
electronics

Article

Accelerating Deep Neural Networks by Combining
Block-Circulant Matrices and Low-Precision Weights

Zidi Qin 1, Di Zhu 1, Xingwei Zhu 1, Xuan Chen 1, Yinghuan Shi 2, Yang Gao 2, Zhonghai Lu 3,
Qinghong Shen 1, Li Li 1 and Hongbing Pan 1,*

1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
qinzidi@smail.nju.edu.cn (Z.Q.); zhudi@smail.nju.edu.cn (D.Z.); flzs@smail.nju.edu.cn (X.Z.);
cx0705@smail.nju.edu.cn (X.C.); qhshen@nju.edu.cn (Q.S.); lili@nju.edu.cn (L.L.)

2 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;
syh@nju.edu.cn (Y.S.); gaoy@nju.edu.cn (Y.G.)

3 School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology,
114 28 Stockholm, Sweden; zhonghai@kth.se

* Correspondence: phb@nju.edu.cn

Received: 23 November 2018; Accepted: 5 January 2019; Published: 10 January 2019
����������
�������

Abstract: As a key ingredient of deep neural networks (DNNs), fully-connected (FC) layers are
widely used in various artificial intelligence applications. However, there are many parameters in
FC layers, so the efficient process of FC layers is restricted by memory bandwidth. In this paper,
we propose a compression approach combining block-circulant matrix-based weight representation
and power-of-two quantization. Applying block-circulant matrices in FC layers can reduce the
storage complexity from O(k2) to O(k). By quantizing the weights into integer powers of two,
the multiplications in the reference can be replaced by shift and add operations. The memory usages
of models for MNIST, CIFAR-10 and ImageNet can be compressed by 171×, 2731× and 128× with
minimal accuracy loss, respectively. A configurable parallel hardware architecture is then proposed
for processing the compressed FC layers efficiently. Without multipliers, a block matrix-vector
multiplication module (B-MV) is used as the computing kernel. The architecture is flexible to support
FC layers of various compression ratios with small footprint. Simultaneously, the memory access can
be significantly reduced by using the configurable architecture. Measurement results show that the
accelerator has a processing power of 409.6 GOPS, and achieves 5.3 TOPS/W energy efficiency at
800 MHz.

Keywords: hardware acceleration; deep neural networks (DNNs); fully-connected layers; network
compression; VLSI

1. Introduction

Deep neural networks (DNNs) have been widely applied to various artificial intelligence (AI)
applications [1–4] and achieve great performance in many tasks such as image recognition [5–7], speech
recognition [8] and object detection [9]. To complete the tasks with higher accuracy, larger and more
complex DNN models emerge and become increasingly popular. Large scale DNNs, however, require
massive parameters and high computation complexity. For instance, there are 138 million weights
and 15.5 billion multiply-accumulate (MAC) operations in VGG-16 for image recognition [10]. As a
result, the implementation of these DNN models is challenging for portable devices with restricted
computational capability and memory resources.

Fully-connected (FC) layers are applied in various deep learning systems. Neurons in an FC
layer have connections to all activations in the previous layer, making FC layers the most memory

Electronics 2019, 8, 78; doi:10.3390/electronics8010078 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/8/1/78?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8010078
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 78 2 of 18

intensive in large DNN networks. For example, 96% and 90% of weights storage are taken by FC
layers in AlexNet and VGG-16, respectively. In models that only consist of FC layers, there can be
billions of parameters [11]. The efficient process of FC layers is mainly limited by bandwidth in large
networks [12]. Thus, it is essential to reduce the memory access of FC layers, especially when they are
deployed in embedded devices containing limited hardware resources.

Several network compression techniques have been proposed to reduce the redundant parameters
in DNNs. Targeting the compressed networks, hardware accelerators have been proposed to process
DNNs with higher performance and energy efficiency. Focusing on pruning-based technique [13],
a corresponding hardware accelerator has been developed in [12]. By exploiting the sparsity of both
weights and activations, the weights are stored in a compressed format to save memory usage and
unnecessary computations are removed. The pruning-based technique, however, leads to irregular
network structure and unbalanced computation [12]. In [14–17], quantization for weights with low
precision has been explored. Although bringing some accuracy loss, quantization remains an efficient
way to reduce the weight memory size and improve the energy efficiency of DNN hardware. In [18–20],
DNN accelerators based on binary weights have been proposed.

Using structured matrices to explore the redundancy of DNNs is another efficient technique.
Circulant matrix-based methods can provide good compression ratio for weights, and Fast Fourier
Transformation (FFT) can be employed to reduce the computational complexity [21–24]. In [24],
block-circulant matrices are employed in FC layers and the circulant matrix-vector multiplications are
accelerated by FFT-based methods in both the training and inference. Compared with pruning-based
approach in [13], this method avoids irregular sparse network structure and inefficient implementation
of activations and indices. Liao et al. [25] proposed block-circulant matrix-based DNN training and
inference schemes, as well as an optimized FFT-based hardware architecture. Compared with prior
work, this approach achieves significantly improvement in energy efficiency. However, using FFT and
IFFT transformation limits the quantization of weights. To achieve good balance between the hardware
performance and precision loss in FFT-based method, at least 12 bits are required to represent a weight.
In addition, additional computation components are needed to perform FFT and IFFT.

In this paper, an efficient compression technique for fully-connected layers is proposed.
We employ block-circulant matrix-based method to compress the network weight matrices and further
quantize each entry in weight matrices to an integer power of two. For block-circulant matrix-based
FC layers with low precision weights, a configurable hardware accelerator, called BPCA, is proposed.
The main contributions of the paper are summarized as follows.

(1) An efficient compression technique combining block-circulant matrices and power-of-two
quantization for fully-connected layers is proposed. This approach can significantly save the
networks’ storage usage. Specifically, we directly train the FC layers in DNN models with
block-circulant matrices and the storage requirement can be reduced from O(n2) to O(n).
Based on the above models, we further quantize each entry in weight matrices to an integer power
of two. The computational complexity can be significantly reduced because the multiplications in
the forward pass can be replaced by shift operations.

(2) An efficient, configurable and scalable hardware architecture is proposed for the compressed
networks. Instead of FFT-based acceleration methods, we design this architecture to take
advantage of the circular feature of weight matrices and power-of-two quantization. Notably,
multipliers are replaced by customized processing elements (PEs) using shift and add operations.
Due to the adjustable sizes of block-circulant matrices, we design a configurable hardware
architecture. A reorganization scheme is used to realize the configurability of layers and reduce
the parameters’ memory access.

(3) Experiments on several datasets (MNIST, CIFAR10, and ImageNet) are presented to prove the
general applicability of the proposed approach. According to our experiments, 4 bits are enough
to represent the weights, thus quantization provides eight times additional compression ratio.

Electronics 2019, 8, 78 3 of 18

The proposed hardware architecture was also implemented and evaluated. The implementation
results demonstrate that the proposed design has high energy efficiency and area efficiency.

2. Background

2.1. Computation of FC Layers

Matrix-vector multiplication (MV) is the key computation in FC layers in the DNN inference.
The computation in an FC layer is performed as follows

y = f (Wx + v) (1)

where x is the input activation vector; y is the output activation vector; W ∈ Ra×b is the weight matrix
of this layer in which b input nodes connect with a output nodes; v ∈ Ra is the bias vector; and f (·) is
the nonlinear activation function and the Rectified Linear Unit (ReLU) is widely adopted in various
DNN models.

