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Abstract: The conventional direction of arrival (DOA) estimation algorithm is not effective with
the tremendous complexity due to the large-scale array antennas in a massive multiple-input
multiple-output (MIMO) system. A new frame structure for downlink transmission is presented.
Then, codebook-aided (C-aided) algorithms are proposed based on this frame structure that can fully
exploit the priori information under channel codebook feedback mechanism. An oriented angle range
is scoped through the codebook feedback, which is drastically beneficial to reduce computational
burden for DOA estimation in massive MIMO systemss. Compared with traditional DOA estimation
algorithms, our proposed C-aided algorithms are computationally efficient and meet the demand of
future green communication. Simulations show the estimation effectiveness of C-aided algorithms
and advantage for decrement of computational cost.
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1. Introduction

Massive multiple-input multiple-output (MIMO) is emerging as a promising technology with
large-scale antennas in base station (BS) for future fifth generation wireless communication [1–6].
To meet the diverse type of access with different Quality of Service, such as high data rate application
or vehicle to everything with ultra low lantency, antenna collaboration and power control of massive
MIMO system are inevitable, which are also guarantee green communication [1–3]. It is well-known
that massive MIMO can bring significant improvement in energy efficiency and spectral efficiency by
using antenna collaboration to focus energy into small regions of space efficiently. The simulation result
of reference [4] proves that the energy efficiency of a massive MIMO system is much higher that the
current 4G LTE network. Consequently, massive MIMO is considered as one of the support techniques
for future green communication, especially for smart cities networks [5,6]. Precise channel state
information (CSI), however, has to be furnished to the transmitter in order to enable the beamforming
operation. For Frequency Division Duplex (FDD) massive MIMO systems, the cost of conventional
channel estimation schemes requiring orthogonal pilots are prohibitively high; hence, codebook
channel feedback mechanism is indispensable in massive MIMO [7,8].

Further, localization can be realized by estimating the Direction of Arrival (DOA) of source
signal, while an effective DOA estimation algorithm with low computational complexity is crucial to
achieve fast localization, especially for fast varying scenarios [9]. However, as for DOA estimation
in massive MIMO systems, the computational complexity is prohibited due to the number of
antennas being very large, which lowers the effectiveness of communication. Compressed Sensing
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(CS)-based algorithms are proposed to reduce computational complexity [10]. Reference [11] proposed
a complex-valued binary iterative hard thresholding algorithm under CS frame work to reduce
computational complexity of DOA estimation for massive MIMO system. However, the estimation
performance suffer degradation due to finite measurement. Signal subspace algorithm such as multiple
signal classification (MUSIC) algorithm has been widely studied [12]. As a kind of grid-based algorithm,
the computational complexity of MUSIC algorithm is related to the angle searching step as well as the
number of antennas. For DOA estimation in massive MIMO systems, the computational complexity
caused by spectral searching expands drastically with array dimension in massive MIMO systems.
Several works were carried out to tackle this computational burden. By using reduced-dimension
transformation, a reduced-complexity subspace-based method as reduced-complexity MUSIC for
monostatic MIMO radar DOA estimation was presented in [13], which can reduce computational
complexity slightly. DOA estimation method based on partial spectral search using transform domain
for Co-prime Linear Arrays (Co-prime LAs) is present by Sun et al. [14]. Computational complexity
decrement presented in [14] is approximately related to the element number of sub-array of Co-prime
LAs. In an FDD massive MIMO system, beamforming combined with codebook channel feedback
means that the primal DOA estimation needs to be implemented under deterministic angle space.
Further, codebook proposed by [15] has proved that the number of feedback bits is much smaller than
the number of BS antenna. In [16], angle-based codebook is designed to reduce feedback overhead of
a hybrid precoding millimeter wave massive MIMO system, which motivates us to make full use of
feedback information to pre-process DOA estimation.

