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Abstract: In this paper, a novel link recover scheme is proposed for standalone (SA) millimeter wave
communications. Once the main beam between the base station (BS) and the mobile station (MS) is
blocked, then a bundle-beam is radiated that covers the spatial direction of the blocked beam. These
beams are generated from an analog beamformer design that is composed of parallel adjacent antenna
arrays to radiate multiple simultaneous beams, thus creating an analog beamformer of multiple
beams. The proposed recovery scheme features instantaneous recovery times, without the need
for beam scanning to search for alternative beam directions. Hence, the scheme features reduced
recovery times and latencies, as opposed to existing methods.

Keywords: millimeter wave; analog beamforming; beam recovery; link blockage; multi-beam;
recovery times

1. Introduction

Millimeter wave (mmWave) frequencies represents a major component of standalone (SA) 5G
networks for high data rates support in enhanced mobile broadband (eMBB). One key advantage here
is the contiguous available spectrum at these bands. However, the aggregated path losses impose
the use of beamforming techniques to achieve higher link gains. The use of directional transmission
and reception here (absence of omni-directional modes), requires the base station (BS) and mobile
station (MS) to scan over all spatial directions to determine the best beamforming and combining
vectors that yield the highest received signal level [1]. Consequently, this creates high computational
complexity and prolonged access times, i.e., long control-plane latencies. This, in turn, contradicts
with the International Mobile Telecommunications (IMT) framework requirements that define 10
milliseconds (ms) latency levels for eMBB in 5G systems [2]. Therefore, initial beam access schemes
need to attain reduced times to achieve short control plane latencies. Consequently, beam access and
adaptation arise as challenging problems in mmWave systems. Once initial access procedures are
performed, the BS and MS need to maintain robust link adaptation when signal levels drop due to
mobility and blockage effects. In particular, mmWave links are highly vulnerable to obstacles in the
propagation paths between the MS and BS, which degrades signal levels and triggers link blockage [3].
This deficiency is more likely to occur when transmitting at narrow beams, i.e., short coherence times
and low-channel ranks. Therefore, efficient beam recovery schemes are required to overcome link
blockages, maintain communication sessions without drops, and reduce requirements for repeated
beam access procedures.

In light of the above, this paper presents a novel beam recovery scheme to overcome link blockage
effects and provides instantaneous beam recovery times, without the requirements for beam scanning.
The scheme develops a bundle of simultaneously radiated beams that compensate for the blocked
beam using an analog beamforming architecture. Namely, when blockage effects are introduced, the
link is transiting from a line-of-sight (LoS) to a non-line-of-sight (NLoS) operation, which decays
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the signal quality. Conventional schemes require the beam to find alternative spatial directions by
performing beam scanning. Meanwhile, the proposed scheme radiates the beam-bundle after blockage
occurs, i.e., acting as backup beams. This, in turn, eliminates the need for beam scanning since the
bundle radiates in different directions, hence resulting in signal aggregation at the receiver.

This paper is organized as follows: Firstly, Section 2 presents a survey on recent studies on beam
recovery methods. Then, a proposed scheme is presented by first proposing the novel beamforming
model in Section 3, along with the channel and signal models. This is followed by the bundle-beam
recovery scheme in Section 4. Then, the performance evaluation is presented in Section 5, and finally,
conclusions and future directions are discussed in Section 6.

2. Related Work

Multiple studies have investigated the beam recovery problem in mmWave communications. The
work in [4,5] used hierarchical codebook-based procedures that restart the beam access search if a
blockage effect is triggered. The authors in [6] presented a new beam aggregation method for fast beam
recovery. The method utilized two beams to collectively add signal powers from the same direction.
Moreover, an equal gain combining (EGC) scheme was presented in [7] that also combines multiple
signals, which are received from the secondary and tertiary best directions, in order to overcome the
signal losses caused by blockage at the main beam. Note that the aforementioned schemes are limited
to low blockage parameters (obstacles of low density). Therefore, these schemes can yield unreliable
links in dense scenarios.