The space complexity and computational complexity of an FC layer are O(ab). In practice,
the values of a and b in an FC layer can be large and there is no data reuse, so the computation of
FC layers is memory intensive. For many neural network architectures, the memory access is the
bottleneck to process FC layers efficiently.

2.2. Block-Circulant Matrix

A circulant matrix Wc ∈ Rk×k can be defined by a primitive vector wc = (w1
c , w2

c , . . . , wk
c), which

is the first row of the circulant matrix:

Wc =


wc

1 wc
2 wc

3 · · · wc
k

wc
k wc

1 wc
2 · · · wc

k−1

wc
k−1 wc

k wc
1 · · · wc

k−2

...
...

...
. . .

...
wc

2 wc
3 wc

4 · · · wc
1

 . (2)

If a matrix is composed of a set of circulant sub-matrices (blocks), it is defined as a block-circulant
matrix [24]. A block-circulant matrix Wb can be expressed by

Wb =


Wc

1,1 Wc
1,2 Wc

1,3 · · · Wc
1,j

Wc
2,1 Wc

2,2 Wc
2,3 · · · Wc

2,j
Wc

3,1 Wc
3,2 Wc

3,3 · · · Wc
3,j

...
...

...
. . .

...
Wc

i,1 Wc
i,2 Wc

i,3 · · · Wc
i,j

 , (3)

where Wc
i,j ∈ Rk×k is a circulant sub-matrix and can be represented with a primitive vector of length k.

Thus, if a normal matrix is transformed into a block-circulant matrix, the numbers of parameters to be
stored can be reduced by k times.

3. Proposed Compression Method

The approach to present weight matrices of DNNs using block-circulant matrices is proposed
in [24], where an FFT-based acceleration method is applied to accelerate the inference and training.
Instead of the FFT-based method, we propose to employ the power-of-two quantization in the
block-circulant matrix-based DNNs to further reduce the storage requirement and computational
complexity. This section describes the proposed compression method combining block-circulant
matrix-based weight representation and power-of-two quantization.

Electronics 2019, 8, 78 4 of 18

3.1. Block-Circulant Matrix-Based FC Layers

When a block-circulant matrix is applied in an FC Layer, the original weight matrix W ∈ Ra×b

can be represented by 2D blocks of square sub-matrices, where each sub-matrix is a circulant matrix.
Assume that the weight matrix W is partitioned into p × q sub-matrices and the block size (size
of each sub-matrix) is denoted by k. Here, p = a

k and q = b
k . Then, W = [Wij], i ∈ {1 . . . p},

j ∈ {1 . . . q}, and assume that the primitive vector of Wij is wij = (w1
ij, w2

ij, w3
ij, . . . , wk

ij). Simultaneously,

the input vector is divided into q sub-vectors and then x = [x1, x2, x3, . . . , xj]
T , j ∈ {1 . . . q}, where

xj = [x1
j , x2

j , . . . , xk
j]

T . Then, the M×V in Equation (1) is given by (with bias and ReLU omitted):

y = Wx =


∑

q
j=1 W1jxj

∑
q
j=1 W2jxj

. . .
∑

q
j=1 Wpjxj

 =


y1

y2

. . .
yp

 , (4)

where yi ∈ Rk and yi = [y1
i , y2

i , . . . , yk
i]

T .
Figure 1 illustrates the representation approach. A weight matrix is partitioned into p× q circulant

sub-matrices and the block size is 4. Then, the result of Wx can be computed by the multiplications of
sub-matrices and corresponding sub-vectors. As described in Section 2.2, only the primitive vector
of each sub-matrix need to be stored, so the storage complexity of an FC layer will be reduced from
O(ab)(O(pqk2)) to O(pqk).

+0.12 +0.22 ‐0.15 +0.23

+0.23 +0.12 +0.22 ‐0.15

‐0.15 +0.23 +0.12 +0.22

+0.22 ‐0.15 +0.23 +0.12

‐0.15 +0.53 ‐0.44 +0.32

+0.32 ‐0.15 +0.53 ‐0.44

‐0.44 +0.32 ‐0.15 +0.53

+0.53 ‐0.44 +0.32 ‐0.15

‐0.16 +0.91 ‐0.14 +0.62

+0.62 ‐0.16 +0.91 ‐0.14

‐0.14 +0.62 ‐0.16 +0.91

+0.91 ‐0.14 +0.62 ‐0.16

‐0.24 +0.01 ‐0.84 +0.52

+0.52 ‐0.24 +0.01 ‐0.84

‐0.84 +0.52 ‐0.24 +0.01

+0.01 ‐0.84 +0.52 ‐0.24

+0.12 +0.22 ‐0.15 +0.23



‐0.45

‐0.16

+0.12

+0.32



‐0.034

‐0.144

 0.116

‐0.009

‐0.45

‐0.16

+0.12

+0.32

‐0.85

‐0.16

+0.92

+0.37







 

y 

11W 1 jW

1iW
ijW



W x



11 1W x

1x

ix

 Primitive vector

+0.22 ‐0.15 +0.23 +0.12

‐0.15 +0.23 +0.12 +0.22

+0.23 +0.12 +0.22 ‐0.15

Figure 1. Block-circulant matrices representation for FC Layers.

Because of the flexible size of block-circulant matrix, the compression ratio is adjustable and
determined by the block size. Larger block size brings better compression ratio, but there will be
more accuracy loss. On the contrary, smaller block size provides higher prediction accuracy, but the

Electronics 2019, 8, 78 5 of 18

compression ratio may degrade. Notably, block-circulant matrix-based DNNs have been proven to
asymptotically approach the accuracy of original networks using theoretical analysis [26].

For the training of block-circulant matrix-based DNNs, the corresponding training algorithm
based on backward propagation is proposed in [24]. In this work, we do not use FFT in the inference
and training, so we remove FFT from the training algorithm in [24]. The compressed DNNs are directly
trained with block-circulant matrix-based weights, where no retrain process is required.

3.2. Power-of-Two Quantization

Suppose that a DNN model, which uses block-circulant matrices in FC layers, is pre-trained with
full-precision weights. We propose to represent each entry in the weight matrix with an integer power
of two. Thus, the weight matrix W can be approximated by a low-precision weight matrix Ŵ, and each
entry ŵ of Ŵ is defined by

ŵ =

{
0 if w = 0
sign(w) · 2n otherwise

(5)

where n is an integer and sign function is used to decide the sign of ŵ. Here, n is calculated by

n = round(log2 | w |), (6)

where n ∈ [n1, n2], n1 and n2 are two integers, and n1 < n2. Thus, all the entries of Ŵ can be selected
from a codebook set

Sn = {0,±2n1 , . . . ,±2n2}. (7)

If we use b-bit indices to represent the entries of Sn, there are total M = 2b − 1 combinations of
indices. To determine the value of n2, we can find the maximal entry of Ŵ and then use Equation (6) to
calculate n2. The minimum value of n1 can be determined by n1 = n2 − 2b−1 + 2. For example, we use
4 bit indices and the values of original weights are limited in [−1, 1]. Then, n2 is 0 and the minimal
value of n1 is −6. Thus, the codebook set Sn = {0,±2−6,±2−5,±2−4,±2−3,±2−2,±2−1,±1}. Then,
we use the 4-bit indices to encode each entry of Sn.

