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Abstract: This paper presents the modeling and control-loop design method with an inverted
decoupling scheme of a single-phase photovoltaic grid-connected five-level cascaded H-bridge
multilevel inverter. For the unity power factor, the proportional and integral current controller with
a duty ratio feed-forward compensation is used. In addition, in order to achieve the maximum
power point tracking of each photovoltaic array, when the stacked modules are in the partial shading
condition, each direct current (DC) voltage is stably controlled to their maximum power points (MPP)
by dedicated voltage controllers of each H-bridge module. This paper also presents a control method
that minimizes the effect of the loop-interaction in the design of an individual DC-link voltage
control loop in a two-input two-output system. The proposed control methods of the cascaded
H-bridge multilevel inverter are validated through the simulation and experimental results of the
2-kW prototype hardware.

Keywords: Cascade H-bridge; multilevel inverter; two-input two-output; individual voltage control;
maximum power point

1. Introduction

The multilevel converter can improve efficiency by enabling the use of components with better
characteristics due to the reduced voltage stress, and has the advantage of lowering electromagnetic
emissions by providing a staircase output voltage [1–10]. Thus, the use of a multilevel converter has
increased in industrial and renewable energy applications, which require high-voltage and high output
quality [11–14]. In recent times, studies of photovoltaic applications with multilevel topologies have
made progress in increasing the efficiency and lowering the electromagnetic interference (EMI) and
core losses [10–17]. The multi-level converter has been used mainly in renewable energy systems using
high-voltage above kV, but researches are expanding to low-voltage applications to take advantage
of the aforementioned merits [16,17]. Among several studies, because isolated direct current (DC)
sources are naturally obtained from the photovoltaic (PV) arrays, and can be easily modularized
compared to other multilevel converters, a PV generation system with the cascaded H-bridge multilevel
inverter topology has been studied [16–25]. Reference [16] presented a study on the reactive power
compensation for the single phase grid-connected cascaded H-bridge multilevel inverter, but they
did not fully suggest the method for designing the controller. The results of applying a cascaded
H-bridge multilevel inverter to the rooftop photovoltaic micro-inverter as a low-voltage application
were studied in [17]. In this paper, they present the results of a power balancing scheme using a
multi-level inverter in a two-stage power conversion architecture. However, there is no analysis for
control-loop design and only simulation results are presented.
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In grid-tied PV generation systems, the single stage structure requires many series-connected PV
modules for making PV arrays with a high voltage. However, each of the stacked PV modules has its
optimal maximum power points (MPPs) owing to the partial shading when the PV operates under a
non-uniform irradiation. When the illumination level is decreased because of non-uniform irradiation,
the whole PV system has multiple maximum power points. In this situation, the maximum power
point tracking (MPPT) algorithm is apt to fall into the local MPPs and the output power is considerably
decreased [26–33].

However, this problem can be mitigated by using the cascaded H-bridge multilevel inverter.
When using the cascaded H-bridge multilevel inverter, PV modules are separately divided and
grouped by the number of H-bridge modules, and the output voltage of PV arrays can be controlled to
achieve their MPPs. Thus, the control loop design should be taken into account, in order to achieve
the individual voltage control of each PV array and the unity power factor control in multi-input
multi-output systems. In [34], the individual DC-link voltage control and PWM method are proposed
in order to achieve the aforementioned objectives. However, the loop-interaction and solutions among
H-bridge modules are not presented. Compared with a previous conference paper [35], we further
present the inverted decoupling control method and the simulation results to show the effectiveness
of the proposed method to minimize the loop gain interactions that occur when controlling each PV
array voltage. Furthermore, we describe the detailed modeling process and simulation results for
verification of the designed controller that was not presented in the previous paper to make it easier
for other researchers to understand. In addition, the MPPT algorithm for tracking the MPPs of the
photovoltaic system is further described.

