model structure is shown in Figure 2. As can be seen from Figure 2,
the text sentence is converted into a word vector matrix by embedding the layer, and then the feature
matrix is extracts by the Bi-LSTM layer, and finally outputs the category (0 or 1) to which each character
in the input statement belongs through the CRF layer. For example, the input sentence as shown in
Figure 2 is first converted into a word vector matrix [0.1 0.2 0.3] ... [0.4 0.5 0.6], then the feature matrix
is extracted through the Bi-LSTM layer, and finally the category list is output through the CRF layer
[0 0 0 0 1 0 0], where 1 in the 5th position represents the 5th word in the input statement is an incorrect
character and needs to be corrected. Next we will elaborate on each layer of the model.
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2.1.1. Embedded Layer

The main function of this layer is to convert characters in Chinese text into vectors.
The traditional character encoding uses the word bag model. Common methods include one-hot

encoding, tf-idf encoding, and n-gram encoding. One-hot encoding [33] is to represent each character
in the text in one dimension of the vector, and the text is represented by a combined long vector. If a
character appears in the text, the value in the corresponding dimension is set to 1, otherwise it is 0.
The advantage of this method is that the representation is simple. However, without considering the
word order and semantics of the text, it is easy to suffer from data sparsity and dimension disaster.
TF-IDF (word frequency-inverse document frequency) [34] considers the importance of a word in
a document to the document on a one-hot basis. The importance of a word is proportional to its
number of occurrences in a document, and inversely proportional to the number of occurrences in all
documents. This coding method also does not consider the word order and semantics of the text. The
n-gram coding method [35] considers the influence of word order in the text. The core idea is that
a word in the text has a relationship with its previous n-1 words, but has no connection with other
words. The advantage of this coding method is that it contains relevant information of the first n-1
words, but does not take into account the semantic relationship between different words.

In order to overcome the limitations of traditional character encoding methods, researchers have
proposed the word vector coding [36]. The basic idea of word vectors is to map different words into a
low-dimensional, dense vector space, and words with similar semantics map to similar positions in the
word vector space. This coding method can not only reduce the representation dimension of words,
but also reflect the semantic connection between different words. With the development of word
vector technology, the word vector models proposed by researchers include word2vec [37], Glove [38],
ELMo [39], and BERT [40].

In this paper, we use Google’s BERT model to represent our word vector.
For the input text S = [w1, w2, · · · , wi, · · · , wn], we used the BERT model to convert the input

text s into a word vector matrix V = [v1, v2, · · · , vi, · · · , vn], where wi represents the i-th character in
S, vi represents the word vector corresponding to wi, V ∈ Rn∗d, d represents the dimension of the
word vector.

We used the word vector matrix V as the output of the embedded layer.

2.1.2. Bi-LSTM Layer

The LSTM neural network model is a variant of the RNN [41] neural network that is suitable for
processing sequence data. The neurons of the LSTM network are mainly composed of input gates,
output gates, and forgetting gates. Through these three gates, the output and output information
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and historical information are effectively controlled to improve the model’s ability to process the
sequence information.

The unit structure of the LSTM model is shown in Figure 3 [42].
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The unit is updated as follows:

ft = σ
(
w f ·[ht−1, xt] + b f

)
, (1)

it = σ(wi·[ht−1, xt] + bi), (2)

ct = tanh(wc·[ht−1, xt] + bc), (3)

ct = ft·ct−1 + it·ct, (4)

ot = σ(wo·[ht−1, xt] + bo), (5)

ht = ot·tan h(ct), (6)

where w f , wi, wc, wo represent the weight matrix, b f , bi, bc, bo represent the offset, ht−1 represents the
hidden layer state when the time step is t, ht represents the hidden layer state of the previous time of
the time step t, xt represents the input when the time step is t.

In the field of text information processing, the LSTM neural network model can effectively extract
the context features in the input text. Usually in text data, the character before and after a word will
have a certain impact on the word, so we use the bidirectional LSTM (Bi-LSTM) model to extract the
contextual features of the input text.

The Bi-LSTM [43] model consists of forward LSTM and reverse LSTM, which are used to extract
forward and reverse context features respectively. For the input xt at time t, the hidden states obtained
by the forward LSTM and the reverse LSTM are h′t and h′′t , respectively.

h′t =
−−−−−−→
LSTM

(
xt, h′t−1

)
, (7)

h′′t =
−−−−−−→
LSTM

(
xt, h′′t−1

)
. (8)
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The combination h′t and h′′t is ht =
[
h′t; h′′t

]
as the output of the LSTM model neuron hidden layer

at time t, where h′t, h′′t ∈ Rk, ht ∈ R2k, k represents the output dimension of LSTM.
In our model, the time step is equal to the length of the input statement (t = n).

