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Abstract: Power Factor Correction (PFC) converters are widely used in engineering. A classical
PFC control circuit employs two complicated feedback control loops and a multiplier, while the
One-Cycle-Controlled (OCC) PFC converter has a simple control circuit. In OCC PFC converters,
the voltage loop is implemented with a PID control and the multiplier is not needed. Although linear
theory is used in designing the OCC PFC converter control circuit, it cannot be used in predicting
non-linear phenomena in the converter. In this paper, a non-linear model of the OCC PFC Boost
converter is proposed based on the double averaging method. The line frequency instability of the
converter is predicted by studying the DC component, the first harmonic component and the second
harmonic component of the main circuit and the control circuit. The effect of the input voltage and
the output capacitance on the stability of the converter is studied. The correctness of the proposed
model is verified with numerical simulations and experimental measurements.

Keywords: power factor correction; line frequency instability; one cycle control; non-linear
phenomena; bifurcation; boost converter

1. Introduction

Power Factor Correction (PFC) plays an important role in electrical engineering [1]. A PFC
converter takes AC voltage as its input and outputs DC voltage. Different from traditional diode
rectifiers, a PFC converter in average current mode has a high power factor. In electrical engineering,
the average current mode Boost PFC converter is widely used. Although the topology of the Boost PFC
is simple, the control circuit is complicated [2–4]. The control circuit consists of two loops. The first
is the current control loop, with the aim of forcing the inductor current to be in the same phase as
the reference. The second loop is the voltage control loop. The design of the voltage control loop is
of great importance because its main objective is achieving a stable system and a near unity power
factor [4]. The dynamics of the PFC converter depends on these two control loops. The traditional
implementation for the PFC converter requires a multiplier, whose output is the reference current
added to the current control loop. The existence of the multiplier increases the control complexity.
The dynamics of the PFC converter has interested many researchers and some non-linear phenomena
have been observed in the last few years [5–13]. In general, there are two kinds of non-linear dynamics
in the PFC converter. The first is the so-called switching frequency instability, which is mainly the

Electronics 2018, 7, 203; doi:10.3390/electronics7090203 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/7/9/203?type=check_update&version=1
http://dx.doi.org/10.3390/electronics7090203
http://www.mdpi.com/journal/electronics


Electronics 2018, 7, 203 2 of 12

result of bifurcation and chaos caused by the current control loop [5]. The second is the line frequency
instability, which is the result of bifurcation and chaos caused by the voltage control loop [7–11,14].
Among them, the line frequency instabilities are more detrimental to the normal operation of the PFC
converter, as it changes the power factor to an unacceptable value. The power factor of the converter
is much less than one due to the line frequency instabilities and thus, it is of great importance to
select the appropriate parameters in the design process. In the traditional design, the researchers
adopted the linear system theory and it has been shown that this design cannot predict the line
frequency instabilities in the PFC converter [7]. Therefore, the researchers developed some powerful
methods to compute the boundaries of line frequency stabilities. Among them, the method of harmonic
balance needs an exact computation of the unstable periodic orbit of the control voltage [9]. Harmonic
balance is applied to the model of the converter incorporating the multiplier and Floquet theory
is adopted to decide the stability of the converter. According to Floquet theory, the stability of the
converter is identified by calculating the eigenvalues of the transition matrix of the system. Another
important method is the method of double averaging, which is based on the first harmonic component
in the PFC converter line frequency model [14]. This method is more familiar to many researchers
and engineers. In this paper, the later method is adopted to study the non-linear dynamics of the
continuous conduction mode One-Cycle-Controlled (OCC) Boost PFC converter.

Different from the traditional average current mode PFC converter, the OCC PFC converter
simplifies the control circuit [3]. The one-cycle control belongs to non-linear controls. When this
control method is applied to the PFC converter, the current control loop is replaced by a resettable
integrator. Therefore, only one voltage control loop is required and the multiplier is not needed. It has
been shown that the control circuit of the OCC Boost PFC converter saves space and cost compared to
the traditional PFC Boost converter. In most applications, the voltage control loop is designed based
on the linear system theory and the prediction of dynamics of the converter is also based on the linear
system theory. Therefore, non-linear dynamics of the converter are uncovered. In many applications,
bifurcation and chaos are observed but are not addressed. The reason is that the non-linear systems
theory is not applied to the OCC PFC converter. In this paper, the method of double averaging is
adopted to predict the non-linear dynamics of the OCC Boost PFC converter. Although this method
has been applied to the traditional PFC converter, there is still a problem when applying it to the
OCC PFC converter, because the control circuits in the two converters are totally different and as a
result, some new consequences will occur in the OCC PFC converter. It is important to note that in a
previous study [15], the non-linear dynamics of the OCC PFC converter were observed by experiments
and no effective computation was provided. In the present paper, the computation is based on the
exact non-linear model of the OCC PFC converter and therefore, the conclusions are meaningful in the
design process of the converter.