Additionally, authors in [8] computed the signal level at the neighboring beam to the blocked
direction affiliated with the main beam. Here the BS and MS are compelled to perform beam scanning,
which features an increased number of measurements at the neighboring directions. In turn, this
results in prolonged recovery times and vulnerability to communication sessions-drop. Moreover, a
relay node method was presented in [9] that performs a handover decision when the direct link at the
main beam is not recovered within a threshold time period. However, this scheme works only if at
least triangulation geometry is available in the MS proximity. The work in [10] proposed a reactive
beam recovery method, in which the MS exploits the microwave band to identify a back-up direction,
in order to recover links from blockage without requirements for handover procedures. Note that the
latter scheme is dependent on sub-6GHz microwave frequencies, which impedes the realization of SA
mmWave networks.

3. System Model

3.1. Beamforming Design at the MS

Consider a MS equipped with an analog beamformer that is composed of parallel uniform linear
arrays (ULA), where each ULA radiates a single beam, i.e., forming simultaneous multiple beams
radiation in different directions. Each antenna is connected to a single analog phase shifter to provide
continuous scanning capabilities (as opposed to step scanning in digital phase shifters). The ULAs are
then connected to a single RF chain, as shown in Figure 1. Consider the design details.

In this paper, a novel multi-beam parallel array model is proposed at the MS. Hence, consider
a MS equipped with a group of r = 1, 2, . . . , R parallel arrays, each composed of n = 1, 2, . . . , Nr

co-polarized antenna elements arranged in a linear geometric setting, i.e., forming one-dimensional
radiation (1D). The elements are uniformly oriented with dr equi-spacing, i.e., d = λ/2, where λ

represents the mmWave wavelength, λ = c/ f c, c is the speed of light, and f c is the carrier frequency.
This spacing value is chosen so that grating lobes and pattern blindness are avoided, as well as to
ensure there are minimal mutual coupling effects. Thus, it satisfies the formula d <

(
1 +

∣∣∣cosθr
0

∣∣∣), where
the variable θr

0 is the observation angle from array r at the MS in azimuth direction.
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= 2 cos−1(1− 1.391λ/Ny
MSd), f or θMS

0 = 0,π. (3)

One important remark here, is that the spatial footprint of the array increases proportionally to a
broadening factor of b, b = 1/ cos θMS

0 for directions scanned off the broadside. Moreover, the array
gain is gauged by GAMS= AMSGa, where Ga is the gain for a single antenna element. For example,
microstrip rectangular patch antennas are widely chosen for mmWave transceivers, and they provide a
gain range of 5–7 dBi [13,14].

Each antenna array is fed in parallel by an array of P phase shifters, in particular, quadrature
varactor-loaded transmission-line phase shifters. Note that the total number of phase shifters is equal
to the number of antennas. Varactor phase shifters are chosen here due to their high shifting times
(in µs), low power requirement, reduced loss rates, and capability to continuously adjust and control
the [0, 2π] spatial plane using a single control voltage unit. The phase shifters are then connected
to a single RF chain. Overall, this structure formulates an analog beamfomer composed of multiple
radiated beams that carry the same modulated data. The benefit of using an analog beamformer here
is to reduce the power consumption levels associated with the RF chains, as in the case of digital and
hybrid architectures. Since a single RF chain is used at the MS, the orthogonal beam coding technique
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is adopted here. Namely, the weights of the antenna elements are modified by a unique set of codes
to produce unique beams of distinguished signals. The orthogonal codes here create distinguishable
spatial signatures for each beam-bundle, and thereby can identify the exact direction of the highest
received signal in the bundle-beam from that particular direction.