2.1.3. CRF Layer

Since the output of the Bi-LSTM layer is only one of the maximum probabilistic tag outputs in each
time step, the current tag selection is still unaffected by other tags, and the outputs are independent
of each other, which reduces the accuracy of the output tags. In fact, the choice of current tags is
still closely related to the surrounding tags. Therefore, a CRF layer is connected behind the Bi-LSTM
layer. The CRF uses the global normalization method to avoid the local optimum phenomenon in the
detection result by using the feature weights and the global optimal eigenvalues with the state change,
so as to improve the accuracy of the model.

CRF [44] is a model that outputs a conditional probability distribution of a random variable with a
given random variable as input. For the input sequence X = (x1, x2, · · · , xn), labeled Y = (y1, y2, · · · , yn),
where yi ∈ {0, 1}, construct a linear chain conditional random field model:

G(X, Y) =
n∑

i=0

Tyi, yi+1 +
n∑

i=1

Pi, yi , (9)

P(Y|X) =
eG(X, Y)∑
y∈Y eG(X,y)

, (10)

where T ∈ R2∗2 p is the probability that the BiLSTM output at the i-th position is y, and T is the transition
probability from yi to yi+1, n is the length of the input sequence X.

The output of CRF [45] layer is a sequence containing 0 and 1, where the position of output 0
represents the position of the word is correct, and the position of output 1 represents the position of
the corresponding character may have errors, which need to be corrected.

2.1.4. Model Training

In this model, we need to maximize the probability P(Y|X), so we use a log-likelihood function.
The loss function we defined is as follows:

L = log
∑
y∈Y

eG(X,y)
−G(X, Y). (11)

In the parameter training process, our optimization algorithm uses stochastic gradient
descent (SGD).

2.2. Text Error Correction

In the position where the text is detected in Section 2.1, the homonym and the near-word of the
wrong character are replaced, and the replaced text is input into the Bi-LSTM evaluation model, and
the replacement character with the largest output probability of the model is taken as the result of our
text correction.

The text error correction model consists of two layers: the embedded layer and the Bi-LSTM
layer. The model structure is shown in Figure 4. As can be seen from Figure 4, the text sentence after
the replacement character is first input into the embedded layer and converted into a word vector
matrix, and then the Bi-LSTM layer outputs the probability that the replacement character is the correct
character. For example, replacing the 5th word in Figure 2 with the 5th word as shown in Figure 4 in
the text statement, the probability of outputting to the correct character after inputting the Bi-LSTM
layer is 0.328.
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2.2.1. Constructing a Replacement Character Set

The replacement character set consists of homophonic characters and near-characters provided by
the SIGHAN7 dataset [46]. We combine the homophone and the near-characters of each character as
its replacement character list. Some examples of the replacement character list are shown in Figure 5.
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2.2.2. Embedded Layer

The structure and processing of this layer are similar to those in Section 2.1.1. We use the
replacement character table of the error character to construct their word vector separately by referring
to Section 2.1.1.

2.2.3. Bi-LSTM Layer

This layer structure is similar to the Bi-LSTM structure described in Section 2.1.2. For different
replacement characters, the word vector input in Section 2.2.2 will have different probabilities after
passing through the Bi-LSTM layer of this layer. We select the replacement character with the largest
output probability of Bi-LSTM layer as the result of the text error correction model from the candidate
replacement characters.

If there is a candidate set C = (c1, c2, · · · , cn) of erroneous words, after the BiLSTM layer is
followed by the probability set P = (p1, p2, · · · , pn), we select the character corresponding to max(P)
as the result of the text error correction model.

2.2.4. Model Training

To get the probability that the output is of a certain class, we use the cross entropy loss function.

L = −
n∑

i=1

yi log pi, (12)

where n represents the number of types (n = 2), yi represents the indicator variable (0 or 1) of the
category, and pi represents the predicted probability that the sample belongs to category i.
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In the parameter training process, our optimization algorithm uses Adam. The Adam algorithm is a
first order optimization algorithm with adaptive learning rate that allows the model to converge quickly.

3. Results

In this section, we evaluate the performance of our proposed model on text error detection and
correction. Section 3.1 introduces the datasets we used in our experiments, Section 3.2 describes the
performance metrics we used, Section 3.3 describes the data preprocessing process we performed on
the dataset, and Section 3.4 describes the results of our model and compares it with other models.