In this paper, the controller design method with an inverted decoupling scheme of the cascaded
H-bridge multilevel inverter for achieving an individual MPPT of each PV array and the unity power
factor of the grid current is presented. The proportional and integral (PI) current controller, with the
duty ratio feed-forward compensation method for minimizing the steady-state error and the phase
delay is applied. In addition, in order to avoid a local MPPT, the output voltage of each PV array is
individually controlled through the decoupled loop gain design method of the two-input two-output
(TITO) system. The proposed small signal modeling and control loop design methods are validated
through the simulation and experimental results of the 2-kW five-level single-phase cascaded H-bridge
multilevel inverter system.

The remainder of this approach is organized as follows. This approach is divided into four parts
including this introduction section. To begin with, the small signal transfer function of the cascaded
H-bridge multilevel inverter based on the small signal modeling approaches are derived in Section 2.
Also, the current and voltage controller design methods using the inverted decoupling method of
two-input two output system are described. Section 3 shows the simulation and experimental setup
and the results of the proposed approach. The experimental results show the validity of the proposed
individual voltage control for obtaining the maximum power of each PV module. In the final section,
some conclusions and final remarks are given.

2. Modeling and Control Loop Design Method

2.1. Small Signal Modeling of Five-Level Cascaded H-bridge Multilevel Inverter

The single-phase five-level cascaded H-bridge multilevel PV system is shown in Figure 1. In order
to design the control loops, a small signal model, based on the state space averaging method [36,37],
is developed. More detailed small-signal modeling is given in [37]. The input currents and output
voltages of each H-bridge power stage of Figure 1 are defined as (1)–(4), using the switching states
shown in Figure 2.
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Figure 1. Single-phase photovoltaic cascaded H-bridge multilevel inverter. 
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Figure 2. Relationship of switching states and duty ratios of the cascaded multilevel inverter. 
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vsw1 = s11vdc,1 − s31vdc,1 (1)

vsw2 = s12vdc,2 − s32vdc,2 (2)

idc1 = s11iL − s31iL (3)

idc2 = s12iL − s32iL (4)

S11 and S31 are switching states of the upper switches of each leg in the upper H-bridge module
and can take the values 1 or 0, according to the compared result between the modulating (vc*) and
carrier signal, as shown in Figure 2. idc1 and vsw1 are the input current and the output voltage of the
upper H-bridge module, respectively. Similarly, S12, S32, idc2, and vsw2 are switching states of upper
switches of each leg, the input current, and output voltage in the lower H-bridge module, respectively.
Vdc,1 and Vdc,2 are the DC link voltage of the upper and lower H-bridge modules, respectively, and iL
is the filter inductor current.



Electronics 2018, 7, 207 4 of 16

Assuming that the switching frequency fs is higher than the frequency of the modulating signal
vc*, the averaged state equations are derived as (5)–(7).

L
diL
dt

= (2d11 − 1)vdc,1 + (2d12 − 1)vdc,2 − vg (5)

C1
dvdc,1

dt
= iin1 − idc1 (6)

C2
dvdc,2

dt
= iin2 − idc2 (7)

Here, the switching states are changed to duty ratios d11 and d12. L, C1, and C2 are the output
inductor and DC link capacitors of power stages as shown in Figure 1. Vg, iin1, and iin2 are the grid
voltage and the current of each PV module. By applying the perturbation and linearization technique,
the small signal state equation can be derived as (8), from which transfer functions, such as duty ratio
to inductor current and duty ratio to each DC voltage, can be obtained.

d
dt

 îL
v̂dc,1
v̂dc,2

 =


0 (2D11−1)

L
(2D12−1)

L
− (2D11−1)

C1
0 0

− (2D12−1)
C2

0 0


 îL

v̂dc,1
v̂dc,2


+


2Vdc,1

L
2Vdc,2

L
− 2IL

C1
0

0 − 2IL
C2

[ d̂11

d̂12

]
+

 0 0 − 1
L

1
C1

0 0
0 1

C2
0


 îin1

îin2
v̂g


(8)

2.2. Current Controller Design Method

Because the proportional-integral (PI) current control in an AC system has a steady state error and
phase delay for the reference current, the duty ratio feed-forward method is used to improve the grid
current control performance. From the small signal state equation in (8), transfer functions with respect
to duty ratios and grid voltage of upper and lower H-bridge power stage can be derived as (9)–(11).

