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Abstract: This decade has witnessed wide use of data-driven systems, from multimedia to scientific
computing, and in each case quality data movement infrastructure is required, many with SerDes as
a cornerstone. On the one hand, HPC and machine learning cloud infrastructure carry exabytes of
data in a year through the backplanes of data centers. On the other hand, the growing need for edge
computing in the IoT places a tight envelope on the energy per bits. In this survey, we give a system
level overview of the common design challenges in implementing SerDes solutions under different
scenarios and propose simulation methods benefiting from advanced machine learning techniques.
Preliminary results with the proposed simulation platform are demonstrated and analyzed through
machine learning based design methodologies.
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1. Introduction

SerDes system design concerns transferring data through high bandwidth media, such as wireline
or optical channels, at very high data rates. Such systems serve as the backbone in many modern day
applications, from multimedia [1], data center and cloud, and machine learning accelerations [2], to
cutting edge memory systems [3], and mobile/IoT devices [4].

As the rise of data driven applications in this decade continues to call for high quality SerDes
products, the use cases also diversify across different data rates, as in Figure 1, and power budgets.

Figure 1. Example SerDes applications across applications and data rates.

One example application is data center applications [5] that demand very high bandwidth through
long and lossy channels, accommodating the ever growing traffic throughout the computing clusters.
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Another example is memory bus systems such as [6,7], that serve as data channels in very dense
parallel buses, where the design cost, power, and absolute delay are more prioritized.

The different aspects of SerDes quality translate to a wide range of design trade-offs from the
system level to circuit implementations. The overall system needs to be carefully architected, balancing
the power and silicon budget, the channel quality, and the performance target.

In this paper we briefly overview the major challenges that SerDes systems need to address and
discuss commonly used solutions, and then a python-based system modeling package, PySerDes,
is proposed to address the need for system level simulation and validation for various aspects of
SerDes design, and integration of the constantly advancing optimization techniques available in the
scientific community.

1.1. System Background

A typical single lane SerDes top level model is shown in Figure 2, that consists of a transmitter (TX)
that modulates a signal with incoming bits, a channel representing the transmission media, such as a
cable, and a receiver (RX) that recovers data from channel corrupted waveforms [8].

Figure 2. System model of a typical SerDes system .

One immediate task that a SerDes system needs to address is limited bandwidth of the channel,
which distorts the TX output modulated by the high speed data stream. An eye diagram is commonly
used to characterize such distortion and estimate the receiver data quality. Equalization [9] is the most
common technique used to address this distortion, which will be discussed in the next subsection.

Another common challenge in high speed SerDes is clock recovery [10]. As the data stream into
the TX is timed through a certain clock signal, the RX needs to obtain this clock signal in order to obtain
the correct bits. Typical solutions include clock forwarding, which sends the clock signal through a
dedicated channel, or embedded clocking, that requires RX deriving the clock from the data channel.

Circuit non-ideality also adds to the challenges in advanced SerDes designs, due to non-ideal
scaling of CMOS technologies [11], increasing performance demand and shrinking the system footprint.
In the rest of this section we focus on two major topics in SerDes system design, equalization and
timing recovery, along with a discussion on the effect of circuit non-ideality on the system level.

1.2. Equalization

SerDes systems beyond the multi-Gbps range are often bandwidth limited, intuitively due to the
fact that most physical media with the size measured beyond millimeters cannot switch at multi-GHz.
Figure 3, shows a typical channel response involved in the server backplane applications [12].
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Figure 3. Insertion loss of a typical channel [12].

The band-limited channel response translates to inter-symbol interference (ISI) in the time domain.
ISIs are usually characterized as pre-cursor and post-cursor taps after the receiver signal is sampled in
discrete time. The naming can be understood as in Figure 4.

Figure 4. Inter-symbol interference (ISI) characterized on time and frequency domain.