3.1. Datasets

Our experiment uses SIGHAN 2013 CSC Datasets. The test set for this dataset provides a sample
set and a similar character set. The sample set consists of 700 samples from student articles, half
of which contain at least one error and the remaining samples do not contain any errors. Similar
character sets contain characters that are similar in shape to Chinese characters and sound similar in
pronunciation. The test set is composed of students from 13 to 14 years old. In the text error detection
task, the test set contains 1000 test sentences, of which 300 have errors. In a text correction task, the test
set contains 1000 test sentences, each of which contain one or more errors.

3.2. Performance Metrics

3.2.1. Metrics of Error Detection

We use the following indicators to evaluate the performance of the text detection model:

(1) Detection Accuracy (DA): The number of sentences with the correct detection result / the total
number of sentences.

(2) Detection Precision (DP): The actual number of errors detected / the number of error
sentences detected.

(3) Detection Recall (DR): The actual number of errors detected / the number of actual error sentences.
(4) Detection F1 (DF1): 2 * DP * DR / (DP + DR).

3.2.2. Metrics of Error Correction

We use the following indicators to evaluate the performance of the text correction model:

(1) Location Accuracy (LA): The number of sentences correctly detected the error location / The total
number of sentences.

(2) Correction Accuracy (CA): The number of sentences correctly corrected the error / The total
number of sentences.

(3) Correction Precision (CP): The number of sentences correctly corrected the error / The number of
error sentences detected by the system.

3.3. Data Preprocessing

(1) Clear all punctuation in the sentence, leaving only plain text data.
(2) The original data text is marked according to the character level model, the correct word is marked

as 0, the wrong word is marked as 1, and the obtained 0, 1 sequence is used as the label of the
original data text.

(3) Calculate the number of different characters in the dataset after preprocessing, the number of
occurrences of each character, the length of the largest character contained in each sentence, and
the average character length of each sentence. The maximum sentence length is used as a fixed
length for characters in each sentence. If the length of the sentence is greater than the fixed length,
it is truncated. If the length of the sentence is less than the fixed length, 0 is added.
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3.4. Experimental Results

Tensorflow is Google’s open source data flow diagram-based machine learning framework, keras
is for tensorflow, and Theano and high-level encapsulation. People can quickly build a complex neural
network model by using them. Therefore, we used tensorflow and keras to implement the model we
described in Section 2.

To more accurately evaluate the performance of our proposed model, we used a 10-fold
cross-validation [47] and 5*2 cross-validation [48] approach to partition the dataset we used. In the
10-fold cross-validation method, we randomly divided the dataset into 10 parts, using nine of them
as the training set in turn, and the remaining part as the verification set, taking the mean of these
10 results as the evaluation result of our model. In the 5*2 cross-validation method, we randomly
divided the dataset into five parts, used four of them as the training set in turn, and the remaining part
as the test set, and in the data used as the training set, we used the 2-fold cross-validation for training,
and the average of the five results was taken as the evaluation result of our model. Tables 1 and 2
show the classification results in the text error detection model, respectively. Tables 3 and 4 show the
classification results in the text error correction model, respectively.

Table 1. The 10-fold cross-validation results of text error detection model.

Dataset DA DP DR DF1

Dataset1 0.901 0.866 0.893 0.879
Dataset2 0.886 0.85 0.896 0.872
Dataset3 0.893 0.851 0.903 0.876
Dataset4 0.908 0.871 0.886 0.878
Dataset5 0.91 0.875 0.912 0.893
Dataset6 0.889 0.862 0.908 0.884
Dataset7 0.90 0.863 0.892 0.877
Dataset8 0.882 0.848 0.873 0.860
Dataset9 0.889 0.852 0.912 0.880
Dataset10 0.902 0.859 0.874 0.866
Average 0.896 0.859 0.894 0.876

Table 2. The 5*2 cross-validation results of text error detection model.

Dataset DA DP DR DF1

Dataset1 0.936 0.893 0.915 0.903
Dataset2 0.934 0.886 0.898 0.891
Dataset3 0.946 0.892 0.917 0.904
Dataset4 0.931 0.904 0.901 0.902
Dataset5 0.942 0.898 0.899 0.898
Average 0.937 0.894 0.906 0.9

Table 3. The 10-fold cross-validation results of text error correction model.

