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Abstract: This paper proposes a new ASIFT hardware architecture that processes a Video Graphics
Array (VGA)-sized (640 × 480) video in real time. The previous ASIFT accelerator suffers from low
utilization because affine transformed images are computed repeatedly. In order to improve hardware
utilization, the proposed hardware architecture adopts two schemes to increase the utilization of
a bottleneck hardware module. The first is a prior anti-aliasing scheme, and the second is a prior
down-scaling scheme. In the proposed method, 1 × 1 and 0.5 × 1 blurred images are generated and
they are reused for creating various affine transformed images. Thanks to the proposed schemes,
the utilization drop by waiting for the affine transform is significantly decreased, and consequently,
the operation speed is increased substantially. Experimental results show that the proposed ASIFT
hardware accelerator processes a VGA-sized video at the speed of 28 frames/s, which is 1.36 times
faster than that of previous work.

Keywords: affine transform; affine-invariant extension of SIFT(ASIFT); hardware accelerator

1. Introduction

Local features have been widely used for scene matching, which is important in many computer
vision applications such as object detection, tracking, and motion estimation. For robust scene
matching, scale-invariant feature transform (SIFT) proposed by Lowe [1] has been used as one of the
most reliable local features because translation, rotation, and scale invariances are effectively supported.
Unfortunately, the performance of SIFT is degraded when the direction of a camera view is changed.
To overcome this limitation, Morel et al. proposed an affine invariant extension of SIFT (ASIFT) [2].

Since a large amount of computation is required in a SIFT algorithm, optimized hardware
accelerators for SIFT have been proposed [3–7]. The ASIFT algorithm generates many images
transformed by affine transforms in order to simulate the view change of a camera. Then, SIFT
features are extracted in the simulated images. This means that the computational complexity of an
ASIFT algorithm is much higher than that of a SIFT algorithm. In order to increase the processing
speed of a complex ASIFT algorithm, Yum et al. [8] proposed an ASIFT hardware architecture that
adopts a modified affine transform to reduce the latency of an external memory, and consequently, the
operation speed of an ASIFT algorithm increases significantly. Nonetheless, this hardware accelerator
processes a VGA-sized (640 × 480) video sequence at 20 frames/s (fps), which is not fast enough for
real-time processing.

In order to increase the operation speed of an ASIFT hardware implementation, this paper proposes
two schemes that increase the utilization of an affine transform module, which is a bottleneck of the
hardware accelerator [8]. The first is a prior anti-aliasing scheme that computes a 1 × 1 blurred image
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and stores it in an external memory. By reusing the stored image for generating various simulated
images, redundant data fetching for generating the 1 × 1 blurred image is removed. The second is a
prior down-scaling scheme. A 0.5 × 1 blurred image is generated and reused for generating the simulated
images of which the width is scaled less than 0.5 times. A word of the 0.5 × 1 blurred image includes
more valid pixels than that of the 1 × 1 blurred image. Thus, the stall cycles to wait for valid data are
decreased. As a result, the proposed ASIFT hardware implementation processes a VGA-sized video at
28 fps.

2. Previous Work

2.1. ASIFT Algorithm

An ASIFT algorithm is proposed to achieve full affine invariance such that it can find
correspondences in two images representing the same scene even though they are obtained from any
viewpoints [2]. In an ASIFT algorithm, simulated images for various camera viewpoints are generated
by transforming a source image with affine transform matrices. Then, SIFT features are computed in
the simulated images. Because these SIFT features are obtained by considering the viewpoint change,
correspondences can be found between two images for which the camera viewpoints are different.

The images captured by a camera at various positions can be interpreted as affine decomposition.
The camera position is represented on hemispherical coordinates as shown in Figure 1. The center (o) of
the hemisphere is located at the center of a source image u. The latitude and longitude of the position
of the camera are represented by θ and ϕ, respectively. The affine distortion caused by the change
of the camera position is interpreted as the rotation and scaling of an image. The affine transform is
represented by Equation (1). In this equation, image rotation and scaling are represented by a rotation
matrix (Rϕ) and a scaling matrix (T1,1/t), respectively.