GiLd11 =
îL

d̂11
=

2Vdc,1

L


(

s − (2D11−1)IL
C1Vdc,1

)
s2 + 1

L

(
(2D11−1)2

C1
+ (2D12−1)2

C2

)
 (9)

GiLd12 =
îL

d̂12
=

2Vdc,2

L


(

s − (2D12−1)IL
C2Vdc,2

)
s2 + 1

L

(
(2D11−1)2

C1
+ (2D12−1)2

C2

)
 (10)

GiLvg =
îL
v̂g

= − s

L
(

s2 + 1
L

(
(2D11−1)2

C1
+ (2D12−1)2

C2

)) (11)

Since the generated power of the PV array is generally measured for the MPPT algorithm,
the duty ratio relationship for feed-forward can be derived as (12) with respect to PV array powers
under steady-state conditions of the averaged model. Thus, duty ratios to grid voltage of each H-bridge
module is derived as (13).

D1i =
1
2

(
1 +

Iin,i

IL

)
=

1
2

(
1 +

Pin,i · vg

Pin,tot · vdc,i

)
, i = 1, 2 (12)

d̂1i =
1
2

Pin,i

Vdc,i · Po
v̂g, i = 1, 2 (13)
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where, Pin,1 and Pin,2 are the output power of each PV array, Pin,tot is the sum of the powers of two PV
arrays, and Vdc,i is the voltage of each PV array.

In order to design the control loops for the grid current and each DC-link (PV array) voltage,
the current control loop in Figure 3 is designed first. As shown in Figure 3, the inductor current injected
into the utility grid is the sum of the current control result of the upper H-bridge module and the
current control result of the lower H-bridge module from the controller design point of view. In this
case, d̂11 to inductor current and d̂11 to inductor current in the power stage of Figure 3 are expressed
by (9) and (10) At this time, Hi is a proportional integral (PI) current controller, and the DC gain and
zero of PI controller can be designed so that each current control loop has a high cut-off frequency and
a sufficient phase margin. In general, the cutoff frequency should be designed to have a phase margin
greater than 45 degrees. The duty ratio feed-forward scheme is employed to attenuate the disturbance
of the grid voltage, and the effects of this scheme are shown in section 3.
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2.3. Voltage Controller Design Method

It is necessary to design a voltage controller that can control input voltages of the PV arrays to
determine the current reference in the state where the current controller is implemented. When the
current-loops are closed, the transfer functions of the input voltages (Vdc,1, Vdc,2) to each H-bridge
module current are firstly derived. Then, the voltage controller should be designed to stabilize the
transfer function of the voltages to the current reference, and the detailed procedure is as follows.

The previously mentioned current loop closed system can be considered as the TITO system as
shown in dotted box of Figure 4. g11 is the transfer function of the upper PV array voltage of the upper
H-bridge module, with respect to the reference current, denoted as v̂c1, and g12 is the transfer function
of the upper PV array voltage of the lower H-bridge module, with respect to the reference current,
denoted as v̂c2. The derived transfer functions are represented as (14)–(17). In Figure 4, Hv represents
the controller for the voltage control of the current loop closed system.

g11 =
v̂dc,1

v̂c1
=

HiGvdc,1d1(1 + Ti2)− Ti1HiGvdc,1d2

1 + Ti1 + Ti2
(14)

g12 =
v̂dc,1

v̂c2
=

HiGvdc,1d2(1 + Ti1)− Ti2HiGvdc,1d1

1 + Ti1 + Ti2
(15)

