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Abstract: The use of an internal digital communication network enhances the scalability,
implementation and maintenance of Modular Multilevel Converters (MMC). However, it also
introduces delays that limit the sampling frequency and the controller dynamic performance. In this
paper, we propose a model-based predictor to compensate for the loop delay and overcome these
limitations. Two benefits of this approach are possible: either designers can increase the sampling
rate and control performance or employ a slower communication protocol/technology. In this
paper, we present the mathematical description of the model-based predictor, assess the parameter
sensitivity, and show matching simulation and experimental results that validate it. As constraints
introduced by the use of digital communications are overcome, the results achieved encourage
engineers to adopt a network into the design of Modular Multilevel Converters.

Keywords: model-based prediction; modular multilevel converter; networked control system

1. Introduction

Modular Multilevel Converters (MMCs) are built by series connections of identical modules (or
cells). The number of cells in a converter depends on the nominal terminal voltage and the reliability
requirements, with industrial MMCs reported in the literature in the medium, high, and extra high
voltage levels [1,2]. As the typical cell blocking voltage is between 1.7 kV (IGBTs) and 6.5 kV (IGCTs or
IGBTs) [3], the possible number of cells per arm can go from just a few to hundreds.

The wide range in the number of cells is a challenge for the control hardware. Moreover,
as the converter voltage ratings increase, the control architecture termed star (Figure 1), i.e., single
connections between the central controller and the cells leads to an overwhelming amount of interfaces,
cables and/or fiber optics that quickly become impracticable in industrial converters or at least
unreliable and cumbersome to assemble.

Several authors studied the use of a digital communication network in this context with the
purpose of improving the scalability, implementation, and maintenance of such converters. Toh and
Norum compared the Ethernet-based protocols EtherCAT, Profinet IRT, and PESNet. They found
that the first has the best performance [4], together with low synchronization error/jitter [5,6] and
fault tolerance [7]. Carstensen et al. [8] developed the protocol SyCCo bus specifically for modular
converters that uses EtherCATsummation frame and on-the-fly processing. Tu and Lukic [9] compared
an improved implementation of this protocol with PESNet and found it to allow 28% higher switching
frequency in a 30-cell converter. Hillers, Tu and Biela [10] discussed the implications of the control
structure for the system reliability when using a communication network. Researchers from Aalborg
University implemented a partly distributed control in an MMC prototype to reduce the data shared
globally and demonstrated single fault tolerance when using EtherCAT [11–14]. Reducing the amount
of data sent through the communication link has also been the core idea in [15,16].
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Star RingTree

Figure 1. Network topologies.

The choice of a network solution in this application domain needs to consider multiple aspects
(see [17]), but, from the review above, we notice that reliability and performance are key factors. All the
works listed addressed the former by adopting a ring topology (Figure 1) because it is the simplest
one to offer two disjoint paths between any two nodes. When it comes to performance, they used two
non-exclusive strategies: to employ high bandwidth links with short forwarding delays and to reduce
the communication payload. Corrêa and Almeida [18] explored both strategies and shortened the
Minimum Cycle Time (MCT), the time necessary to update all the cells with new information, by a
factor of 2.5 compared with EtherCAT in a ring network with 400 nodes.

This work approaches the performance issue from a different side. A model-based predictor
compensates for the latency of the network, so the control tolerates longer delays, achieving higher
flexibility in the choice of the protocol and communication technology. An alternative benefit is a better
dynamic performance because of a higher sampling rate and controller gains.

The use of a plant model to compensate for the loop delay dates back to 1957 when O.J. Smith
proposed what today is known as the Smith predictor [19]. Recently, Cortes et al. adopted a similar
approach to compensate for the delay introduced by Model Predictive Control calculations [20,21].
The main contributions of this work are: adoption of a model-based predictor for compensating the
additional latency introduced by the communication network; description of modulation and balancing
schemes pertinent to network controlled MMCs and its relation to the proposed estimation algorithm;
assessment of parameter variations in the control performance; and validation of the concept in an
experimental set-up.