Since all entries are quantized into integer powers of two, the multiplications in the M×V can
be replaced by shift operations. The computational complexity in the inference can be significantly
reduced and no multipliers are required.

3.3. Training and Quantization Strategy

A two-stage training process combining block-circulant matrix-based weight representation and
retrain-based quantization strategy is proposed. Algorithm 1 describes the training process. In the
first stage, block-circulant matrices are employed in FC layers of a DNN model. Specifically, primitive
vectors of the sub-matrices in FC layers are randomly initialized with normal distribution. Then,
other parameters in the block-circulant matrices are generated by using the primitive vectors. Next,
we train the network with the block-circulant matrix-based training algorithm. In the second stage,
based on the pre-trained model, we further quantize the weights with power-of-two scheme, and then
retrain the network with quantized parameters. At the same time, the network weight matrices are
still represented with block-circulant matrices.

Electronics 2019, 8, 78 6 of 18

Algorithm 1 Training strategy with block-circulant matrices and weight quantization. PoT() is
power-of-two quantization and C is the loss function.

Input: A minibatch of inputs I , targets at, previous weights Wt and previous learning rate ηt.

Output: Updated weights Wt+1 and updated learning rate ηt+1

1: Quantize the original weights:

2: Wq = PoT (Wt)

3: ot = PoTForward(I, Wq) //Forward propagation with the quantized parameters in block-circulant

weight matrices

4: ∂C
∂Wq = PoTBackward(∂C

∂ot
, Wq, at) //Backward propagation with the quantized weights

5: Wt+1 = Update(Wq, ∂C
∂Wq) // Update the original weights with respect to Wq

6: ηt+1 = Update(ηt, ∂ηt

∂t) // Update the learning rate

4. Efficient Hardware Architecture

As shown in Figure 2, the weight matrix of an arbitrary FC layer can be represented by
Prow × Pcolumn circulant matrices, where Prow and Pcolumn denote the row number and column number
of blocks in the weight matrix, respectively. According to Equation (4), the MV in the computation of an
FC layer can be partitioned into multiplications of circulant sub-matrices and sub-vectors. Each Wijxj
can be computed independently and then the results of Wijxj in the same row can be accumulated
to get the corresponding result vector yi. All the multiplications can be replaced by shift operations
by using the quantization scheme proposed in Section 3.2. To take full advantage of the quantization
scheme, we do not use the FFT-based acceleration method in [24] because: (1) FFT-based method limits
the quantization of weights. In [24], the accuracy is low, if the weights are quantized to 4 bits. (2) If the
weights are transformed by FFT, we cannot use shift-operations to remove multiplications.

P_row 1

P_row p

P_column 1 P_column q

1

1 0

P_column 2

0 1

1 0

P_row 2 0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

s block
0

s block
1

s block
1

s block
0

0

Vector

Figure 2. Computing scheme for an FC layer.

As shown in Figure 2, the weight matrix of an arbitrary FC layer can be represented by
Prow × Pcolumn circulant matrices, where Prow and Pcolumn denote the row number and column number
of blocks in the weight matrix, respectively. According to Equation (4), the MV in the computation of an
FC layer can be partitioned into multiplications of circulant sub-matrices and sub-vectors. Each Wijxj
can be computed independently and then the results of Wijxj in the same row can be accumulated

Electronics 2019, 8, 78 7 of 18

to get the corresponding result vector yi. All the multiplications can be replaced by shift operations
by using the quantization scheme proposed in Section 3.2. To take full advantage of the quantization
scheme, we do not use the FFT-based acceleration method in [24] because: (1) FFT-based method limits
the quantization of weights. In [24], the accuracy is low, if the weights are quantized to 4 bits. (2) If the
weights are transformed by FFT, we cannot use shift-operations to remove multiplications.

4.1. Reorganization of Block-Circulant Matrix

We can directly compute the sub-matrix and sub-vector multiplications when the block size is
small. However, when the block size is large, e.g. 256 × 256, directly computing the Wijxj is inefficient.
In addition, because of the variable block size, a configurable hardware architecture is required. Thus,
we propose to further divide every sub-matrix into smaller sub-blocks, each of which is still a circulant
matrix. Similar chessboard division method is proposed in [27] for each sub-matrix. Figure 2 shows an
example of the division, where each sub-matrix is partitioned into four sub-blocks. Specifically, we use
a reorganization scheme [27] in each sub-matrix to further transform it into a block pseudocirculant
matrix [28,29]. The detailed transformation scheme is illustrated as follows.

We assume that a sub-matrix Wij is partitioned into α2 sub-blocks, each of which is γ by γ (γ = k
α)

short circulant matrix denoted by Pβ
ij :

Pβ
ij =



wβ
ij wβ+α

ij wβ+2α
ij · · · wβ+(γ−1)α

ij

wβ+(γ−1)α
ij wβ

ij wβ+α
ij · · · wβ+(γ−2)α

ij

wβ+(γ−2)α
ij wβ+(γ−1)α

ij wβ
ij · · · wβ+(γ−3)α

ij
...

...
...

. . .
...

wβ+α
ij wβ+2α

ij wβ+3α
ij · · · wβ

ij


, (8)

where β = 1, 2, 3, . . . , α. Correspondingly, vector xj is divided into α small vectors denoted by

X1
j , X2

j , X3
j , . . . , Xα

j , where Xβ
j = (xβ

j , xβ+α
j , xβ+2α

j , . . . , xβ+(γ−1)α
j), β = 1, 2, . . . , α.

The circulant matrix vector multiplication (C-MV) yi = Wijxj can be represented as follows


Y1

i
Y2

i
Y3

i
...

Yα
i

 =



P1
ij P2

ij P3
ij · · · Pα

ij
SγPα

ij P1
ij P2

ij · · · Pα−1
ij

SγPα−1
ij SγPα

ij P1
ij · · · Pα−2

ij
...

...
...

. . .
...

SγP2
ij SγP3

ij SγP4
ij · · · P1

ij





X1
j

X2
j

X3
j

...
Xα

j


, (9)

where Sγ is the cyclic shift operator matrix

Sγ =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0


. (10)

Then, we can compute yi = (Y1
i , Y2

i , Y3
i , . . . , Yα

i)
T in parallel and Yβ

i = (yβ
i , yβ+α

i , yβ+2α
i , . . . , yβ+(γ−1)α

i),
β = 1, 2, . . . , α. For example, Y1

i is given by

Y1
i = P1

ijX
1
j + P2

ijX
2
j + P3

ijX
3
j + . . . + Pα

ij X
α
j . (11)

Electronics 2019, 8, 78 8 of 18

Each Pβ
ij Xβ

j in the polynomial in Equation (11) is a C-MV and can be computed separately.