Assuming a PAM2 modulated TX and a band-limited channel, the output waveform looks like a
train of square pulses, each of the length of a unit interval (UI). As we test the channel with a pulse of
length 1 UI on the receiver side, the channel will be dispersed in time due to the bandwidth limitation.
When it takes the pulse more than 1 UI to reach the peak, a pre-cursor ISI is produced, and when
the pulse spends more than 1 UI to settle back to initial value, it causes post-cursor ISI. Typically
post-cursor ISIs last much longer than pre-cursor ones due to the causality of modulation and inherent
phase distortion [13].

1.2.1. System Formulation

The waveform seen at the RX side can be described by Equation (1)

y(t) =
∞

∑
n=0

dnδ(t) ∗ fTX ∗ hchannel(t) ∗ fRX(t) (1)

where ∗ is continous time convolution, δ(t) is the impulse function, hchannel(t) is the channel impulse
response, fTX(t) represents transmitter side filtering, also called pre-emphasis, and fRX(t) represents
receiver side filtering, usually implemented with a continuous time linear equalizer (CTLE) Figure 5
and finally, a feed forward equalizer (FFE). When a decision-feedback equalizer (DFE) is used,
the waveform is modified as in Equation (2), where d̂ is the decision at receiver end.

y(t) =
∞

∑
n=1

dnδ(t) ∗ fTX ∗ hchannel(t) ∗ fRX(t)−
∞

∑
n=0

(d̂nδ(t)) ∗ fDFE(t). (2)

Equalizer designs suppress ISI at the cost of signal-to-noise ratio, so equalization performance
is usually characterized by the SNR of the equalized waveform. Under linearity assumptions on the
channel characteristics, given a channel frequency response H( f ) and noise power spectrum density
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N( f ), the optimal SNR can be characterized by the matched-filter bound (MFB) [13], which can be
calculated by integrating the ratio of signal power spectrum and noise power spectrum over the band
of interest.

Figure 5. Example implementations of a DFE (top) and a CTLE (bottom).

In practice, the performance of an equalization system can be seen using an eye diagram [8].
The SNR discussed in equalization theory corresponds to the “eye-opening” at the “center”, where an
optimal sample can be obtained for decoding. An eye diagram also characterizes timing jitters of the
transmitter and the sampling margins on the receiver end.

The choice of equalization structure depends largely on the applications, on the low power, low
loss regime, a single CTLE or even a one-tap DFE embedded in a decision circuit can be used [14].
On the high performance end is the theoretically optimal SNR under white noise achieved by the
Viterbi equalizer (VE) [15]. However, the power and circuit cost in implementing an VE makes it more
often seen in large scale applications [16].

1.2.2. Implementation Challenges

Silicon implementation of equalizers mostly becomes very challenging as the technology nodes
continue to scale. Some notable difficulties in implementing CTLEs, essentially as a continuous time
high pass filter, are the device matching, limited device bandwidth, and device noise [17]. The best
known bottleneck in high speed DFE design is closing the feedback timing loop, which can be slightly
mitigated by loop unrolling [9] at the cost of much more capacitance at the DFE summing node.

Additionally, circuit non-ideality contributes to many aspects of the design, making the real
system deviate from Equation (2). For example, the sampling speed of the decision comparators
put extra bandwidth limitations on the receiver performance, characterized by impulse sensitivity
functions (ISF) [18]. The bandwidth requirement can be taken into account at the system level to
explore opportunities to boost performance while saving comparator power. Another example is that
non-ideal settling of the DFE feedback circuit can distort the waveform present at the decision circuit,
needing extra modeling effort when the exact eye contour at the receiver end is important. A final
example is when ADC is used for RX at very high loss end applications, the SNDR, bandwidth and
other implementation dependent characteristics could require special effort on the system design side.