Hence, this work exploits orthogonal Hamming codewords, cm, i.e., cm[e, dH], where e is the
codeword length, and dH is the Hamming distance between successive codewords. Additionally, each
codeword is scaled by the control signals, z, and features [
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MS in 
Equation (5) symbolizes the amplitude of the n-th antenna, the wave number, and the maximum 
radiation principal at the BS, evaluated as  

BS BS BS BS
0 0 0sin cos( )nvaϕ θ φ φ= − −  (6) 

F is the
total number of codebits. Consider the following codewords developed for a single bundle-beam,
represented as:

c1 = [−1 − 1 − 1 − 1 − 1 − 1 − 1 − 1] c2= [1 − 1 − 1 − 1 1 1 1 − 1]
c3 = [−1 1 − 1 − 1 1 − 1 1 1] c4= [−1 − 1 1 − 1 1 1 − 1 1]

(4)

These codewords feature zero cross-correlation, which yields in orthogonal beams in the bundle,
hence receiving distinguishable signals in the directions of the beams [15,16]. Here, each codebit in the
Hamming codeword is applied to the weight of a single antenna, where the number of codebits
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F is
equal to the number of antennas Nr in the parallel array r. The codebit is either “1” or “−1”. If it is “1”,
then the weight of the antenna remains the same, i.e., same amplitude and phase. Meanwhile, if the
codeword is “−1”, then the conjugate is applied to the weight, i.e., keeping the same amplitude and
rotating the phase by π.

These codes are reciprocal at the MS and BS. Therefore, when a signal is received at the BS, it
is basically receiving one codeword. Namely, it multiplies the received codeword (appearing in the
weights of the antennas) by all the four codewords, in order to retrieve the unique codeword and
its affiliated beam in the bundle. As a result, the BS now identifies the directions with the highest
signal level.

3.2. Digital Beamformer at the BS

Digital beamforming is adopted at the BS due to the abundant power input levels, and the
necessity to provide multi-user connectivity. The beamformer architecture shown in Figure 2 is based
upon a uniform circular array (UCA) with an identical radiation pattern of symmetric beamwidth in all
spatial directions (no beam broadening at endfire direction), i.e., providing similar signal levels to MSs
at different locations, with high directivities. The UCA here also features reduced sidelobe levels (SLL),
and it eliminates the need for back-to-back arrays, as the case in the 1D ULA. Hence, consider a BS
equipped with a UCA composed of NBS total number of antenna elements, which are uniformly spaced
on the x–y plane along radius, a, in a circular geometric setting. Now each nBS antenna, nBS ∈ NBS,
is also connected to an analog phase shifter to provide continuous beam scanning. This structure is
connected to a group of RF chains RBS, where the total number of RF chains is equal to the number of
antennas. Overall, this setting results in a single beam radiated from each antenna, i.e., represented
by the beamforming vector, vBS, vBS ∈ VBS; where VBS is the beamforming matrix that represents
the beam-bundle at the BS, BBS, such that VBS = VbbVan, where Vbb and Van denote, in order, the
beamforming matrices at the baseband and analog stages, i.e., Vbb= nBS x rBS and Van= rBS × nBS.
Here, each vector vBS carries unique modulated data that can be utilized for multi-users, or it supports
a single datum to support MS with a beam-bundle when blockage occurs. This vector is gauged by the
AF for the UCA, ABS i.e.,

ABS =

NBS∑
n=1

In exp( jva sinθ cos(φ−φBS
n ) + ϕBS

s , (5)

where the angles θ and φ represent the directions along the y- and x- axes, ϕBS
n is the angular position

of the n-th antenna, where ϕBS
n = 2πnBS/NBS. Moreover, the variables In, v and ϕMS

s in Equation (5)
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symbolizes the amplitude of the n-th antenna, the wave number, and the maximum radiation principal
at the BS, evaluated as

ϕBS
0 = −va sinθBS

0 cos(φBS
0 −φ

BS
n ) (6)Electronics 2019, 8, x FOR PEER REVIEW 5 of 11 
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3.3. Signal Model

Consider that MS and BS entities operate in LoS settings in urban outdoor environments composed
of various objects in the proximity of the MS. In addition, assume a full-duplex division duplexing
(FDD) channel of reciprocal channel state information (CSI) at both entities. Then, the downlink (DL)
received signal profile at the MS, yan, is expressed as
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bb= PtrUH
MSVBSHz + UH

MSw, (7)

where Ptr, H, z, and w denote in order the transmitted signal power, the power complex channel, the
reference control signal, and the additive white Gaussian noise (AWGN), i.e., w ∼ N(0, σ 2

w

)
, where

σ2
w is the noise variance.