4.2. Architecture of Block-MV

Using the reorganization scheme in Section 4.1, we can transform a sub-matrix into smaller
sub-blocks. By observing the block size, we set the 16× 16 as the basic size of a sub-block, because
all block sizes in our experiment were the multiples of 16. If the block size is 16× 16, we can directly
compute the C-MV. If the block size is larger than 16, the matrix can be naturally reorganized into
several 16× 16 sub-blocks. As shown in Figure 3, the Block-MV (B-MV) module is the key computing
module for processing the short C-MV, Pβ

ij Xβ
j . Suppose the block size k = 64 and α = k

16 = 4.
Then, Wijxj can be represented as follows


Y1

i
Y2

i
Y3

i
Y4

i

 =


P1

ij P2
ij P3

ij P4
ij

SγP4
ij P1

ij P2
ij P3

ij
SγP3

ij SγP4
ij P1

ij P2
ij

SγP2
ij SγP3

ij SγP4
ij P1

ij




X1
j

X2
j

X3
j

X4
j

 . (12)

When computing Y1
i , X1

j = (x1
j , x5

j , x9
j , . . . , x61

j) and the primitive vector of P1
ij, p1

ij =

(w1
ij, w5

ij, w9
ij, . . . , w61

ij) will first be fetched. Then, the primitive vector will be shifted to form the other

rows in P1
ij. R0 and C0 are parameters to denote the row and column of each sub-block. If R0 > C0,

p1
ij needs an additional left shift to implement the function of Sγ. Then, the activation vector and

corresponding weight vectors will be sent to 16 row processing elements (R-PEs) to compute dot
products in parallel.

When P1
ij is computed, X2

j and p2
ij will be prepared by a read controller (R-ctrl). After the calculation

is finished, P2
ijX

2
j will be computed in the B-MV and the result will be accumulated in R-PEs. Next,

P3
ijX

3
j and P4

ijX
4
j will be computed successively. When computation of C-MVs in the first row is finished,

the result will be sent to an accumulator module. It is the same for computing Y2
i , Y3

i , and Y4
i in the

B-MV. Finally, when the B-MV finishes all the C-MVs of one sub-matrix, it will start the processing
for the following sub-matrix. With the parallel processing of R-PEs, a sub-block can be processed in
1 clock, so α2 clocks are required to compute a sub-matrix.

Block-MV

CShift
(Sr)

CShift

r cS S

CShift

CShift

R-PE 1

R-PE 2

R-PE 15

R-PE 16

1
ijp

1
jX

M
U

X 1
iy

1
iy

1 14
iy

1 15
iy

Figure 3. Architecture of Block-MV.

Electronics 2019, 8, 78 9 of 18

4.3. Row Processing Element

As shown in Figure 4, R-PEs are basic processing elements in the B-MV and each R-PE can
compute m MACs in parallel. The mathematical representation of an R-PE’s output is

Psum =

{
∑m

i=1 x[i]w[i] if reset = 0
Psum + ∑k

i=1 x[i]w[i] otherwise
(13)

where w[i] is a weight parameter and x[i] is an element of an activation vector. Since the multiplications
are replaced by shift operations, the element-wise multiplication of w[i] and x[i] is implemented with
a basic shift unit (BSU) instead of a multiplier. The BSU performs shift operations on x[i] according to
the weight indices. As values of the weights are limited in [−1, 1], only the left-shift operations are
required. In a weight index, the highest bit denoted by wsign is the sign bit, and the other bits in the
index are the shift bits, wshi f t. The value of wshi f t determines the shift bits performed on x[i]. Table 1
shows the shift operations of a BSU with 4-bit indices.

After ∑m
i=1 x[i]w[i] is computed by the adder trees, the partial sum is stored in a register and

accumulated every clock cycle. The reset signal in Figure 4 works when current partial sum is sent to
the accumulator module for further processing.

w w

x

x

reset

Figure 4. Architecture of row processing element.

Table 1. Weight indices and shift operations in a BSU.

wsign wshi f t Weight Value Shift Bits

0 000 0 -
0 001 1/2 1
0 010 1/4 2
0 011 1/8 3
0 100 1/16 4
0 101 1/32 5
0 110 1/64 6
0 111 1 -
1 000 - -
1 001 −1/2 1
1 010 −1/4 2
1 011 −1/8 3
1 100 −1/16 4
1 101 −1/32 5
1 110 −1/64 6
1 111 −1 -

4.4. Configurable Hardware Accelerator Architecture

The overall architecture of BPCA is shown in Figure 5. To fit for the adjustable block size and
various network sizes of FC layers, BPCA is designed to provide flexibility for different needs.
In general, designing a configurable accelerator involves the considerations of several factors: Psize,
the block size of one sub-matrix; Prow, the row number of sub-matrices in a weight matrix; Pcolumn,
the column number of sub-matrices in a weight matrix; and ACCnum, the number of accumulators

Electronics 2019, 8, 78 10 of 18

in the Accumulator module. According to the configuration parameters, the configurable controller
(Config-ctrl) controls the computing of other components in BPCA. Weights, bias, and input activations
are stored in three different SRAMs, which are W-RAM, B-RAM and A-RAM in Figure 5, respectively.
The weights and input vectors are sent to the B-MV by the read-controller (Read-ctrl) according
to different Psize. The output vectors of all the sub-matrices in one row will be accumulated in the
Accumulator module. In the following, we describe the configurable scheme in detail.

For different FC networks, the BPCA requires configurable parameters including Psize, Prow and
Pcolumn. As described in Section 4.2, the Block-MV can process a fixed-sized sub-block for one time.
According to Psize, the Read-ctrl feeds the 16-by-16 sub-blocks and corresponding activations to the
Block-MV for processing. When all sub-blocks in one sub-matrix are processed, the Config-ctrl will
move on to the calculation of the next sub-matrix in the same sub-matrix row. As shown in Figure 2,
BPCA performs a row-wise computing scheme. Thus, according to Pcolumn, the Config-ctrl needs to
judge whether current sub-matrix is the last one in current sub-matrix row. If the sub-matrix is the last
one, the Psum in the Accumulator module will be sent to the Bias-ReLU module for further processing,
and then the final result vector of one sub-matrix row will be output. Because the size of a sub-matrix
is adjustable, ACCnum is determined by the biggest number of Psize that BPCA supports. Since the size
of output vector of each sub-matrix row is changeable, the Config-ctrl selects Psize accumulators in the
Accumulator module in every computing procedure.

As the main computing element, B-MV determines the processing time of an FC layer and the
system throughput. In addition, the proposed hardware architecture is scalable, and the system
throughput can be improved by adding more B-MVs.

Block-MV
(16 16)

OutputAccumulator

Read-ctrl

Bias
 & ReLU

W-RAM

Psize Pcolumn Prow

A-RAM

Weights

Activation

Bias

Activation Addr

Weight Addr
Bias Addr

B-RAM

Config-ctrl
Psize

Psize

Psize

Configuration
Parameters

FC-controller BPCA

Psum

Figure 5. Hardware accelerator architecture for FC layers.

5. Experiments of The Proposed Compression Method

We verified the effectiveness of the proposed method on three standard datasets: MNIST,
CIFAR-10, and ImageNet. We compared the accuracy and storage cost of the compressed neural
network models and the original neural network models. Since the effectiveness of applying
block-circulant matrices in FC layers has been proven in [24,25], we pay more attention to the
effectiveness of power-of-two quantization on the block-circulant matrix-based FC layers. To test
quantization precision’s influence on prediction accuracy, we selected different n1 for Sn and quantized
the weights with different quantization precision. Notably, the aim of our experiment was not to seek
the state-of-the-art results on these datasets, thus the accuracy of the original neural networks was
only used as a baseline for a fair comparison with the compressed neural networks.