In this paper, we propose Codebook-aided (C-aided) algorithms to reduce computational
complexity for DOA estimation in an FDD massive MIMO system, where DOA estimation is achieved
by calculating the parameter of path angles of departure (AoDs). We design a new frame structure
for downlink transmission and introduce the concept of codebook channel feedback combing with
the classic MUSIC algorithm and newfangled convex optimization algorithm. To be more specific,
by utilizing the peculiarity that the path AoDs vary much slower than the path gains [17,18], we
execute AoD estimation devotedly on the whole range Φ (Executing on the whole range Φ devotedly,
that is, for MUSIC algorithm executed when uniform linear arrays is equipped at BS, the angle
range of spectral searching is [−π/2, π/2].) during the AoD training stage I within any first half
frame of transmission. While for the AoD training stage II, instead of searching the total spectral
range, we just dedicate to searching deterministic angle range ~Φ which is related to the codebook.
This kind of methods are called C-aided algorithms. Compared with primal algorithms, the angle
range ~Φ for algorithms execution under the auxiliary codebook feedback mechanism can help reduce
computational complexity prominently. Meanwhile, for C-aided convex optimization algorithm, we
can get the global optimal solutions. The main contributions of the paper are summarized as follows:

• New frame structure for downlink transmission: By leveraging the difference between variation
of path AoDs and the path gains, we proposed a new frame structure for downlink transmission.
(i) We theoretically prove the peculiarity of AoDs variation. (ii) We decouple AoD estimation of
one frame into two separated stages. Within the first and the second half of transmission frame,
the AoD estimation are performed in AoD training stage I and AoD training stage II respectively
due to the property of AoDs variation.

• Low rank matrix recovery based DOA reconstruction: Apart from the classic MUSIC algorithm,
we develop DOA reconstruction method based on low rank matrix recovery, which is referred to
as convex optimization algorithm in this paper. We introduce the elastic regularization term to
transform the covariance matrix reconstruction problem of the received signal into a semi-definite
programming (SDP) problem, which can be effectively solved with polynomial-time complexity.

• Codebook-aided algorithms for DOA estimation: By separating the AoDs acquisition under
the frame structure, we propose C-aided algorithms to reduce computational complexity, which
includes the C-aided MUSIC algorithm and C-aided convex optimization algorithm. During the
AoD training stage II, due to the small angle perturbation, we just focus on deterministic angle
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range ~Φ rather Φ with the help of channel codebook feedback and the AoDs obtained at AoD
training stage I.

The remainder of this paper is organized as follows. Section 2 introduces the data model, AoD
estimation problem and codebook channel feedback. Two kinds of C-aided algorithm is presented and
the computational complexity is compared in Section 3. In Section 4, simulation results are elaborated
to demonstrate the performance of our proposed algorithm. Finally, the conclusion is given in Section 5.

Notation: Scalar variables are denoted by normal-face letters, while boldface letters denote vectors
and matrices; For a given matrix A, superscripts AT, AH and ‖A‖Υ represent transpose, conjugate
transpose and the `Υ norm operation, respectively; E[·] denotes the expectation; IN is the N × N
identity matrix. Notation tr(A) denotes the trace operator of matrix and vec(A) is the vectorization
operation of vector A. Notation A � 0 denotes that the matrix A is positive semi-definite. Operation
max(a, b) denotes returning the maximum element between a and b. Re[·] is the real part operator.

2. System Model

In this section, we first briefly introduce the massive MIMO downlink channel model, and
then design the frame structure for downlink transmission. Finally, the channel feedback procedure
is described.

2.1. Data Model

In this paper, a single-cell downlink massive MIMO system is considered. A BS-equipped NT
antenna with spacing d communicate with K user equipments (UEs). We just consider the primary
paths and assume that the classic uniform linear arrays (ULAs) with incidence from K (NT � K)
independent resolvable narrowband source signals [1]. While the waveforms received with perfect
synchronization is expressed as

x(t) = gkA(φk)s(t) + n(t). (1)

Channel vector of the k-th path is represented as

hk = gka(φk), (2)

where gk is path gain of the k-th UE, A(φk) = [a(φ1), a(φ2), · · · , a(φK)] is the steering vector matrix,
and the array response vector a(φk) ∈ CNT×1 is given as

a(φk) = [1, e−j2π sin φkd/λ, · · · , e−j2π(NT−1) sin φkd/λ]H , (3)

where s(t) = [s1(t), s2(t), · · · sK(t)]T is the pilot for AoD training of K UEs satisfying E[s] = 0 and
E
[
|s|2
]
= 1. φk is the k-th path DOA. n(t) is additive complex Gaussian noise following CN ∼

(0, σ2
nINT ), where σ2

n is the variance of noise.