This paper is organized as follows: first, Section 2 explains how the network introduces a loop
delay and how this delay relates with the controller sampling rate. Then, Section 3 presents a model of
the Modular Multilevel Converter, discusses the influence of loop delay and sampling periods in the
closed-loop control, and shows how the network delay influences the sorting algorithm for capacitor
voltage balancing. Next, Section 4 describes the proposed method in mathematical terms, and Section 5
investigates the effect of parameter variations in the closed-loop response. Finally, Section 6 validates
the proposed method through Matlab/Simulink simulations and experimental results.

2. Network Induced Latency

The control structure of Modular Multilevel Converters consists of a central unit and embedded
electronics in each cell or group of cells. The central controller has powerful computational resources
and more access to data than the cells, e.g., measurements and setpoints from higher hierarchy levels,
hence it calculates the load current and outer control loops. Its output can be on/off commands,
individual references, or a single setpoint per arm [14]. Until Section 4.2, we will be concerned with
the flow of information from the central controller to the cells. In addition, On/Off commands will
be ignored in this work because the Ethernet-based communications considered fail to provide the
sub-microsecond latency necessary to keep the error in the generated voltage small.

The adoption of a real-time protocol translates into a deterministic delay and Minimum Cycle
Time (MCT). When the controller outputs individual references to the cells or a single one per arm,
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the MCT defines the minimum possible actuation delay because the cells must simultaneously apply
the new references to avoid a variable loop delay.

Often, authors take the MCT, the sampling-to-actuation delay, and the control sampling frequency
as the same variable, but it must not be so. Consider Ethernet frames traveling around a network when
the master node sends a new packet just after the interframe gap has elapsed (Figure 2). Due to the
propagation and forwarding delays, i.e., how long a node takes to receive and resend a packet to the
next one, the MCT is higher than the time between the arrival of two consecutive packets in a node,
i.e., the sampling period h.
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Figure 2. Ethernet frames traveling in a network. The green and red lines indicate the start and end of
a frame, respectively.

The Minimum Cycle Time of EtherCAT, an industrial protocol that has gained popularity in this
application domain [22], is expressed by (1) [23],

MCT = P.Tbyte +

⌈
P

1488

⌉
· 50 · Tbyte + κ · Tfw, (1)

where P is the data payload in bytes, dxe is the ceiling of x, Tbyte is the time to transmit one byte,
Tfw is the forwarding delay (typically between 0.7 µs and 1 µs [24]), and κ is the number of nodes.
In (1), the first term corresponds to the time to transmit the payload; the second term to the overhead
due to packet headers, interframe gap, and frame check sequence; the third to the sum of the nodes
forwarding delay. This last term does not influence the sampling period.

As EtherCAT supports only a bit rate of 100 Mbps (Tbyte= 80 ns), the MCT of a frame with
minimum payload is equal to 10.2 µs, 13.7 µs, 41.7 µs or 76.7 µs for a network with 5, 10, 50 or
100 nodes, respectively. However, independently of the network size and the forwarding delay (see
Figure 2), the minimum sampling period is 6.7 µs, as it depends only on the smallest Ethernet frame
length and the interframe gap that are 72 and 12 bytes long, respectively [25].

In practice, a chain of tasks prevents the controller of reaching such low sampling periods.
For example, the central unit has to convert the analog signals and calculate the outputs of the control
algorithms; the protocol stack has to prepare the data and handle them to the Medium Access Controller
(MAC); then, the MAC has to command the physical layer to send the packet. In our experimental
set-up, for example, measurement conversion and control calculations take 27 µs. An optimized
EtherCAT master stack can transmit small frames (~72 bytes long) within 11 µs [26], hence, in this
particular case, the minimum sampling period would be 38 µs, unless the controller can pipeline some
of these tasks.
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It is also important to consider the discrete nature of the controller since it causes a range of
sampling periods to represent the same amount of delay. The loop delay n, in number of samples, is

n =
⌈ ς

h

⌉
, (2)

where ς is the sampling-to-actuation delay and h is the sampling period.
As an illustration, the diagram of Figure 3 shows a network with the control running at two