1.3. Clocking

Timing synchronization is another important task for a SerDes system. Typically the TX and RX
would not share the clock source and therefore efforts need to be made for RX and TX to synchronize
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on both frequency and phase. Based on the phase and frequency relationships between TX and RX,
the clock delivery scheme can be categorized [8] as synchronous, where TX and RX frequency and
phase aligned; mesochronous, or forward clocking, where a shared frequency source is available at
both TX and RX but they are not necessarily phase aligned; plesiochronous, or embedded clocking,
where hints of the clock phase and frequency are contained in the TX waveform and the RX derives
the clock signal from the data channel through the use of a clock data recovery (CDR) subsystem.

Trade-offs exist when selecting the clock architectures. Synchronous clocking can be used in
low speed and low cost regimes, while mesochronous and plesiochornous are often implemented for
high speed SerDes systems. Forward clocking costs less circuitry on the TX and RX side and usually
offers more reliable synchronization performance but the cost of the extra clock channel also adds
significantly to the design budget. Embedded clocking does not require the extra clock channel but
both the TX and RX side become more complex to implement [19].

Key performance metrics of the clocking system include the jitter generation, jitter propagation
along with the common metrics for phase lock loops (PLLs) and clock networks [19]. Typically a jitter
mask is defined in industry standards to describe the requirement of SerDes clock performance [20].

Complex phase-locked loops are becoming increasingly important in SerDes systems as many of
the state-of-the-art SerDes products are multi-standard.

1.4. SerDes Circuit Opportunities and Challenges

CMOS SerDes systems are typical mixed signal design applications. Scaling of CMOS technology
nodes introduces challenges in many of the system building blocks, while also opening up circuit
design opportunities.

On the transmitter side, the growing popularity of PAM4 modulation [5] has posed challenges on
the linearity of TX drivers [21]. On the receiver side, the device scaling makes the design of quality
CTLE as challenging as the design of most amplifiers. The lowered Supply Voltage and degraded
transistor matching in advanced CMOS technologies also pose challenges in the design of DFE and
decision circuits.

The clocking circuit design also involves difficult trade-offs. On the clock generation side,
analog PLLs scale poorly with technology, all digital PLLs (ADPLLs) are sometimes considered,
which introduces many other challenges from modeling to design [22]. On the clock distribution side,
the increasing complexity of TX and RX designs also place higher demand on the quality of clock
buffers, such as supply rejection (SR), duty cycle distortion (DCD) and rise time (RT). High performance
clock distribution networks are not only challenging to build, but also often occupy much of the overall
system power consumption [19]. Therefore, careful system level design and budgeting is paramount
in avoiding sub-optimal operating points or over designs.

1.5. Further System Level Challenges

Further challenges exists in addition to the design of equalization and clocking systems, such as
simultaneous switching noise (SSN) [23] and crosstalk [24]. Another important aspect of SerDes design
is forward error correction and line coding [13]. Most of the issues need to be addressed early on in the
design phase through behaviorial models of the real system.

2. PySerDes: A Behavioral Modeling Toolbox

Architectural level modeling and exploration has been very common in SerDes designs, in both
academic [25] and industry settings [26]. Behavioral simulation models serve many purposes
throughout each phase of SerDes design, from early planning and budgeting, to quick design
explorations, and also in providing references in post silicon characterization. In this work,
we introduce PySerDes, an open platform for quickly prototyping SerDes systems and exploring
trade-offs. PySerDes provides a series of container libraries (Figure 6) that can be flexibly integrated
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into the open source scientific computing eco-system and potentially supporting many SerDes system
modeling experiments and analyses.

Figure 6. Python-based SerDes (PySerDes) Library Overview. phase lock loops (PLLs).

As open platforms have benefited many other research areas , such as TensorFlow [27] for machine
learning research, and GEM5 [28] or FireSim [29] for computer architecture, the authors believed that a
common open framework would positively influence the SerDes design community in many ways.