2.2. AoDs Estimation Problem Formation

By exploiting the difference of variation between path AoDs and path gains, the estimation
of path AoDs and path gains can be achieved by different training stages (We just focus on AoD
estimation in this paper and assume the channel gain can be achieved perfectly. This method is
also useful for channel estimation, where the path AoDs should be converted to corresponding path
AoAs/AoDs.). Further, we propose a new frame structure for downlink transmission as illustrated in
Figure 1. Specifically, a frame with time duration Tf consists of two stages of AoDs training with length
MAITS and MAIITS, respectively, and following which are multiple slots where each of them includes
paths training stage with length MPTS and data transmission with length MDTS. Here, MAI and MAII

are the number of pilots for AoD training stage I and AoD training stage II, respectively. MP and MD,
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respectively, are the number of pilots for path gains training and number of data for transmission in
each slot. With the designed frame structure, we make the following assumption,

Assumption 1. Within each transmission frame, AoDs vary slow or keep constant.

AoD variation depend on large scale properties of the scattering environment, thus, this
assumption is rational [17,18]. Theoretical analysis can be seen in Appendix A.

For each frame of transmission, we conduct AoD estimation twice, which is different for us by
exploiting the slowly variation of path AoDs. In the first half transmission frame, we obtain AoD
estimation by executing algorithm within whole angle range Φ. Nevertheless, the AoDs vary slow or
keep constant, there might still have angle perturbation during one transmission frame. Due to the
angle perturbation being relatively small, which is related to the displacement distance of UE. For the
second half frame of transmission, AoD estimation could be achieved under deterministic angle range
~Φ rather Φ, thus, the computational complexity can be reduced.

Figure 1. Downlink transmission frame structure consisting of AoD training, path gains training and
data transmission.

2.3. Codebook Channel Feedback

The channel reciprocity assumed in time division duplexing is not applicable in an FDD protocol.
In order to get short-term CSI, i.e., per fading block CSI, and due to the bandwidth constraint over
feedback link, CSI must be acquired by measuring reference signals and be conveyed to transmitter
with finite bits. While BS receives feedback on desired transmission hypothesis, that is, a precoder
vector w is indicated which is chosen from a set of predefined precoder matrices W both known at
transmitter and receiver. w and W also known as codewords and codebook respectively in codebook
channel feedback mechanism. Under implicit feedback mechanism, priori information is helpful to
form the strongest signal subspace, which means the main channel spatial direction in array signal
processing, i.e., angle-based codebook or DFT-based codebook in LTE system [19]. In this paper, we can
obtain angular direction matrix by codebook feedback, which is beneficial to orient the approximate
angle range ~Φ. AoD estimation in the AoD training stage II within any frame of transmission could be
implemented within ~Φ and the computational cost for DOA estimation can be reduced with auxiliary
codebook feedback. The corresponding codebook design will be considered in our future work.

3. DOA Estimation Based on Codebook Feedback

3.1. C-Aided MUSIC Algorithm

In this section, we use classic MUSIC algorithm to achieve DOA estimation. Covariance matrix
Rx with finite x(t) can be represented as signal- and noise-covariance matrix Us and Un. Eigenvalue
Λi of Rx satisfy Λ1 ≥ Λ2 ≥ · · ·ΛK > ΛK+1 = · · · = ΛNT = σ2

n , which indicates the number of signal
source and Λi consist of the corresponding subspace. DOA estimation can be obtained through spatial
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spectral searching due to the orthogonality between two subspaces as Equation (4), while Φ is the
angle range for spectral searching.

arg max
φ

P̂MUSIC⊥(φ) =
1

aH(φ)UnUn
Ha(φ)

,

s.t.φ ∈ Φ.