different rates. In the first case (a), the network introduces a delay of one sample, but, in the second
case (b), it introduces a delay of two samples due to the shorter sampling period. In an implementation
that has a sampling-to-actuation delay just below 100 µs, the loop delay is one sample, just like any
discrete controlled system, as long as the sampling period is more than 100 µs. The communication
latency would represent a delay of one or two samples, if the sampling period is in the range [50 µs,
100 µs) or [33 µs, 50 µs), respectively, and the sampling-to-actuation delay would be two or three
samples.
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Figure 3. The network introduces additional delay to the actuation. As the sampling period reduces
from (a) to (b), the delay is higher in terms of samples. xk is the state vector in instant k, and uk|k−n is
the plant input vector in instant k calculated in k− n.

3. Modular Multilevel Converter Model

Double-star Modular Multilevel Converters (Figure 4) with half-bridge cells produce AC voltages
with N + 1 or 2N + 1 levels depending on the modulation strategy [27], where N is the number of cells
per arm. In the medium voltage range, the converter has a low number of cells, yet their switching
frequency is high (~1–2 kHz). As the voltage increases, the cell switching rate approaches the grid
frequency, but the number of levels is higher as well as the apparent switching frequency on the
load. As a result, in both cases, an inductive output filter is sufficient to fulfill the current and voltage
harmonic distortion requirements.

The internal current loops have the fastest dynamics and are the most affected by the loop delay;
therefore, we need to model the converter to analyze them. By transforming (3.7) from [28] to the dq
reference-frame, we obtain the differential Equations (3) that model the load current dynamics,



Electronics 2018, 8, 22 5 of 16

..
.

..
.

..
.

...
...

...

..
.

..
.

..
.

...
...

...

idc

ic

ib

iaiua iub iuc

uua

ula

uub

ulb

uuc

ula

ila ilb ilc

udc
2

udc
2

O

N

L

L

R

R

L

L

R

R

L

L

R

R

1

1

1

1

1

1

2

2

2

2

2

2

n

n

n

n

n

n

Rg
Lg

eaebec

Lf Rf
a

b
c

Figure 4. The Modular Multilevel Converter (MMC) circuit diagram.
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, (3)

where edq is the grid voltage, us,dq = (uldq−uudq)/2 is the output voltage, Leq = L/2 + Lg + L f is the
equivalent inductance, Req = R/2 + Rg + R f is the equivalent resistance, and ωo is the grid angular
frequency. We list the main parameters of the MMC studied in Table 1.

In an MMC, the load current is only one component of the upper and lower arm currents.
A second component, known as circulating current, flows through both arms and is defined as

icirc,a
∆
= (iua+ila)/2 = iua − ia/2 = ila + ia/2. Their dynamics are necessary for a complete MMC model,

as in Equation (4) [28],

˙ icirc,a
icirc,b
icirc,c

 =

 − R
L 0 0

0 − R
L 0

0 0 − R
L


 icirc,a

icirc,b
icirc,c

+
1
L
· Udc

2
− 1

L

 ucirc,a
ucirc,b
ucirc,c

 , (4)

where the internal voltage is ucirc,abc = (ul,abc+uu,abc)/2. The number of inserted cells in the upper and
lower arms, know as insertion indexes nu and nl , are [28]

nu =
u∗circ−u∗s

uΣ
cu

nl =
u∗circ + u∗s

uΣ
cl

, (5)

where uΣ
cu and uΣ

cl are the sum of the capacitor voltages of the upper and lower arms, respectively, and
the superscript * denotes reference values.
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Influence of Sampling Rate and Delay on Control Performance

Sampling is a fundamental property of discrete-controlled systems. Its rate influences the poles
and zeros of the discretized plant, hence it affects the controller design and closed-loop response [29].
In like manner, loop delays are a common phenomenon in several control applications and are almost
inevitable in networked controlled systems [30]. Their presence imposes strict limitations on achievable
feedback performance and often has a “destabilizing effect” [30].