Dataset LA CA CR

Dataset1 0.742 0.706 0.782
Dataset2 0.726 0.712 0.773
Dataset3 0.728 0.698 0.769
Dataset4 0.736 0.692 0.789
Dataset5 0.729 0.702 0.766
Dataset6 0.735 0.699 0.791
Dataset7 0.736 0.705 0.788
Dataset8 0.733 0.704 0.783
Dataset9 0.74 0.713 0.776

Dataset10 0.739 0.704 0.781
Average 0.734 0.703 0.779
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Table 4. The 5*2 cross-validation results of text error correction model.

Dataset LA CA CR

Dataset1 0.784 0.733 0.817
Dataset2 0.791 0.734 0.82
Dataset3 0.785 0.74 0.813
Dataset4 0.779 0.733 0.81
Dataset5 0.784 0.731 0.816
Average 0.784 0.734 0.815

It is well known that the number of iterations of the model affects the final performance of the
model. We experimented with our models using different iterations. As the number of iterations
increases, the model will gradually over-fit, resulting in a decrease in generalization performance as
shown in Tables 5 and 6. When the number of iterations is less than 10 times, the performance of the
model gradually increases. When the number of iterations of the model is more than 10 times, the
performance of the model gradually decreases with the increase of the number of iterations.

Table 5. The effect of the number of iterations on the text error detection model.

Epochs DA DP DR DF1

5 0.886 0.861 0.871 0.865
8 0.892 0.869 0.876 0.872

10 0.901 0.866 0.893 0.879
12 0.896 0.861 0.881 0.870
15 0.889 0.857 0.876 0.866

Table 6. The effect of the number of iterations on the text error correction model.

Epochs LA CA CR

5 0.733 0.689 0.768
8 0.740 0.710 0.776

10 0.742 0.706 0.782
12 0.736 0.698 0.781
15 0.731 0.695 0.773

In the field of natural language processing, the input text statements are usually of different
lengths. Unifying the length of the input statements to different lengths also affects the performance of
the network model. We unified the length of the input statement to the length of the largest sentence
in the dataset and the average sentence length, and experimented on these two methods. Tables 7
and 8 show the experimental results using the length of these two input statements. Using the average
sentence length will intercept the statement in the dataset whose statement length is longer than the
average sentence length, resulting in the missing part of the context information of these sentences,
affecting the final experimental results of the model. As can be seen from Tables 7 and 8, using the
maximum sentence length in the dataset as the fixed length of the input sentence can result in better
experimental results than using the average sentence length.

Table 7. The effect of the fixed length of the input statement on the text error detection model.

SENTENCE_LENGTH DA DP DR DF1

37 0.886 0.853 0.871 0.861

104 0.901 0.866 0.893 0.879
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Table 8. The effect of the fixed length of the input statement on the text error correction model.

SENTENCE_LENGTH LA CA CR

37 0.726 0.698 0.768

104 0.742 0.706 0.782

We compared our model with the experimental results of other models. The results of the error
detection experiments of our model on the SIGHAN 2013 CSC dataset are shown in Table 9 and
Figure 6.

Table 9. Text error detection model experimental results.

Model DA DP DR DF1

CRF 0.722 0.6964 0.13 0.2191
CKIP-WS 0.84 0.7174 0.77 0.7428

CKIP-WS + G1-WS 0.842 0.6919 0.8533 0.7642
BiLSTM-CRF 0.89 0.87 0.93 0.91
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In the method proposed by Hsieh et al. [49], in the CKIP-WS system, they first segment the
Chinese sentences and then search for possible replacement words through the confusion set and the
CKIP dictionary. In the G1-WS system, after the Chinese sentence segmentation, the similar words
are searched by the dictionary constructed by Google’s unigram data, and then sorted according to
their frequencies, and the low frequency words are used as the wrong candidates. The error detection
performance of the two method models is overly dependent on the richness of the dictionary and
confusion set they construct, and has greater limitations in different fields. In the method proposed
by Wang et al. [50] they first use a rule-based way to check for high-frequency erroneous words
in the sentence, and then use a CRF-based parser to divide the sentence into a sequence of words.
The characters in each short word (less than three characters) are considered to be potential erroneous
characters. The performance of their error detection depends on the detection rules they construct.
Compared to their models, we can use the LSTM neural network to automatically extract character
features that are more complex than them, without the need to build a dictionary or rule, and use the
transfer feature of the CRF model to correlate the outputs of the LSTM network to obtain more better
error detection performance.

The results of the error correction experiments of our model on the SIGHAN 2013 CSC dataset are
compared with other models as shown in Table 10 and Figure 7.
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Table 10. Text error correction model experimental results.