(4)

In FDD massive MIMO system, the channel vector obtained by parameter estimation ĥk during
AoD training stage I of the first half frame of transmission is quantized to a quantization vector and
then sent to the transmitter, which is realized by codebook W = [wk,i, i ∈ {1, 2, · · · , 2B}], where B is the
number of feedback bits and wk,i is codeword which varies with different codebook. The quantization
index Qk for codebook channel feedback is computed as

Qk = arg min
i∈[1,2B]

(1−

∣∣∣ĥH
k wk,i

∣∣∣2∥∥∥ĥk

∥∥∥2

2

∥∥wk,i
∥∥2

2

)

= arg max
i∈[1,2B]

∣∣∣h′kHwk,i

∣∣∣2,

(5)

where h′k = ĥk
‖ĥk‖2

is the channel direction. wk,i can be fed back to the BS by using B dedicate bits.

While after receiving these B channel feedback bits, in other words, the index Qk, the BS can generate
the fed back channel vector h̃k = ĥkwQk . h̃k obtained in the first half transmission frame contains the
information of a(φk), since a(φk) is completely determined by path AoDs. In the second half frame
of transmission, due to the angle perturbation is relatively small, we can execute AoD estimation in
the AoD training stage II under deterministic angle range with the help of codebook which helps us
steer on specific angle range ~Φ. The change of Φ→ ~Φ under this mechanism is beneficial to reduce
computational complexity caused by spectral searching.

3.2. C-Aided Convex Optimization Algorithm

Supposing the number of array element is larger than the source signal, we get the quantization
index Qk by Equation (5) and obtain the ~Φ ulteriorly. We can take the DOA estimation problem as
DOA reconstruction based on low rank matrix recovery which is referred as convex optimiazaiont
in this paper. Further, by introducing the elastic regularization term, DOA reconstruction can be
transformed into SDP problem [20]. Reference [21] is a similar work, but the main idea of handing
computational complexity is different.

The covariance matrix Rss of noiseless signal is a low rank matrix which satisfies rank(Rss) =

K � NT . While the problem is modelled as,

min
Rss,σ2

n

‖ Rss‖0,

s.t.
∥∥∥ Rss − a(φk)Usa(φk)

H − σ2INT

∥∥∥
2
= 0,

Rss ≥ 0, σ2
n > 0,

(6)

where two aspects in this model are inextricable, (a) `0 norm is NP-hard problem, (b) the constrain
condition mentioned above is too harsh. The `1 norm and ξ as error constant related to Rx are drawn
into model.

To augment stability of matrix completion, elastic regularization term 0.5 ‖ Rss‖2
2 is introduced [22],

and τ as equilibrium regularization factor between ‖ Rss‖1 and 0.5 ‖ Rss‖2
2. Moreover, ‖ Rss‖1 can be

rewritten as tr( Rss) due to the property of positive semi-definite matrix. An auxiliary optimization
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variable ς is introduced, while the constrain condition changes to tr(τ Rss + 0.5 RH
ssRss) ≤ ς and the

model is described as

min
Rss,ς

ς,

s.t. tr
(

τRss +
1
2

RH
ssRss

)
≤ ς,

‖Jvec(Rss −Rx)‖2 ≤ ξ.

(7)

The constraint condition in Equation (7) can be rewritten further as{
tr
(

1
2 RH

ssRss

)
≤ ς− tr (τRss),

‖Jvec(Rss −Rx)‖H ‖Jvec(Rss −Rx)‖ ≤ ξ2.
(8)

Convex optimization problem is turned into standard SDP problem as expressed in
Equation (9) [23], and can be effectively solved using the general interior point method with
polynomial-time complexity.

min
Rss,ς

ς,

s.t.

[
2(ς− tr(τ Rss)) vec(( Rss))

H

vec( Rss) INT

]
� 0,[

ξ2 (Jvec( Rss −Rx))
H

Jvec( Rss −Rx) INT

]
� 0,

(9)

where J is a selection matrix with size NT(NT − 1)× NT
2.

3.3. Computational Cost Comparison

The computational cost of MUSIC mainly depends on spectral searching. Complexity of
classical MUSIC for ULAs is O[Φ(2NT

2 + NT − NTK)/λ̄] [12], whereλ̄ is searching step in MUSIC.
The decrement of complexity is different from [14], which is connected with the sub-array’s
element number of Co-prime LA, that is max(1/M, 1/N). The decrement of our proposed C-aided
MUSIC is related to the angle shrinking rate ~Φ/Φ, which is more flexible than [14]. As for the
convex optimization algorithm, the computational complexity mainly depends on SDP which is
O[(n0.5

sdp(msdpn2
sdp + m2

sdpn2
sdp + m3

sdp))], where nsdp is the dimension of semidefinite cone, and msdp is
the number of constraint condition. Codebook feedback is beneficial to diminish nsdp in SDP, thus,
reducing the computational cost in convex optimization.