Gvdc1d1 =
v̂dc,1

d̂11
= −2IL

C1

(
s2 +

(2D11−1)Vdc,1
LIL

s + (2D12−1)2

LC2

)
s
(

s2 + 1
L

(
(2D11−1)2

C1
+ (2D12−1)2

C2

)) (16)
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Gvdc1d2 =
v̂dc,1

d̂12
= −

2(2D11 − 1)Vdc,2

LC1

(
s − (2D12−1)IL

C2Vdc,2

)
s
(

s2 + 1
L

(
(2D11−1)2

C1
+ (2D12−1)2

C2

)) (17)

where Hi is the PI current controller and Ti1 and Ti2 are the current loop gains that are denoted as
HiGiLd1 and HiGiLd2, respectively.
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Similarly, g21 is the transfer function of the lower PV array voltage of the upper H-bridge module,
with respect to the reference current, denoted as v̂c1, and the g22 is the transfer function of the lower
PV array voltage of the lower H-bridge module, with respect to the reference current, denoted as v̂c2.
The transfer functions are derived as (18)–(21).

g21 =
v̂dc,2

v̂c1
=

HiGvdc,2d1(1 + Ti2)− Ti1HiGvdc,2d2

1 + Ti1 + Ti2
(18)

g22 =
v̂dc,2

v̂c2
=

HiGvdc,2d2(1 + Ti1)− Ti2HiGvdc,2d1

1 + Ti1 + Ti2
(19)

Gvdc2d1 =
v̂dc,2

d̂11
= −

2(2D12 − 1)Vdc,1

LC2

(
s − (2D11−1)IL

C1Vdc,1

)
s
(

s2 + 1
L

(
(2D11−1)2

C1
+ (2D12−1)2

C2

)) (20)

Gvdc2d2 =
v̂dc,2

d̂12
= −2IL

C2

(
s2 +

(2D12−1)Vdc,2
LIL

s + (2D11−1)2

LC1

)
s
(

s2 + 1
L

(
(2D11−1)2

C1
+ (2D12−1)2

C2

)) (21)

Thus, the outer voltage control-loops are designed to stabilize the current-loop closed system
using the following loop design approach. Voltage loop T1 is first designed without the voltage loop
T2. In this condition, the transfer function of the control voltage Vc2 to DC voltage Vdc2 with the closed
T1 loop can be derived as (22). In this equation, several loop gains are defined as follows:Ti1 = HiGiLd1 ,
Ti2 = HiGiLd2 , Tv1 = Hi HvGvdc,1d1 , and Tx = −Hi

2HvGvdc,1d2 GiLd1 .

v̂dc,2

v̂c2

∣∣∣∣
T1,closed

=
HiGvdc,2d2(1 + Ti1 + Tv1)− HiGvdc,2d1

(
Ti2 + Hi HvGvdc,1d2

)
1 + Ti1 + Ti2 + Tv1 + Tx + Ti2Tv1

(22)

In this case, Hv is a voltage controller defined by (23), and DC gain and zero of the PI controller
are designed so that the control loop T2 has the desired cutoff bandwidth and the phase margin.
This sequential design approach can be used to achieve the control objectives and stability.
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T2 = Hv ·
v̂dc,2

v̂c2

∣∣∣∣
T1, closed

(23)

Because the system is a TITO system, the individual DC voltage control scheme has loop
interaction. Thus, in order to minimize loop interaction, the inverted decoupling control scheme
in Figure 5 can be employed.

The objective is to obtain the diagonal matrix in the series combination, between the matrix of the
decoupling network and the matrix of the current-loop closed system [38]. In the inverted decoupling
method, the off-diagonal elements are derived as (24) and (25).

d12 = − g12

g11
=

v̂dc,1
v̂c2

v̂dc,1
v̂c1

(24)

d21 = − g21

g22
=

v̂dc,2
v̂c1

v̂dc,2
v̂c2

(25)
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3. Results

From the design point of view of the power converter, the single-phase grid-connected inverter
should be able to operate at universal voltages up to 240 Vrms. If the output voltage of each H-bridge
module is Vsw1 and Vsw2 in Figure 1, the current flowing in the system can be controlled by using
the vector sum of the two output voltages as shown in Figure 6. Therefore, since the sum of the two
output voltages must be greater than the grid voltage, the sum of the voltages of the two PV arrays
must be set to 380 V or more. If the upper H bridge module is manufactured with a 300 V class power
devices, the PV array can be designed to have a voltage of 200 V class. (5 series-configured arrays
if the open-circuit voltage of the individual PV modules is 40 V). Since this paper focuses on the
controller design of cascaded H-bridge inverter, we verify the performance based on the experimental
set presented in Figure 7 and Table 1. In the experimental set, two isolated power supplies with series
resistors for emulating PV arrays are used, as shown in Figure 7. Since the output characteristics of
each PV array can be controlled, the performance of the controller can be verified using the unbalanced
PV output case shown in Figure 8.