The frequency-domain analysis is the preferred way of dealing with systems that have loop
delays [19,29,30]. Consider open-loop Bode diagram (Figure 5), correspondent to the inner current loop
of our prototype converter (parameters listed in Table 1) with a Proportional-Integral (PI) controller in
synchronous reference frame tuned for 3 ms settling time ts using the pole placement method. Each
delay of one sample introduces a linearly increasing lag with frequency [30] (at the Nyquist frequency,
the phase is −360°, −540°, −720° for delays of 1, 2 or 3 samples, respectively), but it does not affect the
magnitude (Figure 5a). A discrete-time controller has a delay of at least one sample. With two samples,
the system has a narrow phase margin, and with three or more it becomes unstable (negative phase
margin).

The Bode diagram of Figure 5b shows the influence of the sampling frequency on the phase
margin and crossover frequency when the plant has a single delay. For the case analyzed, the three
shortest sampling periods result in positive phase margins of 52°, 39°, and 16°, respectively, i.e.,
only them result in a stable closed-loop system.

However, the control of the converter is possible with lower sampling frequencies or longer delays,
but the designer will need to reduce the controller gains to bring the system back to stability [19]
(e.g., in Ziegler–Nichols method, the integral gain is inversely proportional to the deadtime [29]) and,
consequently, slow down its response.

-20

0

20

40

60

80

M
ag

n
it
u
d
e 

(d
B
)

10-1 100 101 102 103 104 105
-360
-270
-180
-90

0
90

180

Ph
as

e 
(d

eg
)

z-1

z-2

z-3

z-4

Bode Diagram

Frequency  (rad/s)

(a) Influence of the loop delay.

-20

0

20

40

60

80

M
ag

n
it
u
d
e 

(d
B
)

10-1 100 101 102 103 104 105
-360

-270

-180

-90

0

90

Ph
as

e 
(d

eg
)

 50 µs
100 µs
200 µs
400 µs
800 µs

Bode Diagram

Frequency  (rad/s)

(b) Influence of the sampling period.

Figure 5. Open-loop Bode diagram of the plant with controller.

4. Proposed Estimation Algorithm

In this section, we explain the model-based predictor and how it compensates for loop delays.
It works as follows: a model of the plant predicts what will be the state vector n samples ahead based
in the measured state vector and the known future plant inputs. The central unit feeds the estimated
states back to the controller that calculates the plant inputs and places them into the communication
queue. After n samples, the inputs are applied to the plant (Figure 6).
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Consider the difference state-space Equations (6) and (7) that represent a discretized linear
time-invariant model,

xk+1 = Axk + Buk|k−n, (6)

yk = Cxk, (7)

where xk and yk are the state and output vectors in instant k, respectively, uk|k−n is the plant input
vector in instant k calculated in k− n, and A, B, and C are matrices of the necessary dimensions.

In a state-feedback control law, the plant input would be uk = Kxk, where K is the gain matrix
that can be designed, for example, using Linear Quadratic Gaussian control or pole placement [29].
To compensate for the loop delay, we propose to predict the system state x̂k+n and use it for the
calculation of the plant input, as in Equation (8).

uk+n|k = Kx̂k+n. (8)

Plant

Controller Memory

Model

delay
τ

hNetwork Sampling

uk+n

xk+n^

xk

Propagation
Unit

z
o
h

Figure 6. Configuration of the proposed control with long network delays.

Henceforth, we will drop the notation uk+n|k and use only uk+n because the network has a constant
delay, guaranteed by the real-time communication, and the controller always calculates the plant input
n samples in advance.

The estimated states x̂ in instants k + 1 to k + n are

x̂k+1 = Âxk + B̂uk, (9)

x̂k+2 = Âx̂k+1 + B̂uk+1, (10)
...

x̂k+n = Âx̂k+n−1 + B̂uk+n−1, (11)

or, in a recursive manner,

x̂k+n = Ânxk +
n

∑
j=1

Âj−1B̂uk+n−j, (12)
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where matrices Â and B̂ correspond to the plant model and can be obtained by the digitalization of
Equations (3) or (4). If we substitute (12) in (8), the plant input vector is expressed by

uk+n = KÂnxk +
n

∑
j=1

KÂj−1B̂uk+n−j. (13)

The controller calculates (13) every cycle and puts the results in the communication queue. A new
measurement is only necessary to calculate the first term of (13), KÂnxk. All the other terms can be
evaluated as soon as the next plant input vector is available, as uk+n → uk+n−1, ..., uk+1 → uk in the
next sample. Note that the matrices KÂn, KB̂ to KÂn−1B̂ have constant elements that can be stored in
the memory at compilation time, so this method is not hard on the processing system.