A = T1,1/tRϕ =

[
1 0
0 1/t

][
cos]ϕ −sinϕ
sinϕ cosϕ

]
, t = 1/cosθ (1)

Morel et al. proposed the proper range and sampling step of t and ϕ in [2]. In Equation (1),
t ranges from 1 to 4

√
2, and ϕ ranges from 0◦ to 180◦. The sampling step of tilt (∆t) is

√
2, and the

sampling step of ϕ (∆ϕ) is 72 ◦/t. The number of simulated images is 42 when the sampling range
and step in Reference [2] are used. When a simulated image is obtained by affine transform, the SIFT
algorithm in Reference [1] is used to generate SIFT features.

When an ASIFT hardware fetches a source image from the external memory implemented by
a Dynamic Random-Access Memory (DRAM), the image is fetched in a rotated manner because of
the rotation matrix Rϕ of A in Equation (1). This means that the ASIFT accelerator accesses external
memory in discontinuous order so that a burst transfer cannot be requested, which slows down DRAM
access significantly.
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2.2. ASIFT Hardware Accelerator

In order to increase the processing speed of an ASIFT algorithm, Yum. et al. [8] proposed a
hardware implementation of an ASIFT algorithm. This hardware adopts a modified affine transform
matrix B to reduce the latency of an external memory, which is given by Equation (2). Matrix B consists
of a scaling matrix Tsx,sy and a skewing matrix Sg, but a rotation matrix is not included. Thus, the source
image is fetched in a continuous order, and a burst transfer mode can be used.

B = SgTsx,sy =

[
1 g
0 1

][
sx 0
0 sy

]
sx =

1
t

√
t2cos(ϕ)2 + sin(ϕ)2, sy =

1√
t2cos(ϕ)2 + sin (ϕ)2

g = tan(τ) =
(1

t
− t

)
sin(ϕ) cos(ϕ)

(2)

The ASIFT hardware architecture proposed by Yum et al. [8] is shown in Figure 2. In this figure,
gray blocks are internal and external buffers, and a striped block stands for a bus system connecting
the ASIFT accelerator and the external memory. In order to increase the operation speed, the ASIFT
hardware accelerator adopts one of the state-of-the-art architectures of a SIFT hardware accelerator
proposed in Reference [7].

In order to reduce the computational load, the ASIFT hardware accelerator proposed by
Yum et al. [8] increases the tilt sampling step (∆t) from

√
2 to 2, which further reduces the computational

load to 43%. Due to this simplification, the number of viewpoints is decreased from 42 to 16.
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Figure 2. ASIFT hardware architecture proposed by Yum et al. [8].

2.3. Analysis of Hardware Utilization of Previous Work

The throughput of the affine transform module of the ASIFT hardware proposed by Yum et al. [8]
is limited by the anti-alias filtering and the down-scaling operation. Figure 3 explains the cause of the
slow operation. This figure shows an example in which a simulated image is generated with sx = 0.25
and sy = 0.25 in the affine transform module. In Figure 3, the gray circles represent the pixels of the
source image stored in the source image buffer, and the white circles are the pixels of the source image
to be fetched from the external memory. A dotted rectangular box corresponds to a kernel of anti-alias
filter, and the black circles are the pixels that have been already filtered by the kernel. A vertical scaler
employs nearest neighbor (NN) interpolation and provides the valid row-address to the anti-alias filter
so that it can process only the required pixel lines. A horizontal scaler also performs NN interpolation,
and the striped circles indicate the sampled pixels by the interpolation.