Two DC power supplies, having an operating voltage range of 0–250 V and two resistors (R1 and
R2) of 14 Ω, are selected. In this condition, the voltage loop gain of the experimental system is shown
in Figure 9. The cutoff frequency of the voltage loop gain is 30–40 Hz, and the phase margin is around
45◦ for both input conditions. The analysis results of the feedforward current controller designed in
Section 2 are shown in Figure 10. When feedforward is applied, it can be seen that the effect of the grid
voltage on the grid current is further attenuated by −30 dB at the grid voltage frequency of 60 Hz.
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Table 1. System parameters of the prototype PV system. 

 Parameters 

DC power supply Vin1 = Vin2 = 0 ~ 250 V 

Output filter inductor L = 1mH 

DC-link capacitor C1 = 2200 μF, C2 = 2200 μF 

Resistor R1 = R2 = 14 Ω 

Grid voltage Vg = 110 Vrms 

Switching frequency fsw = 5 kHz 

Digital signal processor TMS320F2812 

Figure 6. AC-side equivalent circuit and the phasor diagram of H-bridge output voltages for the unity
power factor. In figure, XL is the impedance of the output inductor, XL =ωL. (a) AC-side equivalent
circuit, (b) phasor diagram of voltages and current for the unity power factor.
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multilevel inverter system.

Table 1. System parameters of the prototype PV system.

Parameters

DC power supply Vin1 = Vin2 = 0~250 V
Output filter inductor L = 1 mH

DC-link capacitor C1 = 2200 µF, C2 = 2200 µF
Resistor R1 = R2 = 14 Ω

Grid voltage Vg = 110 Vrms
Switching frequency fsw = 5 kHz

Digital signal processor TMS320F2812
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Figure 8. Each input power versus each DC voltage characteristics. (a) emulated PV system with the
maximum 1 kW at 240 V DC voltage, (b) emulated PV system with the maximum 714 W at 200 V
DC voltage.
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Figure 9. Voltage loop gain bode diagram of cascaded multilevel inverter system; Blue solid line is a
voltage loop-gain bode diagram of the upper H-bridge module and a green dotted line is a voltage
loop-gain bode diagram of the lower H-bridge module.

Figure 11 shows the simulation results of the control performance for the designed voltage
controller in Figure 9. In order to demonstrate the validity of the voltage controller designed with a
cutoff frequency of 30 Hz, we simulated whether the DC voltages of the upper and lower H-bridge
modules were tracking the voltage reference of 120 + 5sin (2π × 3t) V and 120 + 5sin (2π × 30t) V.
Figure 11a shows the voltage control result when 120 + 5sin (2π × 3t) V is input as the DC link voltage
reference of the upper and lower H-bridge modules. It can be seen that the average DC voltage follows
the voltage reference except 120 Hz DC voltage ripple due to the pulsating power of double frequency
of the grid voltage frequency present in the instantaneous power of the single phase system [39].
Figure 11b shows DC voltage control results of the upper and lower H-bridge modules for 120 + 5 sin
(2π × 30t) V voltage references. As in the previous case, it can be seen that the DC voltage can follow
the DC input voltage command on average, although there is a 120 Hz voltage ripple. Figure 11c is the
1-period enlarged waveform from the result of (a). As shown in the bottom result, it can be confirmed
that the current is controlled to be in phase with the grid voltage.
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Figure 10. Grid-voltage disturbance effects with and without the duty-ratio feed forward on the
condition of the output voltage of the PV is 120 V and output power is 1 kW.
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Figure 11. Simulation results for DC voltage control of the upper and lower H-bridge modules for the
DC link voltage reference including a sinusoidal voltage. (a) results for 120 + 5sin(2π × 3t) V voltage
reference, (b) results for 120 + 5sin(2π× 30t) V voltage reference, (c) 1-period enlarged waveform of (a).