First, as discussed in the previous sections, many challenges across different SerDes applications,
from PCIE to backplane, are actually shared, and therefore an open platform provides the means for
sharing design ideas across the designer community. Secondly, cutting-edge SerDes designs are usually
implemented with protected circuit blocks, and thus it is a standard practice in modeling to introduce
an extra layer of abstraction, such as IBIS-AMI model for TX-CHANNLE-RX style modeling [30].
The authors believed that such standard models can be further explored through open platforms,
with designers proposing abstract models through the API, and established platform infrastructure can
be used to communicate, verify, and optimize the designs. Lastly, scientific open source community has
grown significantly over the recent years, and the proposed PySerDes can serve as a bridge towards
utilizing latest advances in relevant areas such as scientific computing, optimization, and machine
learning, just to name a few.

The rest of this section introduces the modeling techniques utilized in PySerDes, and demonstrates
possibilities promised by such framework with two small optimization experiments.

2.1. Channel Modeling

The proposed toolbox models the SerDes system in the frequency and time domains. The codebase
is developed with python language, and by using the inherent structure, the library can be very flexible
in a wide variety of simulation scenarios.

Firstly, the frequency domain toolbox of the library supports S-parameter manipulations through
the scipy [31] library and reads most common channel measurement data, such as the touchstone [32]
format, which finds wide use in industry standards.

Meanwhile, the time domain toolbox supports interfacing with linear models, such as S-parameters
with impulse response (IR), and also benefits from publicly available signal processing libraries
that contains most commonly found filter synthesis algorithms. In PySerDes, custom routines are
implemented to characterize SerDes system performance, such as eye diagrams and jitter tolerances.
GPU acceleration is also available from eye diagram manipulations through the use of PyCUDA
library [33].

The power of time domain simulation lies in the ability to characterize the many non-linear effects
that first-order analyses often miss. The PySerDes library provides the interface to incorporate time
domain behavioral models for ADCs, PLLs, CDRs, and drivers etc. This method follows the idea of
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IBIS-AMI [30], that uses waveforms generated either by circuit simulation or other standard models,
and explores the higher level trade-off in a more complex system. As part of ongoing work, more time
domain models will be incorporated as standard libraries to support more complex subsystems such
as Delta-Sigma ADC, and All Digital PLLs. All our simulations are on the transient domain so the
modeling power, in predicting key metrics, such as jitter, noise-shaping, and even circuit power will be
similar to cppsim [34].

Additionally, for PySerDes supported modeling scenarios, a wide variety of optimization schemes
can be exploited to facilitate optimal design and exploration on the higher level. The following section
presents some of the example optimization schemes and use cases.

2.2. Optimization Schemes

Optimization under a wide variety of criteria often plays a key role in SerDes implementations.
The number of metrics can be many, such as jitter tolerance and eye opening on the system level, and
system power consumption or PLL locking range on the circuit level. Some of the metrics are well
understood such as gain and bandwidth of an amplifier but there are also ones that typically would
not directly translate to design specifications, such as the horizontal eye opening measured at the
output of the DFE. With the introduction of PySerDes, the authors are hoping to help streamline a part
of the design exploration process and deliver the optimal parameters fast.

The rest of this section details some of the possible optimization methods, that can be integrated
with pySerDes framework.

2.2.1. Constrained and Unconstrained Methods

Various common optimization methods such as linear programming and convex optimization
methods [35] are readily available in the popular SciPy [31] library. These methods provides stable
and explainable optimization results and are ideal for circuit and system level parameter tuning.
In PySerDes we provide a short example in using the simplex method for solving for optimal FFE taps
in a lossy channel.

2.2.2. Bayesian

PySerDes models can utilize popular Bayesian optimization libraries such as Hyperopt [36].
This family of algorithms are suitable for “black-box” type optimal parameter searching and has
previously been successfully used in SerDes design applications.