3.4. Channel Model

The geometric channel model, H, is adopted here due to the scattering nature of mmWave
propagation. This is highly attributed to the large obstacle dimensions, as compared to the propagating
wavelength at these bands. Consequently, this yields in reduced scattering profile, and hence results in
poor scattering signal profile of a low number of rays, i.e., Poisson distribution. In turn, this results
in high dependence on the geometry of the objects in the propagation link. This model is expressed
as [17]

H =

√
NBSNMS

Γbl

K∑
k=1

L∑
l=1

hlVBSUH
MS, (8)

where the variables Γbl, and hl represent the blockage path loss model, and the gain of the l-th path.
The signal profile here, is composed of L total number of paths that are observed in K total number of
clusters, i.e., L ∈ K. These paths follow Rician-distribution that accounts for the LoS-to-NLoS plink
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transition caused by blockage effects. Namely, the path gain is modeled as hl ∼ R (0 , ζ), where ζ is
the power ratio between the dominant and other paths. Moreover, the beamforming and combining
matrices, VBS and UMS (which also represent the response vectors), are evaluated using their far-field
array factors (AF), as presented in the beamforming models.

3.5. Blockage Model

As mentioned earlier, the blockage path loss model, Γbl, accounts for LoS-to-NLoS link transition,
when obstacles of different densities are present in the direct propagation link affiliated with the main
beam. This model is formulated as [18]

Γbl = I
[
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(d )] ΓNLoS(d), (9)

where I is an indicator function that specifies the link-blockage state, i.e., I(x) = 1 iff x = 1, and it is set
as I(x) = 0 otherwise. Moreover, the variables ΓLoS(d) and ΓNLoS(d) represent the path loss for the
LoS and NLoS settings, respectively, expressed as [19],

ΓLoS(d) = 10 log10(dre f ) + 10 δLoS log10 (d), f or LoS, (10)

ΓNLoS(d) = 10 log10(d re f ) + 10 δNLoS log10 (d), f or NLoS, (11)

where the variable d represents the distance between the BS and MS, dre f is close-in reference distance,
and δLoS and δNLoS are the path loss exponents (PLE) for the LoS and NLoS settings, respectively.
Moreover, the notations
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where these best vectors (uMS, vBS)bst present the maximum principal directions of the primary beams
at the MS and BS, which are selected for the data-plane transmission. Now, once the session starts,
the spectral efficiency can take various levels based on the link quality. First, when the link is in LoS,
it features high link quality without obstacles (blockage parameter is zero), I (x) = 0, as well as high
instantaneous spectral efficiency, δinst.

When the obstacles in the propagating path become present in the direct link associated with the
main beam, it starts to exhibit instantaneous low spectral efficiency, and then blockage mode is in effect.
Here the indicator function is set as I(x) = 1, to indicate the LoS-to-NLoS transition. The blockage
threshold is set based on the spectral efficient level, as

δinst < min
{
log2(1 + 100.1(SNR−Ω)), δmax

}
, (13)

where SNR stands for the signal-to-noise ratio, the variable Ω denotes the loss factor (measured in dB),
and δmax represents the maximum spectral efficiency [20]. Note that the SNR is expressed as,

SNR =
PtrGMSGBS|hl|

2

ΨT0
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where Ψ, denotes the Boltzmann constant, T0 is the operating temperature,
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5. Performance Evaluation

The proposed recovery scheme is now evaluated using key metrics, in particular, the spectral
efficiency, received signal profile, and recovery times. Consider Table 1 for the overall system settings.

Table 1. System parameters.