To verify the independent DC link voltage control of the cascaded H-bridge inverter, a simulation
considering the voltage reference step change is conducted with the conditions shown in Figure 7 and
Table 1. In Figure 12, the DC link voltages of two H-bridge modules are initially controlled at 120 V.
After 0.5 s, the upper H-bridge module voltage reference is changed to 130 V, and the lower module
reference is changed to 110 V. Without employing the decoupling scheme, we can see the oscillatory
voltage waveforms in light blue and light green. This oscillatory response results in a reduction in the
conversion efficiency, and increase the system instability. However, when applied to the decoupling
method, the input voltages of the two PV arrays can be stably controlled to their reference value,
as shown in the blue and green waveforms.
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Figure 12. Simulation result of the individual voltage control with respect to the step changes of the
DC-input reference with (w/) and without (w/o) inverted decoupling control method.

Figures 13 and 14 show the experimental results of an individual DC-link voltage and grid current
control performance. Even though the two input source characteristics are different, maximum powers
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from each input source are extracted by controlling the individual DC voltage using the proposed
method. In Figure 13, since the voltage of two input DC power sources is 240 V, the DC-link voltages
at which maximum power is generated are 120 V. In Figure 14, because the two input DC supplies are
240 V and 200 V, the voltages of the maximum power are 120 V and 100 V, respectively. In the voltage
control results shown in Figures 13–15, the single-phase power injected into the grid includes the
pulsating power with twice the frequency of the grid voltage as mentioned in reference [39]. However,
it can be confirmed by the designed controller that the average voltage follows the voltage reference.
In addition, the inverter output voltage of the cascaded H-bridge modules exhibits a five-level stair-case
waveform. The grid current of Figure 15, which is the enlarged waveform of Figure 13, is controlled in
phase with the grid voltage, and the summed power is stably transferred to the utility grid.
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output DC voltages of the PV arrays are controlled to their maximum power points. Further, the 

generated power of the PV arrays is transferred to the utility grid as shown in the red waveform. 
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In this work, the DC voltage references are independently obtained from an advanced incremental
conductance MPPT algorithm [40]. The algorithm flow-chart of the MPPT is shown in Figure 16.
The variable DC step size is defined as (26) and is determined using the relationship of the incremental
and instantaneous resistance of the PV arrays. The update period of the MPPT algorithm is set to 2 s
and the maximum step size for changing the voltage references is 5 V.

Mi = 1 +
Vdc,i · dIi

Iin,i · dVdc,i
= 1 +

Ri
rs,i

, i = 1, 2 (26)
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Figure 16. Algorithm flow-chart of the advanced incremental conductance method.

Figure 17 shows the MPPT performance. Initially, because the power conversion system (PCS)
does not work, the output DC voltages of the PV arrays are 240 V. After starting the operation,
both output DC voltages of the PV arrays are controlled to their maximum power points. Further,
the generated power of the PV arrays is transferred to the utility grid as shown in the red waveform.
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4. Conclusions

In this paper, the modeling and controller design methods for individual MPPT of the single-phase
cascaded H-bridge multilevel PV inverter are proposed. The small signal transfer functions are derived
through the small-signal modeling approach. For the unity power factor, a PI current controller with a
duty ratio feed-forward compensation method is employed. In order to achieve the individual MPPT
of the PV arrays, each of the DC link voltage loops is designed to stabilize the current loop closed
system. Especially, in order to avoid loop interaction in the current loop closed system, the voltage
controller design with the inverted decoupling method is proposed. The inverted decoupling method
to minimize the loop interaction of the TITO system has been verified by the simulation result, but the
experimental performance will be done through the future work. The proposed control methods of
the cascaded H-bridge multilevel PV inverter are validated through the simulation and experimental
results on the 2-kW prototype system.
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