2.2.3. Supervised Learning

Supervised learning techniques find very wide use in many scientific applications [37], following
the notable success of neural networks in imageNet contests [38]. In SerDes application, successful use
of recurrent neural network (RNN) [37] has been reported in predicting the eye diagram shape [39].
PySerDes naturally supports use of popular machine learning frameworks such as TensorFlow [27]
and Pytorch [40], and in Section 3 we demonstrate the use of a supervised learning model, ResNet,
in predicting clock phases from a sampled waveform.

2.2.4. Reinforcement Learning

Reinforcement learning is another powerful framework suitable for a wide range of optimizations.
In a reinforcement learning setting, data is generated while an agent explores the environment [41],
and the agent learns to optimize a reward defined with the environment. This property makes RL
another “Black-Box” type of tool that can be used for many useful tasks.

The next section describes an example use of RL to train an agent that learns to update equalizer
taps with very few updates.
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3. Experiments

In this section we demonstrate the use of available open source machine learning frameworks to
optimize SerDes related tasks. In order to keep the discussion in the academic setting, educational
data were used from [12]. The first experiment demonstrates that a RL agent can learn to optimize
equalizer parameters based on down-sampled observations of single pulse response. The second
experiment explores the use of a CNN as a high quality phase detector in a clock data recovery setting.
The experiments in this section are purely exploratory and no attempt has been made to make the
generated design industry-grade. Part of the future work involves evaluating optimization schemes
against key SerDes metrics and cost of implementation.

3.1. Reinforcement Learning Powered Equalizer Adaptation

Reinforcement learning (RL) can be a powerful “black-box” optimization tool. The immediate
advantage of using an RL method is twofold. First, the cost function or design goal can be flexibly
defined. In the case of equalizer designs, optimizations such as zero-forcing, which directly inverts
channel transfer function, and minimum mean square error (MMSE), which balances channel residual
error and noise amplification [13], have been proposed to optimize the opening at the center of the eye.
However, other design goals are also involved in a practical scenario, such as the width of the eye and
the area of the opening. With RL based optimization tools, such goals can be natively accommodated
by using the design metric directly as the reward in the environment.

Second, the behavior of the agent can be designed for different scenarios. In the equalizer design
example, the design goal can be optimizing the equalizer taps for a fixed channel, such as ones with
optical cables, or devise an adaptive optimization routine for time-varying or multi-standard SerDes.
The training of RL agents provides such flexibility by tuning the environment settings.

Figure 7 shows an example experiment setup with PySerDes integrated in an openAI Gym [42]
environment. The experimental setup involves a 15-dB@Nyquist loss ISI channel and an eight-tap FFE,
a one-stage CTLE and a 15-tap DFE. In training the agent tunes zeros and poles of the CTLE and the
taps of the FFE, while the DFE taps are automatically optimized following the agent’s decision. Each
start of the game resets the taps to a sub-optimal parameter set and the agent is allowed five attempts
to optimized the final reward. Currently supported rewards are eye opening (EO), eye width (EW),
and the eye area (EA). All costs are normalized to be circuit and technology independent.

Figure 7. Experiment setup for reinforcement learning (RL) agent training.

The training of the RL agent follows the method of the well-known deep deterministic policy
gradient (DDPG) [43], which is a model free method providing continuous valued actions. Figure 8
illustrates the arrangement of training, and Figure 9 shows the actor and critic loss, along with the
total reward the agent was able to obtain at different stages of training. To explore how the agent
evolves throughout the traning Figure 10a shows the down-sampled observation at early, middle,
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and late stages of the training and Figure 10b shows the actual eye opening width obtained by the
agent action. As can be seen in the figure, the exploration mechanism in the agent constantly explores
the environment and actually learned to trade-off the height of eye opening for a better eye width.
Eventually after 10 k iterations we do observe around 30% eye opening width improvement over the
intialized point.

Figure 8. Design of the RL agent for equalizer tuning.

(a) actor loss over training iterations (b) critic loss over training iterations
Figure 9. Convergence during the traning of the RL agents.