The affine transform module is the throughput bottleneck of the ASIFT operation. The first reason
is the slow operation time of the anti-alias filter. The anti-alias filter is applied to a pixel at each cycle;
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thus, the throughput of the filter is 1 byte/cycle, which is slower than that of source image loader
(2.46 bytes/cycle). The second reason is that the speed of data fetch required for the filter is not fast
enough. When 1/sy is large, pixels are filtered sparsely in the vertical direction, which means that the
speed of data fetch needs to be increased. Figure 3 shows an example in which the filtering for the fifth
line is completed, and the filtering for the ninth line should start. However, the 12th line data is not
fetched yet. In this case, the vertical scaler waits for the required data on the 12th line. The third reason
is that the ratio of the valid data in a line is low when 1/sx is large. In Figure 3, only every fourth pixel,
which is a striped circle, in the horizontal direction is selected for the down-sampled image, and the
rest are discarded. Thus, the throughput of the horizontal scaler is decreased because of waiting for
valid data.

In order to fully utilize the SIFT generation module, the throughput of the affine transform module
needs to be improved by up to 31 bytes/cycle. As shown in Table 1, however, the affine transform
module proposed by Yum et al. [8] does not satisfy this condition for ASIFT(2)–ASIFT(15). ASIFT(i)
represents the ASIFT operation for viewpoint i. This means that the SIFT generation module stays idle
waiting for data from the affine transform module.
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Table 1. Throughput of the affine transform module proposed by Yum et al. [8].

Viewpoint Index t Longitude (◦) sx sy Throughput (pixels/cycle)

0 1 0 1.000 1.000 31.00
1 2 0 1.000 0.500 31.00
2 2 36 0.861 0.581 26.69
3 2 72 0.567 0.882 17.58
4 2 108 0.567 0.882 17.58
5 2 144 0.861 0.581 26.69
6 4 0 1.000 0.250 19.08
7 4 18 0.954 0.262 19.07
8 4 36 0.822 0.304 19.07
9 4 54 0.622 0.402 19.08

10 4 72 0.390 0.640 12.09
11 4 90 0.250 1.000 7.75
12 4 108 0.390 0.641 12.09
13 4 126 0.621 0.403 19.10
14 4 144 0.822 0.304 19.07
15 4 162 0.954 0.262 19.07

3. Proposed Schemes and Hardware Architecture

3.1. Increasing the Throughput of Affine Transform Module

For the increase of the throughput of the affine transform module, this paper proposes a prior
anti-aliasing scheme and a prior down-scaling scheme. In the prior anti-aliasing scheme, a 1 × 1 blurred image
is generated and stored in the external memory when ASIFT(0) is processed. For ASIFT(1)–ASIFT(15),
the ASIFT hardware reads the proper pixel lines from the 1 × 1 blurred image stored in the external
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memory. Figure 4a shows an example in which anti-alias filtering is not performed, but filtered
data (black circle) are fetched from the external memory. Because the filtering computations for
ASIFT(1)–ASIFT(15) are removed, the slow operation time of filtering does not limit the throughput
of the affine transform module, and the speed of data fetch does not cause a stall in the vertical scaler
with large 1/sy. The throughput of the vertical scaler is increased up to the throughput of the source
image loader (2.46 bytes/cycle).

The proposed prior down-scaling scheme computes a 1/2 down-sampled image of the 1 × 1 blurred
image in the horizontal direction. This down-sampled image is referred to as a 0.5 × 1 blurred image.
It is stored in the external memory when ASIFT(0) is processed. The prior down-scaling scheme increases
the throughput of the horizontal scaler by 2 times when sx is smaller than 0.5. Figure 4b presents an
example when the prior down-scaling scheme is not adopted and sx = 0.25. In this figure, the horizontal
scaler samples only the first byte of each word and transfers it to the scaled image buffer at a cycle,
and consequently, the throughput is decreased to sx. Figure 4c shows an example when the scheme
is adopted. In the proposed scheme, the affine transform module fetches the 0.5 × 1 blurred image,
and down-samples it with a modified scaling ratio sx′ = sx × 2. As a result, the throughput of the
horizontal scaler is increased by 2 times.
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3.2. Proposed ASIFT Hardware Architecture