4. Simulation Results

Simulations are carried out based on the data model and the proposed C-aided algorithms to
investigate DOA estimation performance and computational complexity. In the simulation, we just
consider the primary paths of different UEs and assume that the far-field narrowband signal sources
are independent. The common simulation parameters are listed in Table 1.
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Table 1. Simulation parameters.

Parameter Name Value

Array model at BS NT ULAs
Number of BS antennas NT 32

Number of UEs K 5
Channel model AWGN

Direction of independent narrowband signal [1.31◦ 2.81◦ 4.51◦ 13.71◦ 17.91◦]
Whole angle range Φ [−π/2, π/2]

Angle range ~Φ with auxiliary codebook [0◦, 20◦]
Searching stepλ̄ for MUSIC 0.005◦

Error constant ξ 5
Equilibrium regularization factor τ 60

Number of pilot for AoD training stage MAI, MAII 500
Number of Monte Carlo simulations L 300

Figure 2 depicts the spatial spectra of proposed algorithms when the number of pilot for AoD
training stage MAI = MAII = 500 and Signal-to Noise Ration (SNR) is 20 dB. As we mentioned in
Section 3.1, with the assistance of Qk and W, we assume that angle range for processing is changed
from Φ to ~Φ ∈ [0◦, 20◦] by wk,i. Figure 2 indicates that the C-aided algorithms can distinguish the
source signal effectively while spatial spectra have a narrow main-lobe and low side-lobe.
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Figure 2. DOA estimation result of proposed algorithms (MAI = MAII = 500, SNR = 20 dB).

In the next simulation, root mean square error (RMSE) is introduced to measure the DOA
estimation performance and is expressed as

RMSE =

√√√√ 1
LK

L

∑
l=1

K

∑
k=1

(φ̂k − φk)
2, (10)

where L is number of Monte Carlo simulations and φ̂k is the estimated DOA. We compare the
RMSE of different algorithms at different SNRs. To ensure the fairness of computational complexity,
sampling points Π should be roughly constant, thus, searching step λ̄ for primal MUSIC changes
from [~Φ/(Π− 1)] to [Φ/(Π− 1)] approximately. For each SNR, 300 Monte Carlo simulations are
implemented and Cramer-Rao lower bound (CRLB) as a benchmark is plotted simultaneously [24].

CCRLB−MUSIC(φ) =
σ2

n
2

{
T

∑
t=1

Re
[
sH(t)Γs(t)

]}−1

, (11)
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where Γ = DHUnUH
n D. D = [d(φ1), · · · , d(φK)] and d(φk), k ∈ {1, 2, · · · , K}] is the first derivative

of array response vector a(φk). As shown in Figure 3, the accuracies of the proposed C-aided
algorithms are slightly better than that of non C-aided algorithm for either MUSIC algorithm [12]
or convex optimization algorithm due to the searching stepλ̄ is smaller with the assist of codebook
feedback. As a kind of grid-based algorithm, the proposed C-aided MUSIC algorithm can achieve
better estimation performance compared with the corresponding C-aided convex optimization under
parameter setting of this paper. However, the accuracy of C-aided convex optimization is not related
to the grid, which will outperform C-aided MUSIC algorithm when estimating the off-grid cases.
Meanwhile, convex optimization suffers higher computational complexity. Our proposed algorithms
can achieve better estimation accuracy and improve the localization precision in future use cases of
smart cities. To evaluate the validity of proposed algorithms, computational complexity is simulated
in the next experiment.
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Figure 3. RMSE of DOA estimation algorithms against SNR (MAI = MAII = 500).