As an illustration, we represented the closed-loop system with two actuation delays, a PI controller,
and the model-based predictor in the block diagram of Figure 7 that corresponds to the current

control-loop of an MMC. In this system, the augmented state-space vector is
[

x uk uk+1 η
]T

to
include the plant input uk, the future plant input uk+1, and the controller integral part η. The output
of the PI controller will be equal to the plant input two samples ahead (n = 2) and (13) becomes
uk+2 = KÂ2xk + KB̂uk+1 + KÂB̂uk. From the block diagram, it is possible to deduce the state-space
closed-loop response (14) in the format of (6):

x
uk

uk+1
η


k+1

=


A B 0 0
0 0 I 0

−kpÂ2 −kpÂB̂ −kpB̂ ki I
−Â2h −ÂB̂h −B̂h I

 ·


x
uk

uk+1
η

+


0
0

kp I
Ih

 · r, (14)

where r is the reference vector, I is the identity matrix of proper dimensions, h is the sampling period,
and kp and ki are the proportional and integral gains, respectively.
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Figure 7. Block diagram of a closed-loop system with two loop delays, a PI controller, and the
model-based predictor.

4.1. Estimation of Circulating Current

Though (12) is valid for both the load and the circulating current state vectors, the correct
estimation of the latter is difficult. The reason is the appearance of parasitic components in the
synthesized voltages due to the difference between the divisors of (5) and the effective summed
voltage of the inserted capacitors (see subchapter 3.5 of [28]). Because the voltage drop in L and R
are small (ul + uu ' udc), even parasitic components with low magnitude produce significant errors
between the reference and the applied internal voltage u∗circ,abc. In Figure 8, we show a simulation of
the ucirc,a (orange waveform) and its reference (blue waveform) when the circulating current control
is disabled (t < 0.4 s) and enabled (t > 0.4 s). In both cases, the difference between reference and
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measurement is remarkable, though the control is still able to reduce the circulating current RMS value
(yellow waveform) when enabled.

Two solutions to this problem are possible. The first one is to use the arm voltage measurements
as uk in (12) to estimate the future circulating current state vector, but, in this case, the prediction is
limited to a single sample in the future. The second one is to limit the circulating current with a large
arm inductance passively to avoid the need for an active method.
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Figure 8. Mismatch between ucirc and its reference. As a consequence, an estimation of icirc based on
the references delivers poor results.

4.2. Modulation and Capacitor Balancing

Thus far, we have only considered the calculation of the voltage references by the load and
circulating current controllers. The controller must translate these references into commands to the
power switches, which is known as modulation. Moreover, balancing of the capacitor voltages is
essential for proper operation of the converter [1].

The controller outputs either one reference per cell or single ones per arm, as explained in Section 2.
In the case of the first, the control is centralized, and the central unit is responsible for the modulation
and capacitor balancing. Due to the network, the central controller receives data delayed by a few
samples. We tested if the use of delayed capacitor voltage measurements could still allow an effective
balancing when using the sorting algorithm [31]. For that, we run several simulations introducing
delays in the capacitor voltage measurements that are fed back to balancing. The results show that the
maximum deviation to the average capacitor voltage increases with the number of samples, but the
deviation stays within reasonable limits (Figure 9). Therefore, the standard sorting algorithm is an
effective balancing strategy when controlling an MMC over a network.

In case the control outputs single setpoints per arm, as adopted in [14] using phase-shifted carrier
PWM, the strategy adopted is partly distributed. The central controller runs the current and outer
control loops, while the cells execute the modulation and balancing. In such a case, the network does
not affect the capacitor balancing because it is run locally at the cells. For this type of control and
different strategies to implement it, also refer to [15,16,32].
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Figure 9. Maximum deviation to the average capacitor when the sorting uses measurements with and
without delays. Capacitor rated voltage of 170 V and sampling period of 100 µs.