In this paper, a modified ASIFT hardware architecture is proposed as shown in Figure 5.
The proposed hardware architecture consists of an affine transform module and SIFT generation
module. The affine transform module is a modified version of that in previous work [8], and the
architecture of the SIFT generation module is the same as that in Reference [8]. In order to obtain
the ASIFT features for all viewpoint indices, source mux selects the proper source data among three
external buffers according to a current viewpoint index, and this operation is performed repeatedly.
The first operation of the ASIFT hardware accelerator is the derivation of ASIFT(0) using the source
image. For this operation, the source mux selects the external source image buffer. Because a transform
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matrix for ASIFT(0) is the identity matrix, the fetched source image is transferred to the SIFT generation
module without any scaling operation. At the same time, it is provided to the anti-alias filter and
horizontal 1/2 scaler to generate the 1 × 1 blurred image and the 0.5 × 1 blurred image, and then they
are stored in an external memory. After the ASIFT(0) operation, the derivation of ASIFT features for
any other viewpoint indices can be operated as there is no dependency among ASIFT(1)–ASIFT(15).
The ASIFT hardware uses a proper image between the 1 × 1 blurred image and the 0.5 × 1 blurred
image according to the prior horizontal scaling ratio psxi = ceil(sxi ∗ 2)/2. If psxi is 1, the 1 × 1 blurred
image is selected. Otherwise, the 0.5 × 1 blurred image is used.

Table 2 shows the design specification of the proposed ASIFT hardware. The proposed hardware is
synthesized with 130-nm process technology by Design Compiler DC Ultra Version L-2016.03 designed
by Synopsys (California, United States). The gate count of the hardware is 505 K, the maximum
operating frequency is 190 MHz, and the size of internal memory is 467.5 Kbits. The proposed hardware
uses 12.6 Mbits of space of the external memory for a VGA-sized image.
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Figure 5. Proposed ASIFT hardware architecture. This hardware consists of an affine transform module,
which is a modified version of previous work [8], and a SIFT generation module, which is the same
as that in Reference [8]. The affine transform module computes 1 × 1 and 0.5 × 1 blurred images and
stores them in the external memory when the viewpoint index is 0. Then, this module reuses proper
source data among three types of data in the external memory according to a viewpoint index.

Table 2. Implementation results of the proposed hardware architecture.

Technology 130 nm

Maximum operating frequency 190 MHz
Gate count (except memory) 505 K

Internal memory size 467.5 Kbits
External memory size 12.6 Mbits

4. Results and Discussion

Experiments were carried out under the same conditions as the previous work [8]. The proposed
ASIFT hardware uses a Synchronous Dynamic Random-Access Memory (SDRAM) as an external
memory. The initial latency of the SDRAM is 11 cycles. In the proposed hardware, the first word is
received after 11 cycles, while the next data are received in every cycle. A bus system connecting the
ASIFT hardware to the external memory supports a burst transfer of length 16, and a word consisting
of 4 bytes is transferred for each cycle by the bus system. The size of one pixel is 1 byte.

4.1. Throughput

In order to evaluate an enhancement by the proposed schemes, Table 3 presents a comparison of
the throughput of three affine transform modules. The first column represents the viewpoint index, and
the second column presents the throughput of the affine transform module proposed by Yum et al. [8].
Except for viewpoints 0 and 1, the throughput of the affine transform module is less than 31 bytes/cycle,
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which means the SIFT generation module is not fully utilized for almost all viewpoints. The third
column shows the throughput of the affine transform module with the prior anti-aliasing scheme, and the
fourth column presents the results with both the prior anti-aliasing and prior down-scaling schemes. When
the prior anti-aliasing scheme is adopted, the average of the throughput is increased to 30.10 bytes/cycle.
When the prior down-scaling scheme is adopted additionally, the throughput of the proposed affine
transform module is increased to 31 bytes/cycles on average, which means the SIFT generation module
of the proposed architecture is fully utilized. For the viewpoints of index 10–12, the sx is smaller than
0.5, and the throughput of the horizontal scaler increases by using 0.5 × 1 blurred image.

Table 3. Comparison of the throughput of the three affine transform modules.