In the last simulation, the number of pilots for AoD training is MAI = MAII = 500 and SNR is
20 dB. 300 Monte Carlo simulations are implemented at each different antenna number’s condition.
Under the same hardware implementation, we use the CPU running time of algorithms as an index to
reflect the computational complexity. Figure 4a depicts the running time as the quantitative function of
the number of BS antennas to estimate DOAs by MUSIC and proposed C-aided MUSIC. It can be seen
that classic MUSIC [12] requires substantially higher complexity due to the whole angle range Φ under
condition of small searching step. Under the parameter setting in Table 1, the computational complexity
for classic MUSIC and proposed C-aided MUSIC algorithm are O(6.68 × 107) and O(7.42 × 106),
respectively, when the number of antennas NT = 36. In this simulation, compared with MUSIC
algorithm, running time saving of proposed C-aided MUSIC is more than 87% when the number
of antennas NT = 36. Similarly, Figure 4b compares the running time between convex optimization
algorithm and proposed C-aided convex optimization algorithm. The decrease of Π is beneficial to
diminish nsdp in SDP under channel codebook feedback, which causes considerable computational
burden. With the auxiliary of codebook, the global optimal solutions can be achieved faster. Compared
with result presented in Figure 4a, the reduction of computational complexity of the proposed
convex optimization algorithm with the help of codebook is more obvious. Clearly, our proposed
algorithms aim at oriented angle range rather than whole angle searching and therefore, they impose
dramatically lower complexity and can achieve better performance-complexity trade-off. Meanwhile,
the proposed C-aided algorithms with lower computational complexity have a great prospect in future
communication for smart cities, especially for those applications requiring low latency.
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Figure 4. Running time comparison versus different number of antennas (MAI = MAII = 500, SNR = 20 dB).

5. Conclusions

In this paper, we first present a new frame structure for downlink transmission. Based on this
frame structure, we propose a codebook channel feedback combined with traditional MUSIC algorithm
and newfangled convex optimization algorithm to tackle the computational complexity caused by
the increasing number of array in massive MIMO systems. Under a codebook feedback mechanism,
we can obtain the oriented angle range, thus, the computational burden of DOA estimation can be
reduced notably. Compared with traditional algorithms, our proposed algorithms are computationally
efficient and can fit the requirement of future green communication better. Simulation results show the
effectiveness of our algorithms.

Author Contributions: Conceptualization, S.L.; Methodology, H.W.; Supervision, L.J.; Writing—original draft,
H.W.; Writing—review and editing, S.L.

Funding: This work was supported by the National Natural Science Foundation of China (grant no. 61401407),
High-precision Cultivation Project of Communication University of China (grant no. CUC18A006-2) and
Engineering Planning Project of Communication University of China (grant no. 2018XNG1851).

Acknowledgments: The authors would like to thank the Editor and the anonymous reviewers for their valuable
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DOA Direction of Arrival
CS Compressed Sensing
MIMO Multiple Input Multiple Output
BS Base Station

CSI Channel State Information
FDD Frequency Division Duplex
MUSIC Multiple Signal Classification
C-aided Codebook aided
AoDs Angles of Departure
Co-prime LAs Co-prime Linear Arrays
UEs User Equipments
ULAs Uniform Linear Arrays
SDP Semi-Definite Programming
RMSE Root Mean Square Error
SNR Signal-to-Noise Ratio
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Appendix A

We aim to illustrate the AoDs variation under the assumption. Without loss of generality,
we consider one specific path. We assume that there is AoDs variation during one transmission
frame, while the variation of AoDs can be expressed as |θ1 − θ2|, which is denoted by Equation (A1) in
the geometric model

|θ1 − θ2| = ε ≤ arctan
(

S
D

)
, (A1)

where θ1 and θ2 are the AoDs before and after variation; S and D denote the displacement distance
of UE and distance between the scatterer and UE, respectively. The equality of Equation (11) holds if
θ1 = π/2 and we consider two cases in this scenario.

• case 1: ε = 0, where the AoDs are constant during one frame of transmission.
• case 2: ε is small, we have ε ≈ tan (ε). When |θ1 − θ2| < π/2PR with π/PR denoting the resolution

of AoDs, we consider the AoDs are relatively constant. As a consequence, we obtain the duration
time of one frame Tf .

Tf ≤
πD

2PRv
(A2)

where v is the average moving speed of UE.

If the resolution of AoDs is set as 0.005◦ as mentioned in Section 4 , D = 100 m, v = 36 km/h.
The Tf is relatively big for the considered parameter, within which the AoDs are almost constant.
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