5. Parameters’ Sensitivity

The estimation algorithm proposed uses a model of the plant, which raises concerns over the
system performance and stability as the model and plant deviate from each other.

It is possible to verify the system stability, study mismatches between plant and model or the effect
of the controller tunning by calculating the eigenvalues of (14) in [21]. To exemplify, we discretized
the plant (3) using a Zero-Order Hold and considered the closed-loop system with a delay of two
samples (Figure 7). The maximum absolute Eigenvalues of the matrix Σ (defined in [21]) for different
plant/model inductance ratios (Leq/L̂eq) and controllers’ gains, represented here as the settling time
used in the controller design, are shown in Figure 10a. As expected, a faster controller is more sensitive
to models’ mismatch, but the closed-loop plant is stable with all three controllers as long as the plant
to model inductance ratio is greater than 0.38. Note that high voltage MMCs typically use dry-type
air-core reactors [28], so errors of this magnitude are unlikely. Furthermore, they are associated with
expensive projects that have long implementation periods; hence, a good characterization of the filter
components is feasible.

(a) (b)

Figure 10. Stability analysis and influence of model error in the system closed-loop poles and zeros.
(a) study of sensibility to the ratio between plant and model inductance with different controller gains
(ts is the controller settling time). The system is stable if and only if all the eigenvalues of Σ are within
the unitary circle [21]; (b) polo-zero map of closed-loop plant with controller tuned for ts = 2.5 ms and
several plant to model inductance ratios.
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A second method for the verification of the sensitivity to parameters variation is to plot the root
locus of the closed-loop plant (14), as in Figure 10b for the controller with ts = 2.5 ms. Finally, we show
simulation results of a step response for three controllers when the equivalent plant inductance is 0.5
of the model value (Figure 11).
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Figure 11. Simulated step response with a plant to model inductance ratio of 0.5.

6. Simulation and Experimental Results

We simulated a STATic COMpensator (STATCOM) using a detailed equivalent circuit model
(type 4 [33]) in Matlab/Simulink (2017a, Mathworks Inc., Natick, MA, USA) as proposed in [34]. The
simulation time with this modeling is about the same as with a full detailed model (type 2 [33]) for
small converters, but it simplifies the parametrization of the number of cells and reduces the simulation
time of larger converters dramatically.

The experimental results were taken using a reduced scale prototype (Figure 12) also working as
a STATCOM. It is a quasi-industrial three-phase converter, rated to 50 kVA/400 V, with five half-bridge
cells per arm (see Table 1). The control is based in Xilinx Zynq System-on-Chip and can simultaneously
measure 43 analog signals, command 64 power switches through fiber optics, and receive 32 fault
signals (refer to [35] for a detailed description of the prototype). The Programmable Logic (FPGA) has
the following tasks: measure the grid voltage angle with a Phase-Locked Loop (PLL); acquire the data
from the Analog/Digital converters; do the modulation that controls the power switches; keep the
capacitor voltages balanced (sorting algorithm). The Processing System (ARM cores) has two tasks:
execute the control loops and run the server of the data acquisition and supervision system. In our
implementation, the time necessary for data conversion is 12.5 µs; for control calculations is 6.5 µs;
for system protection is 4.8 µs. The total time for all tasks is 27 µs.

Table 1. Simulation and prototype parameters.

Parameter Value Parameter Value

Rated power 50 kVA Arm inductor (L) 0.5 mH
Grid line voltage 400 V Arm resistance (R) 1 mΩ

Cells/arm (N) 5 Filter inductor (L f ) 5 mH
Cell capacitor (C) 2.2 mF Filter resistance (R f ) 14 mΩ

Sampling period (h) 100 µs Grid inductance 0.4 mH
Carrier frequency 750 Hz DC voltage 750 V
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Figure 12. Modular Multilevel Converter prototype with five cells/arm.