Viewpoint
Index

Previous Work [8]
(bytes/cycle)

Prior Anti-Aliasing (A)
(bytes/cycle)

A + Prior Down-Scaling
(bytes/cycle)

0 31.00 31.00 31.00
1 31.00 31.00 31.00
2 26.69 31.00 31.00
3 17.58 31.00 31.00
4 17.58 31.00 31.00
5 26.69 31.00 31.00
6 19.08 31.00 31.00
7 19.07 31.00 31.00
8 19.07 31.00 31.00
9 19.08 31.00 31.00
10 12.09 29.76 31.00
11 7.75 19.08 31.00
12 12.09 29.76 31.00
13 19.10 31.00 31.00
14 19.07 31.00 31.00
15 19.07 31.00 31.00

Average 19.75 30.10 31.00

4.2. Operation Speed

In order to measure the operation speed of the ASIFT hardware accelerator for a VGA-sized
image, Register-Transfer Level (RTL) simulation was carried out with the operating frequency of
190MHz, which is the maximum frequency of the proposed hardware. The test images proposed by
Mikolajczyk et al. [9] were used. The experimental results are shown in Table 4. The first column
represents test images. The second and third columns show the number of keypoints and the operation
time of the ASIFT hardware accelerator proposed in Reference [8]. As shown in Table 4, by adopting
the proposed pre-processing scheme, the operation speed is increased to 1.36 times on average. The
number of keypoints is not exactly the same because the scaled images computed in the previous work
and by the proposed hardware accelerator are not exactly the same.

Table 4. Comparison of the operation time in previous work [8] and that obtained with the proposed
hardware for VGA images.

Test Image
Previous Work [8] Proposed Method

Number of
Keypoints

Operation Time
(ms/frame)

Number of
Keypoints

Operation Time
(ms/frame)

graf1 2598 46.51 2605 33.04
bark1 4277 57.93 4278 46.40
boat1 3133 49.76 3131 37.07
tree1 3191 49.80 3199 37.32

leuven1 2237 44.33 2221 30.86
ubc1 2558 46.11 2550 33.22
bike1 2612 46.22 2606 33.35
wall1 2405 44.78 2398 31.98

Average 2877 48.18 2874 35.41
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4.3. Matching Accuracy

In order to compare the matching accuracy, Figure 6 presents the matching scores of the
proposed accelerator, the previous design [8], and another previous design, GPU-ASIFT, proposed
by Codreanu et al. [10]. The matching score is a metric for evaluating the matching accuracy of
local features [9]. The test image sets given by Morel et al. [2] were used for the experiments.
In Figure 6, the matching scores of the proposed method are the same as those of the previous design [8].
The average matching score of GPU-ASIFT [10] is higher than that of the proposed architecture in
most images. As the latitude and longitude increase, however, the matching score of GPU-ASIFT
drops significantly and even falls to zero in certain conditions. This means that GPU-ASIFT does not
maintain the characteristic of affine invariance. On the other hand, the proposed ASIFT hardware
accelerator derives the correspondences in all ranges of the latitude and longitude.
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Figure 6. Comparisons of the matching score of previous works [8,9] and the proposed hardware.

5. Conclusions

This paper proposes an ASIFT hardware architecture for enhancing operation speed. By increasing
the throughput of the bottleneck module, the utilizations of the ASIFT hardware modules are increased,
and the throughput of the entire hardware accelerator is increased as well. The proposed prior
anti-aliasing scheme reuses the anti-alias filtered image. The computation speed is improved by
removing the redundant operation of anti-alias filtering. The proposed prior down-scaling scheme reuses
the filtered image that is down-sampled by 1/2 in the horizontal direction. This scheme doubles the
throughput of the horizontal scaler module when the width of a simulated image is scaled lower than
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0.5. Thanks to the proposed methods, the throughput of the bottleneck module, which is an affine
transform module, is increased up to 31 bytes/cycle, which makes the ASIFT hardware fully utilized
for all viewpoints. The operation speed of the proposed accelerator is increased up to 1.36 times on
average compared with previous work [8] without a degradation of matching accuracy. As a result,
the proposed ASIFT hardware processes a VGA image at 28 frames/second.
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