Model LA CA CR

CRF 0.485 0.404 0.404
CKIP-WS 0.482 0.442 0.5854

CKIP-WS + G1-WS 0.559 0.516 0.6158
BiLSTM 0.75 0.70 0.72
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In the method of Hsieh et al., they use the similar characters of the wrong character in the confusion
set or dictionary as candidate characters, and then construct a 3-gram model to determine the best
character sequence as the correction result. In the method of Wang et al., they replace the detected
wrong characters with characters of the same shape or similar pronunciation, and then use the CRF
parser to re-segment the modified sentences and use the LM model to score, and take the sentence
with the highest LM score as the correction result. Compared with their models, we use the Bi-LSTM
model to get more context features than them, so as to get better error correction results.

4. Discussion

In this paper, we proposed a new text processing technology for speech recognition. We divided
the text processing tasks for speech recognition into two sub-tasks: speech text error detection and
speech text error correction. In the speech text error detection subtask, we developed a Bi-LSTM-CRF
model based on the advantages of the LSTM neural network and the CRF model. The LSTM model is
a variant of the RNN model. Its neurons can effectively retain the historical information in the input
sequence through the input gate, output gate, and forget gate, which is very suitable for processing
sequence data. For text data, each word has a certain relationship with its before and after words,
so the LSTM neural network model can effectively extract the context features in the text data and
better process the text data. The bidirectional LSTM neural network model we used can simultaneously
obtain the forward and backward dependence features of a word in a sentence, which can better reflect
the characteristics of the input text. Compared with the n-gram method proposed by Hsieh et al.,
the n-gram model is a statistical language model whose core assumption is that the probability of
occurrence of the current word in the text sentence is only related to the previous n-1 words. As n
increases, the more dependent features of the obtained words will be, the prediction of future words
will be more accurate, but when n increases, sparse problems will occur, which will affect the accuracy
of future word prediction. The Bi-LSTM network we used not only can obtain long-distance forward
text features, but also obtain backward text features. The output of the separate Bi-LSTM model does
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not take into account the contextual relationship between the outputs and may result in impossible
results in the locale, so we introduced the CRF model. The CRF model can relate the output of
the Bi-LSTM model to each other, which is equivalent to treating the output as a 2n classification
problem, which can effectively eliminate some impossible results and output more accurate results.
The experimental results in Section 3 show that our model has better text error detection performance
than the n-gram model used by Hsieh et al. and the CRF model used by Wang et al.

In the speech text error correction subtask, we first constructed the candidate character set of the
wrong character, and then input the candidate characters of the wrong character detected in the speech
text error detection subtask into the Bi-LSTM neural network, and selected the candidate character with
the largest output probability. As our correct character. Compared with other statistical probability
models, the Bi-LSTM model we used can better extract the context features between input texts, and
then selected the optimal correction characters by comparing different error candidate characters. The
experimental results in Section 3 show that our proposed text error correction model has better text
error correction performance with other text error correction models.

In addition, we also explored how the performance of the model changes with the number of
iterations as the number of iterations of the model changes. By analyzing the experimental results, we
find that when the number of iterations of the model increases slowly, the performance of the model will
gradually become better, but when the number of iterations reaches a certain value, the performance
of the model will gradually decrease. As the number of model iterations is very large, although the
performance on the training set is very effective, the model parameters over-fit the training set data,
resulting in poor generalization performance of the model, affecting the effect of the model on the test
set. In addition, the text length of the input model will also have an impact on the model’s effects. We
chose the maximum sentence length in the dataset and the length of the average sentence as the fixed
input length of the model. The experimental results show that the fixed input length of the model has
a better effect when the maximum sentence length is taken. Since the input length can take more text
features when the maximum sentence length is obtained, a better effect model can be obtained.

5. Conclusions and Future Work

The development of speech recognition technology is closely related to the progress of wireless
networks. With the rapid development of wireless network technology [51–56], speech recognition
technology will be more and more widely used in the field of Internet of Things. Due to the problems
of dialect and accent, it is necessary to correct the text after speech recognition before displaying.
However, text processing technology for speech recognition has been attracted more and more attention
of researchers. This paper proposes a text processing model after Chinese speech recognition based on a
LSTM neural network model and CRF technology. The model can fully extract the context information
of the input text. Through the analysis of the experimental results, we found that compared with other
models, our proposed neural network model has better text error detection and correction performance.

In addition, by increasing the amount of data in the replacement set, the error detection and
correction performance of the model can be further improved.

In this article, raw data was processed by a character-level model. Given the advantages of the
word-level model, we can try to process the raw data using a word-level model. In addition, in the
phonetic text, in addition to homophones and approximations, there may be grammatical errors, which
can be used as our next research direction.
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