The control architecture of this converter is centralized, i.e., a single hardware unit controls all the
cells. For the validation of the proposed method and the sake of simplicity, we emulated the digital
communication network by adding a delay of one sample between the output of the control and the
PWM. From the control point of view, this is an accurate emulation of a distributed implementation
based in a real-time communication that guarantees to meet its deadlines, as long as the links have a
low probability of losing or corrupting packets. In total, the system experiences two delays between
sampling and actuation, one owing to the digital nature of the controller and the other to the delay
introduced by the network.

We present the simulation and experimental results in Figure 13 under two different scenarios:
(a) with and (b) without the model-based latency compensation. The blue and the dashed orange
waveforms are the simulated and experimental response, respectively, to a reference step in the
reactive power current Id. In a STATCOM, the current Iq controls the flow of energy to keep the
average capacitor voltage at the setpoint; hence, no changes in its reference were carried out.

As expected, the system has a narrower phase margin and the closed-loop response is less damped
when the latency is uncompensated, so the overshoot is higher and the settling time is longer. On the
other hand, the step response with the compensation has less overshoot and is faster, demonstrating
the benefits of the proposed approach.

The simulated and experimental responses are almost identical (see Figure 13), which validates
both the model and the model-based compensation strategy. The only tweak needed in the simulation
was to include the grid fifth and seventh harmonic, with the magnitude measured at the point of
common coupling, and to adjust their relative phase to the fundamental.
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Figure 13. Experimental and simulation results for a system with delay of two samples.

Additionally, in Figure 14a,b, we show, respectively, the reactive and the grid currents when the
controller commands a negative current step in a system with a delay of three samples (two from the
network and one from the digital control) and that uses the model-based predictor. Note that we do
not consider this a real use-case of the proposed method because the designers have the freedom to
choose the sampling period and the communication network deployed; we believe that it is better to
have a higher sampling period than a loop delay higher than two samples. Despite this consideration,
the system response has the same settling time and overshoot as when the network adds a single delay,
but without the prediction, the system becames unstable.
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Figure 14. Experimental results for a system with a delay of three samples and the model-based prediction.

In our experimental setup, the control balances the cell voltages employing the sorting algorithm.
For this, it receives from each cell its voltage, organizes the cells in ascending order, and selects the
ones with the highest or lowest voltages depending on the arm current polarity. When the converter
control has an internal network, the capacitor voltage will reach the central controller after the delay
introduced by the network. We have tested the scenario without any delay and emulated a network
that delays the capacitor voltages by two samples. Figure 15 shows the measured capacitor voltages
from one arm of our experimental converter, where we see that the delay of only two samples does not
influence the balancing.
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Figure 15. Comparison of the arm capacitor voltages when the modulation uses a sorted list based
on measurements without delay (dashed blue line) and with delays of two samples (continuous
orange line).

7. Conclusions

The use of a digital communication network into the design of Modular Multilevel Converter
introduces a loop delay to the plant, making the controller design harder, reducing dynamic
performance, and restricting the minimum sampling period. To the best of our knowledge, researchers
have coped with these consequences by minimizing the introduced loop delay. In this work,
we adopted a different approach and used a model-based predictor to compensate for the loop delay.

By analogy with the Smith predictor, we can state that the proposed method removes the loop
delay from the denominator of the closed-loop transfer function. The PI controller design considers
only the delay-free plant [30]. Hence, it can have higher gains, and the transient system response is
faster. By accounting for the disturbance effects in the model, it can also improve the disturbance
rejection [19].

Moreover, the proposed method allows decoupling the sampling period from the communication
Minimum Cycle Time because the system can tolerate longer delays. As a result, either the sampling
period can be reduced or a higher Minimum Cycle Time can be tolerated. Thus, the method increases
the flexibility in the system design.

We proved the feasibility and better performance of the proposed method using Matlab/Simulink
simulation and implementing it in a reduced-scale prototype. Additionally, we assessed the tolerance
to parametric variations and found that, for the converter analyzed, the proposed method is robust to
mismatches between plant and model.

The results obtained reassure engineers that it is possible to use an internal digital communication
network in a Modular Multilevel Converter, with all the advantages in terms of hardware design and
ease of implementation/maintenance, while still having flexibility and good dynamic performance.
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