Category Parameter Value

System fα (GHz), b (MHz), Ptr(dBm) 28, 700, 30
Arrays a, gn, NMS, NBS, 1, 5, 256, 256

Channel σ2
w (dB) ζ, d (dB), ρ 1, 3, 5, 250, 0–1

Path loss dre f (m), δLoS, δNLoS 5, 2.6, 4
Spectral efficiency Ω, δmax 2, 10

5.1. Spectral Efficiency

Figure 4 shows the spectral efficiency for the proposed scheme at various blockage densities. The
proposed scheme aims to enhance the spectral efficiency once beam blockage is in effect. Figure 4
shows the spectral efficiency for the proposed scheme versus conventional recovery methods that test
neighboring beam directions or reset beam scanning procedures. When the direct propagation link
between the MS and BS is free of obstacles (LoS operation), i.e., I(x) = 0, high spectral efficiency is
observed here. As a result, conventional methods and the proposed bundle-beam scheme yield high
spectral efficiency. However, when obstacles start to appear in the propagation path of the primary
beam, then the received signal level degrades, affecting capacity levels, and thereby reducing the
spectral efficiency, as observed for the conventional schemes. For example, the work in [8] testing
neighboring beams, requires beam scanning. Moreover, the beam aggregation method enhances the
spectral efficiency if the density of the obstacles is low. However, this method results in a small number
of scattering paths, attributed to the limited spatial coverage provided by the recovery narrow beams,
which has a HPBW that is smaller than the dimensions of the obstacles. Meanwhile, the proposed
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scheme achieves high spectral efficiency if blockage parameters are dense. This is attributed to the
wide spatial space covered by the back-up beam-bundle, which also yields in a high scattering profile
that is leveraged using MRC.Electronics 2019, 8, x FOR PEER REVIEW 8 of 11 
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5.2. Received Power Delay Profile

Figure 5 shows the received power profile in time domain for the proposed scheme as opposed
to conventional schemes (i.e., testing adjacent beam directions) shown in Figure 6. The proposed
recovery scheme yields a rich scattering profile due to the wide spatial coverage achieved by the
instantaneous back-up beams, with HPBW that exceeds the obstacle’s dimensions, as well as enriching
the reflections in the Rician path gains in the channel settings. For example, the proposed scheme
exhibits 4–5 rays in 2–3 clusters when blockage is triggered, as opposed to 2–3 rays in 1–2 clusters for
the neighboring beams testing and conventional codebook schemes. Furthermore, the recorded clusters
here are received with power levels of −60 dBm, which relaxes the receiver sensitivity requirements.
This is compared to −120 dBm and −140 dBm signal levels for the other schemes, which results in
significant challenges in acquiring the signal, liming coverage ranges, as well as providing poor low
channel capacity and impeding high channelization services for SA mmWave networks.
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5.3. Beam Recovery Times

One major performance metric for beam recovery schemes is the beam recovery time. It is defined
as the overall time period that is required to determine an alternative link direction once the direct link
of the main beam is blocked. Namely, it is the period required to determine the new best beamforming
and combining vectors, and their principal directions at the MS and BS. Figure 7 shows the recovery
times at the MS TMS

rec (likewise for the BS, TBS
rec). The proposed scheme achieves instantaneous recovery

times without the requirement for beam scanning or resetting the access schemes when a link is
blocked. The only time required here is the PSS transmission duration of the beam vectors (i.e., 200
µs). Overall, the scheme here promotes the feasibility of SA mmWaves with ultra-low recovery times,
thereby realizing low latency requirements.
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6. Conclusions

This paper presents a novel beam recovery scheme for standalone millimeter wave communications,
without the reliance on sub 6 GHz microwave bands assistance. The scheme is based on novel analog
beamforming architecture that radiates multiple instantaneous beam directions from a single RF chain.
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Here, once the main beam is blocked, then a group of adjacent simultaneous beams are radiated that
cover the blocked beam and promotes maximum ratio combining at the MS for enhanced signal profile
and spectral efficiency. The proposed scheme features instantaneous recovery times, which can realize
ultra-low latency levels. Future efforts will investigate the effects of user mobility, coherence times,
and terrain in blockage modeling, and evaluating the proposed scheme under these effects.
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