5.1. Experiments on MNIST

MNIST is a digit dataset that contains 28 × 28 grey-scale images of ten handwritten digits (0 to 9).
In MNIST, there are 60,000 images for training and 10,000 images for testing. The baseline model that
we used is a three-layer DNN denoted by Model-A. The matrix sizes and parameters of the FC layers

Electronics 2019, 8, 78 11 of 18

in Model-A are shown in Table 2. We tested the proposed compression methods on Model-A and the
training results are given in Table 3. We first applied block-circulant matrices (k = 16) in FC1 and
FC2 layers. Then, we quantized the weights under different quantization precision. When n1 = −2,
the quantization precision is 1/4 and weights can be represented with 3 bits. Thus, quantization
provides 10.7 times compression ratio (compared with 32-bit floating point). Other quantization
precision requires 4-bit indices and the storage cost can be saved by eight times. We can see that
quantization precision has little effect on the prediction accuracy. As a result, block size of 16 and 3-bit
quantization can compress the FC layers by 170 times with 1% accuracy loss.

Table 2. FC Layers in the models for MNIST, CIFAR, and ImageNet.

Model-A Model-B Model-C

Layer Matrix Size Parameters Layer Matrix Size Parameters Layer Matrix Size Parameters

FC1 784 × 2048 6.125 MB FC4 8192 × 1024 32 MB FC7 9216 × 4096 144 MB
FC2 2048 × 1024 8 MB FC5 1024 × 1024 128 KB FC8 4096 × 4096 64 MB
FC3 1024 × 10 40 KB FC6 1024 × 10 40 KB FC9 4096 × 1000 15.625 MB

Table 3. Experiment results of Model-A for MNIST.

Block Size (k) Quantization
Precision Weight Bits Compression Ratio (%) Accuracy (%) Parameters

- - 32 baseline 98.47 14.125 MB

16 - 32 6.25 (16×) 97.46 904 KB
16 1/64 4 0.78 (128×) 97.58 113 KB
16 1/16 4 0.78 (128×) 97.35 113 KB
16 1/4 3 0.59 (171×) 97.06 84.6 KB

64 - 32 1.56 (64×) 94.03 226 KB
64 1/64 4 0.20 (512×) 93.96 28.3 KB
64 1/16 4 0.20 (512×) 92.75 28.3 KB
64 1/4 3 0.15 (683×) 87.83 21.2 KB

5.2. Experiments on CIFAR

CIFAR-10 dataset contains 60,000 natural 32 × 32 RGB images covering 10-class objects. There are
50,000 images for training and 10,000 images for testing. In our test, the network consisted of
six convolutional layers and three fully-connected layers [18]. ReLU was used as the activation
function. The proposed compression method was used in FC4 and FC5 layers. We also selected
different n1 to test the accuracies under different quantization precision, which is shown in Table 4.
There is negligible accuracy loss when weights are quantized into 3 or 4 bits. Thus, the FC layers can
be compressed by 2731× with 0.8% accuracy loss.

Table 4. Experiment results of Model-B for CIFAR-10.

Block Size (k) Quantization
Precision Weight Bits Compression Ratio (%) Accuracy (%) Parameters

- - 32 baseline 92.00 32.125 MB

16 - 32 0.16 (16×) 92.60 2 MB
16 1/64 4 0.78 (128×) 91.72 257 KB
16 1/16 4 0.78 (128×) 91.80 257 KB
16 1/4 3 0.59 (171×) 91.58 192.4 KB

256 - 32 0.39 (256×) 92.60 125.6 KB
256 1/64 4 0.16 (2048×) 91.37 16.1 KB
256 1/16 4 0.16 (2048×) 91.66 16.1 KB
256 1/4 3 0.15 (2731×) 91.20 12 KB

Electronics 2019, 8, 78 12 of 18

5.3. Experiments on ImageNet

We further evaluated the effectiveness of the proposed compression methods on the ImageNet
ILSVRC-2012 dataset, which contains images of 1000 categories of objects. There are roughly 1000
images in each of the 1000 considered categories. AlexNet [5] was used as the baseline model denoted
by Model-C, which consisted of five convolutional layers, two FC layers and one final softmax layer.
The Top-1 accuracy and Top-5 accuracy of Model-C are 56.257% and 79.018%, respectively. The FC
layers of Model-C are shown in Table 2. We applied block-circulant weight matrix in FC7, FC8 and
FC9 layers with 16× 16 sub-matrices. Then, the weights were quantized with 4 bits. The length of
output vector in FC9 was not a multiple of 16, thus we added eight rows at the end of the weight
matrix to make it a 4096 × 1008 matrix. Then, the network could be trained as normal, but the eight
additional outputs were dropped to get the results of 1000 categories that we wanted. As shown in
Table 5, the network can be compressed by 128 times with 1.8% accuracy loss. When power-of-two
quantization is used in large scale networks, there is more accuracy loss compared with small networks.

Table 5. Experiment results of Model-C for ImageNet.

Block
Size (k)

Quantization
Precision Weight Bits Compression

Ratio (%)
Accuracy (%)

(Top-1)
Accuracy (%)

(Top-5) Parameters

- - 32 baseline 56.257 79.018 223.625 MB

16 - 32 1.6 (16×) 52.514 77.866 13.977 MB

16 1/64 4 0.78 (128×) 49.835 76.026 1.747 MB
16 1/16 4 0.78 (128×) 49.346 75.449 1.747 MB

5.4. Result Analysis

The power-of-two quantization scheme is effective when it is combined with block-circulant
matrix-based weight representation on the three models. In general, the accuracy of a network
is dominated by the block size of weight matrices. To achieve a trade-off between accuracy and
compression ratio, the block size of each layer should be adjusted carefully. Quantization causes
minimal accuracy loss on MNIST, CIFAR-10 and ImageNet, when the weights are quantized into 4 bits
with precision 1/64.

6. Hardware Implementation Results

We evaluated the performance of the hardware architecture proposed in Section 4. The RTL of the
design was implemented in Verilog and synthesized by using the Synopsys Design Compiler (DC)
under the TSMC 40 nm CMOS technology. We measured the area, power, and critical path delay of the
accelerator. Benchmarks were obtained from Models A–C.

6.1. Evaluation Results and Analysis

The synthesis results of the top architecture are presented in Table 6. A frequency of 800 MHz
has been achieved. In our design, the basic size of a sub-block can be processed is 16× 16. One B-MV
containing 16 R-PEs is used for processing sub-blocks. The synthesis results of the R-PE are presented
in Table 6.

Electronics 2019, 8, 78 13 of 18

Table 6. Synthesis results of the proposed hardware architecture (logic part) and row processing element.