(a) pulse response produced by agent action (b) Measured eye opening over train iterations
Figure 10. Observed waveform and metrics from the training process of RL.

3.2. Clock Phase Recovery with ResNet

In this section we demonstrate a phase-detector (PD) logic implemented with a ResNet [44]
type neural network model. Conventional phase detectors such as Alexander [45], Bang-Bang [46],
and Muller–Muller [47], are derived based on certain assumptions of the data-modulated waveform,
which depends on channel loss, equalizer taps, and even circuit parameters. In ResNet based phase
estimation, the NN model attempts to directly estimate the timing phase information from the sampled
waveform, and very little assumption was made on the actual shape of the waveform.

The real use of such a model can be at the time of design, where system designers explore the
optimization space of the CDR system or potentially derived a complete CDR based on this detector,
with the promising help of advanced network optimization tools, such as TVM [48] and GLOW [49].



Electronics 2019, 8, 1233 10 of 15

Figure 11 shows the experiment setup implemented using PySerDes and PyTorch [40]. A low loss
channel and light equalization is used in this scenario. A genie sampler, one that has the maximal eye
opening phase produces two times the over-sampled data reference. Another sampler, with stationary
random perturbed phase offset from the genie, is used to generate the training data. The phase
offset updates every 10 samples, sampled from a Gaussian distribution with zero mean and standard
deviation of 1% UI.

Figure 11. Experiment setup for clock data recovery (CDR) training.

The goal of the model is to extract the perturbed phase from the noisy samples. Figure 12 shows
the design of the model, with the parameter space kept intentionally small to be flexible in further
development. Figure 13a shows the convergence of the training loss, which is MSE in this case,
and Figure 13b shows the evaluation result. It is shown that after about 2000 iterations of training the
network successfully extracts the noisy phase over the whole range of the experimental setup.

Figure 12. Design of the ResNet structure for phase extraction.
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(a) Normalized MSE loss over training iterations (b) Predicted phase shift versus actual phase error in
validation set

Figure 13. Evaluation of the ResNet phase extractor.

4. Future Work

System level optimization for SerDes concerns a broad range of topics from device parameters to
information theoretical bounds. In this overview, some of the notable design trade-offs are discussed.
The proposed PySerDes project will be publicly available under an open source license, and also has
a long roadmap for expansion. Firstly, more circuit related models will be incorporated, especially
supporting SPICE models and common mixed signal architectures. Meanwhile, more evaluations
against industry metrics will be performed on the potential of using novel algorithms and schemes in
SerDes systems. Additionally, more powerful models, and a wider variety of models will be trained
and integrated into the framework to enable further explorations.

5. Conclusions

In this work, an overview of the demands and challenges in system level design of SerDes systems
is provided. In particular, the designs of equalization and clocking schemes are discussed and analyzed.
Finally, a python-based open framework is proposed to facilitate system level model explorations and
utilization of recent advances in scientific computing and machine learning methods.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC analog-to-digital converter
ADPLL all digital phase locked loop
CDR clock data recovery
CMOS complementary metal–oxide–semiconductor
CNN convolutional neural network
CTLE continous time linear equalizer
DFE decision feedback equalizer
DCD duty cycle distortion
DDPG deep deterministic policy gradient
EA eye area
EO eye opening
EW eye width
FFE feedforward equalizer
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GPU graphics processing unit
HPC high performance computing
ISI inter-symbol interference
ISF impulse sensitivity function
MFB matched filter bound
ML machine learning
MMSE minimum mean square error
MSE mean square error
PLL phase locked loop
RL reinforcement Learning
RNN recurrent neural network
RT rise time
RX receiver
SerDes serializer/deserializer
SNDR signal noise distortion ratio
SNR signal-to-noise ratio
SR supply rejection
SSN simultaneous switching noise
TX transmitter
UI unit interval
VE viterbi equalizer
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