Features Top-Level
Architecture

Row
Processing Element

Technology TSMC 40 nm TSMC 40 nm
Clock 800 MHz 800 MHz

Core Voltage 1 V 1 V
Area 0.16 mm2 6944 µm2

of Combinational Cells 5440 3540
of Sequential Cells 706 258

Power 52.96 mW 2.1487 mW

The on-chip SRAM consisted of W-RAM, A-RAM, and B-RAM. Notably, since the accelerator
needed to process different scale networks, the SRAM sizes were selected to suitable for large scale
FC layers. The on-chip SRAM was modeled using Cacti [30] under 45 nm process. In our design,
16 bits and 4 bits were used to represent activations and weights, respectively. The A-RAM was
9216× 16 bit = 18 KB for storing activations, where the maximum input length of activations was
9216. The width of W-RAM was 64 bits and the size of W-RAM aws 1.747 MB. Thus, all compressed
weights in FC layers of AlexNet could be stored in W-RAM. In addition, we used 16 bits to represent
biases and B-RAM was 4096× 16 bit = 8 KB, where the maximum number of biases was 4096.

The power/area breakdown of the accelerator is presented in Table 7. BPCA occupies 12.72 mm2,
where the memory dominates the chip area with 98.87% of the total area. The logic part of BPCA only
occupies 0.16 mm2. The total power consumption is 77.09 mW and the memory consumes 24.13 mW.

Table 7. Synthesis results of the breakdown by module (LINE 2-3) of the accelerator. The critical path
is 1 ns.

Module
Area

(mm2) (%)
Power
(mW) (%)

Total 12.88 - 77.09 -

B-MV 0.1103 0.86% 30.27 39.27%
FC-controller 0.0378 0.29% 18.37 23.83%
Accumulator 0.0086 0.067% 3.09 4.0%

Relu,Bias 0.0033 0.026% 1.23 1.6%

On-Chip SRAM
(45 nm) 12.72 98.76% 24.13 31.30%

6.1.1. Performance

To measure the performance of BPCA, we defined throughput (Tn) as the input numbers per
seconds. Tn is dominated by the B-MV and is given by

Tn =
a× b
Psize

/((
Psize

γ
)2 × Prow × Pcolomn ×

1
fclk

)

=
γ2 fclk
Psize

. (14)

In our design, γ is 16 and fclk = 800 MHz, thus Tn = 256
Psize

numbers/s. The bigger the Psize
is, the smaller the input throughput is, which means less memory access is required. As for the
computing performance, the giga operations per second (GOPS) is 409.6 GOPS corresponding to an
uncompressed layer.

Electronics 2019, 8, 78 14 of 18

The computation time to process one a× b weight matrix in the steady stage is

tl =
a× b
Psize

/Tn =
ab

γ2 fclk
. (15)

Nine pipeline stages are introduced in the design, so the actual runtime of one layer requires an
additional nine clock cycles.

We selected benchmarks from Model-A, Model-B, and Model-C to evaluate performance of the
accelerator. Layers A–E had different matrix sizes and block sizes. The configuration parameters and
computation time are shown in Table 8. It takes 184.32 µs to process layer C, which is the largest FC
layer in AlexNet. To process middle scale layers, such as Layers A and B, only a few microseconds
are consumed.

Table 8. Benchmarks from three different DNN models.

Layer
Number

Matrix Size
(a,b) Psize Pcolumn Prow

Computation Time
(µs)

A 768,2048 64 12 32 7.68
B 1024,1024 256 4 4 5.12
C 9216,4096 16 576 256 184.32
D 4096,4096 16 256 256 81.92
E 4096,1000 16 256 63 20.16

6.1.2. Flexibility and Scalability

BPCA can fit for different scale FC layers with adjustable compression ratios. In this experiment,
the Psize could be configured to 16, 32, 64, 128, and 256. The basic sub-block size, which is processed by
a B-MV, can be changed according to different requirements.

To fit for larger weight matrices, BPCA can be scaled up by adding more B-PEs. As shown in
Figure 6, a large weight matrix can be divided into two parts and the corresponding parameters are
stored in different weight RAMs. The two-part weight matrices can be processed by two B-MVs in
parallel. To further improve the system throughput, more B-MVs can be used in the system.

A-RAM
Block-MV 1

(16 16)

Accumulator Bias
 & ReLU

Psum

W-RAM Weights

Activation
Output

Bias

B-RAM
Block-MV 2

(16 16)A-RAM

W-RAM Weights

Activation

*
Actication

vector

Weight
Matrix

Configuration parameters

Control logic

Figure 6. The scalability of the accelerator.

6.2. Comparisons with Related Works

Based on FPGA or ASIC platforms, numerous works on DNN accelerators have been
proposed. We compared BPCA with representative state-of-the-art ASIC development and synthesis
results. Table 9 shows the comparisons with accelerators focusing on compressed networks or
uncompressed networks.

Electronics 2019, 8, 78 15 of 18

Table 9. Comparisons with state-of-the-Art DNN accelerators.

EIE (64PE)
ISCA 2016 [12]

DNPU
ISSCC 2017 [31] This Work

Target DNN FCL CNN/FCL/RNN FCL
Technology 45 nm 65 nm 40 nm

Clock (MHz) 800 200 800
On-chip SRAM (MB) 10.125 0.28 1.772

Voltage (V) - 1.1 1
Area (mm2) 40.8 16 12.72
Power (mW) 590 21(FCN/RNN) 77.09

Peak Performance (GOPS) 102@4b 25@4b (FCN/RNN) 409.6@4b
Quantization (bits) 4 4-7 (FCN/RNN) 4

Energy efficiency (TOPS/W) 0.172@4b 1.1 (FCN/RNN) 5.3@4b
Area efficiency (GOPS/mm2) 2.5 - 31.8

EIE [12] is a representative accelerator for processing sparse DNNs. EIE is mainly composed of
customized PEs focusing on sparse matrix-vector multiplications. The computations of a network are
partitioned for different PEs to perform and every PE stores a partition of the network in local SRAM.
The FC layers of AlexNet can fit into 64 PEs in EIE. Using the same benchmark, AlexNet, we compared
our work with EIE composed of 64 PEs.

In one PE of EIE, there are on-chip memory in sparse matrix read unit, activation read/write and
pointer read unit for decoding the compressed weights. The memory takes 93.22% of the PE’s area.
The arithmetic unit in a PE performs multiply-accumulate operations by using one multiplier and one
adder. Running at 800 MHz, the logic part of one PE takes an area of 43,258 µm2, resulting in area
efficiency of 37 GOPS/mm2. The basic processing element in BPCA is R-PE. One R-PE can perform
16 multiply-accumulate operations in parallel using 16 adders and no multipliers. Because there are no
additional decoding process, the area of an R-PE is dominated by computing units. As shown in Table 7,
at 800 MHz, an R-PE takes 6944 µm2, resulting in area efficiency of 3.7 TOPS/mm2. Without multipliers
and decoding units, R-PE achieves significantly higher area efficiency than the PE of EIE.

In EIE, the sparse weight matrices, which are encoded in compressed sparse column (CSC) format,
can all be stored in on-chip SRAM. With the encoding format, additional 4-bit indices and pointer
vectors are required for the decoding of compressed weight matrices. The weight SRAMs of 64 PEs
is 8 MB and can hold 4-bit weights and 4-bit indices of AlexNet’s FC layers with at least 8× weight
sparsity. Each PE has a pointer SRAM and the total SRAM capacity for pointers is 2 MB. In addition,
the activation SRAM in each PE is 2 KB and 64 PEs use 128 KB SRAM for activations. The on-chip
SRAM dominates the area in EIE and takes 93.22% of the total area of EIE. At 800 MHz, EIE (64 PEs) can
yield a performance of 102 GOPS and the area efficiency can achieve 2.5 GOPS/mm2 (including SRAM).
In BPCA, the accelerator also stores the FC layers of AlexNet in SRAM. Using 16× 16 block-circulant
matrix, the weight matrix can be compressed by 16×. By using power-of-two quantization, the
weights can be represented with 4 bits. Storing the block-circulant matrix-based layers does not require
indices or pointers such as storing the sparse matrices in EIE. Without using additional indices, 2×
storage usage can be reduced. In addition, 2 MB storage can be saved by using no pointers. In the
accelerator, the weight SRAM is 1.772 MB and the activation SRAM is 18 KB. The on-chip SRAM takes
98.76% of BPCA’s area. For the same benchmark, AlexNet, BPCA can achieves an area efficiency of
31.8 GOPS/mm2, which is 13× of EIE.

Our work also outperforms EIE in energy efficiency. In one PE of EIE, the memory consumes
59.15% of the total power. Sixty-four PEs use 10.125-MB SRAM, which consumes 348 mW.
Compared with EIE, we use less SRAM and save 14× power of memory. The logic part of one
EIE’s PE consumes 3.74 mW, but the power of R-PE is only 57.5% of EIE’s PE. As shown in Table 9,
the energy efficiency of BPCA can achieve 5.3 TOPS/W, which is 31× of EIE.

Electronics 2019, 8, 78 16 of 18

DNPU [31] is configurable heterogeneous accelerators supporting CNNs, FCLs, and RNNs.
We mainly compare BPCA with the part of DNPU on FC layers. The weights in DNPU can be
quantized into 4–7 bits using dynamic fixed point. However, without other compression method,
the parameters of DNPU are still required to be fetched from external memory (DRAM). By using the
proposed compression method, our work can save much more DRAM access than DNPU. Besides,
one compressed FC layer can be stored in on-chip SRAM, which consumes less energy than storing
parameters in off-chip memory. In DNPU, quantization table-based matrix multiplication is used and
99% of the 16-bit fixed-point multiplications can be avoided. At 200 MHz, the energy efficiency of
DNPU can achieve 1.1 TOPS/W. BPCA also does not use any multipliers and can achieve 5 TOPS/W at
800 MHz. Compared with DNPU, our work achieves competitive performance and energy efficiency
with less memory access.

7. Conclusions

In this paper, we present an effective compression method and an efficient configurable hardware
architecture for fully-connected layers. Block-circulant matrices and power-of-two quantization are
employed in this approach to compress the DNNs. Block-circulant matrices provide an adjustable
compression ratio for weight matrices by changing the block size. Using power-of-two quantization,
we can represent the weights with low precision and reduce computational complexity by replacing
the multiplications with shift operations. The approach was applied to three classic datasets and
provided remarkable compression ratios. For MINIST, the FC layers can be compressed by 171× with
1% accuracy loss. The results on CIFAR-10 show that the FC layers can be compressed by 2731× with
negligible accuracy loss. Our experiment on ImageNet compresses the weight storage of AlexNet by
128× with 1.8% accuracy loss. The proposed compression method outperforms pruning-based method
in compression ratio and avoids irregular computations of pruned networks.

To process the compressed neural network efficiently, we develop a configurable, area-efficient
and energy-efficient hardware architecture, BPCA. BPCA can be configurable to process FC layers
with different compression ratios. Without using multipliers, a lot of chip area can be saved in R-PEs
and system throughput can be significantly improved. The proposed design is implemented under the
TSMC 40 nm CMOS technology. Using 1.772-MB SRAM, the accelerator can do 409.6 GOPS in an area
of 12.72 mm2 and dissipates 77.09 mW. Our work outperformed pruning-based accelerator, EIE [12],
in energy efficiency by 31× and area efficiency by 13×.

8. Discussion

In this paper, the proposed compression scheme targets FC layers. In the experiments for Model
B and Model C, we only applied the proposed compression method in FC layers and the accuracy
of Model C has already shown some reduction on Imagenet dataset. Since FC layer has a lot of
redundancy, the quantization may cause minimal accuracy loss. As for convolutional layers, which are
sensitive to quantization, the proposed method may cause much accuracy loss. Thus, the quantization
scheme should be examined carefully in block-circulant matrix-based CNNs. In our future work, we
will evaluate the proposed method on convolutional layers and explore better quantization schemes
on block-circulant matrix-based CNNs.

Author Contributions: Conceptualization, H.P. and Z.Q.; methodology, Z.Q. and D.Z.; software, D.Z.; validation,
X.Z. and X.C.; formal analysis, Z.Q.; investigation, X.Z.; resources, H.P. and L.L.; data curation, X.Z. and
X.C.; writing—original draft preparation, Z.Q.; writing—review and editing, Z.L. and Y.S.; visualization, Z.Q.;
supervision, H.P. and Y.G.; project administration, Q.S.; and funding acquisition, H.P., Y.S. and Y.G.

Funding: This research was funded in part by the National Nature Science Foundation of China under Grant
No. 61376075 and 41412020201, in part by the key Research and Development Program of Jiangsu Province under
Grant No. BE2015153, and in part by the Priority Academic Program Development of Jiangsu Higher Education
Institutions(PAPD).” “The APC was funded by the National Nature Science Foundation of China under Grant
No. 61376075”.

Electronics 2019, 8, 78 17 of 18

Acknowledgments: This work was supported in part by the National Nature Science Foundation of China under
Grant No. 61376075 and 41412020201, in part by the key Research and Development Program of Jiangsu Province
under Grant No. BE2015153, and in part by the Priority Academic Program Development of Jiangsu Higher
Education Institutions(PAPD).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tang, Z.L.; Li, S.M.; Yu, L.J. Implementation of Deep Learning-Based Automatic Modulation Classifier on
FPGA SDR Platform. Electronics 2018, 7, 122. [CrossRef]

2. Liu, X.; Yang, T.; Li, J. Real-Time Ground Vehicle Detection in Aerial Infrared Imagery Based on Convolutional
Neural Network. Electronics 2018, 7, 78. [CrossRef]

3. Wang, X.; Hua, X.; Xiao, F.; Li, Y.; Hu, X.; Sun, P. Multi-Object Detection in Traffic Scenes Based on Improved
SSD. Electronics 2018, 7, 302. [CrossRef]

4. Nguyen, T.V.; Mirza, B. Dual-layer kernel extreme learning machine for action recognition. Neurocomputing
2017, 260, 123–130. [CrossRef]

5. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 3–8 December 2012; pp. 1097–1105.

6. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada,
14–16 April 2014; pp. 1–14.

7. Mirza, B.; Kok, S.; Dong, F. Multi-layer online sequential extreme learning machine for image classification.
In Proceedings of ELM-2015 Volume 1; Springer: Berlin, Germany, 2016; pp. 39–49.

8. Mikolov, T.; Karafiát, M.; Burget, L.; Černockỳ, J.; Khudanpur, S. Recurrent neural network based language
model. In Proceedings of the International Symposium on Computer Architecture, Saint-Malo, France,
19–23 June 2010; pp. 1045–1048.

9. Dominguez-Sanchez, A.; Cazorla, M.; Orts-Escolano, S. A New Dataset and Performance Evaluation of a
Region-Based CNN for Urban Object Detection. Electronics 2018, 7, 301. [CrossRef]

10. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey.
Proc. IEEE 2017, 105, 2295–2329. [CrossRef]

11. Dean, J.; Corrado, G.S.; Monga, R.; Chen, K.; Devin, M.; Le, Q.V.; Mao, M.Z.; Ranzato, M.; Senior, A.;
Tucker, P.; et al. Large Scale Distributed Deep Networks. In Proceedings of the International Conference on
Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1223–1231.

12. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient Inference Engine
on Compressed Deep Neural Network. In Proceedings of the International Symposium on Computer
Architecture, Seoul, Korea, 18–22 June 2016; pp. 243–254. [CrossRef]

13. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In Proceedings of the International Conference on Learning
Representations, San Juan, Puerto Rico, 2–4 May 2016.

14. Courbariaux, M.; Bengio, Y. BinaryNet: Training Deep Neural Networks with Weights and Activations
Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

15. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices.
In Proceedings of the International Conference on Computer Vision and Pattern Recogintion, Las Vegas, NV,
USA, 26 June–1 July 2016; pp. 4820–4828.

16. Choi, Y.; El-Khamy, M.; Lee, J. Towards the limit of network quantization. In Proceedings of the International
Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

17. Courbariaux, M.; Bengio, Y.; David, J.P. BinaryConnect: Training Deep Neural Networks with binary weights
during propagations. In Proceedings of the International Conference on Neural Information Processing
Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 3123–3131.

http://dx.doi.org/10.3390/electronics7070122
http://dx.doi.org/10.3390/electronics7060078
http://dx.doi.org/10.3390/electronics7110302
http://dx.doi.org/10.1016/j.neucom.2017.04.007
http://dx.doi.org/10.3390/electronics7110301
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/ISCA.2016.30

Electronics 2019, 8, 78 18 of 18

18. Zhao, R.; Song, W.; Zhang, W.; Xing, T.; Lin, J.H.; Srivastava, M.; Gupta, R.; Zhang, Z. Accelerating binarized
convolutional neural networks with software-programmable fpgas. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017;
ACM: New York, NY, USA, 2017; pp. 15–24.

19. Ando, K.; Ueyoshi, K.; Orimo, K.; Yonekawa, H.; Sato, S.; Nakahara, H.; Takamaeda-Yamazaki, S.; Ikebe, M.;
Asai, T.; Kuroda, T.; et al. BRein memory: A single-chip binary/ternary reconfigurable in-memory deep
neural network accelerator achieving 1.4 TOPS at 0.6 W. IEEE J. Solid-State Circuits 2018, 53, 983–994.
[CrossRef]

20. Wang, Y.; Lin, J.; Wang, Z. An energy-efficient architecture for binary weight convolutional neural networks.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 280–293. [CrossRef]

21. Cheng, Y.; Felix, X.Y.; Feris, R.S.; Kumar, S.; Choudhary, A.; Chang, S.F. Fast neural networks with circulant
projections. arXiv 2015, arXiv:1502.03436.

22. Cheng, Y.; Yu, F.X.; Feris, R.S.; Kumar, S.; Choudhary, A.; Chang, S.F. An exploration of parameter redundancy
in deep networks with circulant projections. In Proceedings of the International Conference on Computer
Vision and Pattern Recogintion, Boston, MA, USA, 7–12 June 2015; pp. 2857–2865.

23. Sindhwani, V.; Sainath, T.; Kumar, S. Structured transforms for small-footprint deep learning. In Proceedings
of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 3088–3096.

24. Ding, C.; Liao, S.; Wang, Y.; Li, Z.; Liu, N.; Zhuo, Y.; Wang, C.; Qian, X.; Bai, Y.; Yuan, G.; et al. Circnn:
Accelerating and compressing deep neural networks using block-circulant weight matrices. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, MA, USA,
14–18 October 2017; ACM: New York, NY, USA, 2017; pp. 395–408.

25. Liao, S.; Li, Z.; Lin, X.; Qiu, Q.; Wang, Y.; Yuan, B. Energy-efficient, high-performance, highly-compressed
deep neural network design using block-circulant matrices. In Proceedings of the 36th International
Conference on Computer-Aided Design, Irvine, CA, USA, 13–16 November 2017; IEEE Press: Piscataway,
NJ, USA, 2017; pp. 458–465.

26. Zhao, L.; Liao, S.; Wang, Y.; Tang, J.; Yuan, B. Theoretical Properties for Neural Networks with Weight
Matrices of Low Displacement Rank. CoRR 2017. Available online: http://xxx.lanl.gov/abs/1703.00144
(accessed on).

27. Wang, Z.; Lin, J.; Wang, Z. Accelerating Recurrent Neural Networks: A Memory-Efficient Approach.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2763–2775. [CrossRef]

28. Teixeira, M.; Rodriguez, Y.I. Parallel Cyclic Convolution Based on Recursive Formulations of Block
Pseudocirculant Matrices. IEEE Trans. Signal Process. 2008, 56, 2755–2770. [CrossRef]

29. Teixeira, M.; Rodriguez, D. A class of fast cyclic convolution algorithms based on block pseudocirculants.
IEEE Signal Process. Lett. 1995, 2, 92–94. [CrossRef]

30. Muralimanohar, N.; Balasubramonian, R.; Jouppi, N. Optimizing NUCA Organizations and Wiring
Alternatives for Large Caches with CACTI 6.0. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007), Chicago, IL, USA, 1–5 December 2007; pp. 3–14. [CrossRef]

31. Shin, D.; Lee, J.; Lee, J.; Yoo, H. 14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-RNN processor for
general-purpose deep neural networks. In Proceedings of the 2017 IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 240–241. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSSC.2017.2778702
http://dx.doi.org/10.1109/TVLSI.2017.2767624
http://xxx.lanl.gov/abs/1703.00144
http://dx.doi.org/10.1109/TVLSI.2017.2717950
http://dx.doi.org/10.1109/TSP.2008.917375
http://dx.doi.org/10.1109/97.386287
http://dx.doi.org/10.1109/MICRO.2007.33
http://dx.doi.org/10.1109/ISSCC.2017.7870350
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Computation of FC Layers
	Block-Circulant Matrix

	Proposed Compression Method
	Block-Circulant Matrix-Based FC Layers
	Power-of-Two Quantization
	Training and Quantization Strategy

	Efficient Hardware Architecture
	Reorganization of Block-Circulant Matrix
	Architecture of Block-MV
	Row Processing Element
	Configurable Hardware Accelerator Architecture

	Experiments of The Proposed Compression Method
	Experiments on MNIST
	Experiments on CIFAR
	Experiments on ImageNet
	Result Analysis

	Hardware Implementation Results
	Evaluation Results and Analysis
	Performance
	Flexibility and Scalability

	Comparisons with Related Works

	Conclusions
	Discussion
	References