2. The OCC Boost PFC Converter

2.1. The OCC Boost PFC Converter and Its Control Circuit

The OCC Boost PFC converter consists of a diode rectifier and a boost converter, as shown in
Figure 1. In some applications, the load of the PFC converter is another DC-DC converter. In this paper,
the load of the PFC converter is a resistor, because the emphasis of this paper is on the non-linear
dynamics of the PFC converter. The control circuit in Figure 1 is equivalent to a commercial control IC
IR1150, which is used to verify the theoretical results in this paper. Apparently, this control circuit has
fewer resistors and capacitors than the traditional average current mode PFC converter, where both
the current loop and the voltage loop have at least one resistor and one capacitor. The output of the
converter is divided by R f 1 and R f 2. The divided voltage is connected to the input of an Operational
Amplifier (OA), whose other input is the reference Vre f . In IR1150, the OA is a trans-conductance type
amplifier. The output of the OA is vm, which is the input to a resettable integrator. The output of the
integrator is compared with another voltage composed of vm and the voltage across the current sense
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resistor Rs1. The integrator is reset by the output Q of the flip-flop. The sensed voltage is amplified by
a DC gain GDC = 2.5. The operation of the control circuit is described here. In the beginning of every
switching period Ts, the clock sets the flip-flop and the output Q of the flip-flop turns on the switch S.
At the same time, the integrator outputs the value of the integral of its input signal. When the output
of the integrator exceeds the sum of vm and the sensed voltage, the comparator resets the flip-flop and
the output Q turns off the switch S. Therefore, the diode D turns on. Furthermore, the output Q resets
the integrator until the next clock signal.
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2.2. The OCC Boost PFC Converter Model

In this paper, the line frequency dynamics are studied. Therefore, the method of double averaging
is adopted. The method is composed of two averaging processes. The first averaging is applied to
the switching period [16–22]. The converter has two topology structures during one switching period,
and is described by:{

diL
dt = 1

L vin
dvo
dt = −1

RC vo
(the switch S is on) or

{
diL
dt = 1

L (vin − vo)
dvo
dt = 1

C
(
iL − vo

R
) (the switch S is off). (1)

By averaging over one switching period, one obtains the following:{
(1− d)vo = vin − L diL

dt
(1− d)iL = C dvo

dt + vo
R

. (2)

From Equation (2), we obtain:

C
2

dv2
o

dt
= −

v2
0

R
+ iLvin −

L
2

di2L
dt

. (3)

It is important to note that the dynamics of the inductor during one switching period can be
omitted when the converter operates stably. Therefore, one has

C
2

dv2
o

dt
= −

v2
0

R
+ iLvin. (4)

Based on the operating principle of the converter [3–8], one has:

RsiL(t) = vm/T(d), (5)
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where:
T(d) = vo/vin, Rs = Rs1 × 2.5 (6)

From Equations (5) and (6), we can obtain:

iL(t) = vinvm/(Rsvo). (7)

It is important to note that vin = Vm|sin ωmt|. Substituting Equation (7) into (4), we obtain:

C
2

dv2
o

dt
= −

v2
0

R
+

vm

Rsvo
V2

m(1− cos 2ωmt). (8)

On the other hand, the control loop includes the OA. Figure 1 provides the following transfer
function of the OA:

H(s) =
gm(1 + sRgmCz)

s(Cz + Cp + sRgmCzCp)
. (9)

As Cz � Cp, Equation (9) can be written as:

H(s) =
gm(1 + sRgmCz)

sCz
. (10)

Therefore, the voltage control loop in Figure 1 is described by:

Cz
dvm

dt
= gm(Vre f −

R f 2

R f 1 + R f 2
vo)− gmRgmCz

R f 2

R f 1 + R f 2

dvo

dt
, (11)

where gm is the trans-conductance of the amplifier.
From Figure 1, one has:

iL(t) =
vinvmR f 2

Rs

(
R f 1 + R f 2

)
Vre f

. (12)

Therefore, the OCC Boost PFC converter is described by:
C
2

dx2

dt = − x2

R + y
Rs(1+β)Vre f

V2
m(1− cos 2ωmt)

Cz
dy
dt = gm(Vre f − 1

1+β x)− gmRgmCz
1

1+β
dx
dt

, (13)

where vm = y, vo = x, β = R f 1/R f 2.
The next step is applying the second averaging for Equation (13). The second averaging involves

taking the moving average over the main period. For any variable u(t) in Equation (13), we have the
following expression based on Fourier analysis [23]:

u(t) ≈ u0 + u1ejωmt + u−1e−jωmt + u2ej2ωmt + u−2e−j2ωmt. (14)

where

uk ≈
ωm

2π

∫ t

t− 2π
ωm

u(τ) exp(−jkωmτ)dτ(k = 0,±1,±2). (15)

It is important to note that u−1 = u∗1 , u−2 = u∗2 , where ∗ stands for complex conjugate. Taking the
second averaging on Equation (13) based on Equation (14) and Equations (A1)–(A5) in Appendix A,
one has:

C
2

d
dt
(

x2
0 + 2x2

1r + 2x2
1i + 2x2

2r + 2x2
2i
)
+ 1

R
(
x2

0 + 2x2
1r + 2x2

1i + 2x2
2r + 2x2

2i
)

=
V2

in
Rs(1+β)Vre f

(y0 − y2r)
. (16)
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C
2

d
dt (x0x1 + x1rx2r + x1ix2i + j(x1rx2i − x1ix2r))

+
(

j ωmC
2 + 1

R

)
(x0x1 + x1rx2r + x1ix2i + j(x1rx2i − x1ix2r))

=
V2

in
Rs(1+β)Vre f

(
y1
2 −

y∗1
4

) . (17)

C
2

d
dt

((
x∗1
)2

+ 2x0x2

)
+
(

jωmC + 1
R

)((
x∗1
)2

+ 2x0x2

)
=

V2
in

Rs(1+β)Vre f

(
y2 − 1

2 y0

) . (18)

Cz
d
dt

y0 = gm

(
Vre f −

1
1 + β

x0

)
− gmRgmCz

1
1 + β

d
dt

x0. (19)

Cz

(
d
dt

y1 + jωmy1

)
= −gm

1
1 + β

x1 − gmRgmCz
1

1 + β

(
d
dt

x1 + jωmx1

)
. (20)

Cz

(
d
dt

y2 + j2ωmy2

)
= −gm

1
1 + β

x2 − gmRgmCz
1

1 + β

(
d
dt

x2 + j2ωmx2

)
. (21)

Equations (16)–(21) describe the DC component, the first harmonic component and the second
harmonic component of the main circuit and the control circuit, respectively.

3. Stability of the OCC Boost PFC Converter

The stability of the OCC Boost PFC converter was studied based on Equations (16)–(21). To do this,
the DC component, the first harmonic component and the second harmonic component are studied.

3.1. The First Harmonic Component

We obtain the steady-state solution by making all time-derivatives in Equations (16)–(21) equal to
zero. Therefore, Equation (17) becomes:(

j ωmC
2 + 1

R

)
(x0x1r + x1rx2r + x1ix2i + j(x0x1i + x1rx2i − x1ix2r))

= V2
m

Rs(1+β)Vre f

(
y1r
4 + j 3y1i

4

) . (22)

Considering the real and imaginary part of Equation (22), one has:
1
R (x0x1r + x1rx2r + x1ix2i)− ωmC

2 (x0x1i + x1rx2i − x1ix2r) =
V2

m
Rs(1+β)Vre f

y1r
4

ωmC
2 (x0x1r + x1rx2r + x1ix2i) +

1
R (x0x1i + x1rx2i − x1ix2r) =

V2
m

Rs(1+β)Vre f

3y1i
4

. (23)

Equation (23) has another form, which is the following:

(
x1r
x1i

)
=

V2
m

4Rs(1+β)Vre f(
1

R2 +
ω2

mC2
4

)
(x2

0−(x2
2r+x2

2i))

×

 x0−x2r
R + ωmCx2i

2 −3
(

x2i
R −

ωmC(x0−x2r)
2

)
− x2i

R −
ωmC(x0+x2r)

2 3
(

x0+x2r
R − ωmCx2i

2

) ( y1r
y1i

) . (24)

By making all time derivatives in Equation (20) equal to zero, one has:

Cz jωm(y1r + jy1i) = −gm
1

1 + β
(x1r + jx1i)− gmRgmCz

1
1 + β

jωm(x1r + jx1i). (25)

Considering the real and imaginary part of Equation (25), one obtains:
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{
−Czωmy1i = −gm

1
1+β x1r + gmRgmCz

1
1+β ωmx1i

Czωmy1r = −gm
1

1+β x1i − gmRgmCz
1

1+β ωmx1r
. (26)

Equation (26) can be written as:(
y1r
y1i

)
=

1
Czωm

(
−gmRgmCz

1
1+β ωm −gm

1
1+β

gm
1

1+β −gmRgmCz
1

1+β ωm

)(
x1r
x1i

)
. (27)

Equations (24) and (27) describe the transfer function of the first harmonic component in the main
circuit and the control circuit of the converter, respectively. By integrating them, one has the total
transfer function as follows:

M = 1
Czωm

(
−gmRgmCz

1
1+β ωm −gm

1
1+β

gm
1

1+β −gmRgmCz
1

1+β ωm

)

×
V2

m
4Rs(1+β)Vre f(

1
R2 +

ω2
mC2
4

)
(x2

0−(x2
2r+x2

2i))

×

 x0−x2r
R + ωmCx2i

2 −3
(

x2i
R −

ωmC(x0−x2r)
2

)
− x2i

R −
ωmC(x0+x2r)

2 3
(

x0+x2r
R − ωmCx2i

2

) 
. (28)

One needs the DC component and the second harmonic component before studying Equation (28).

3.2. The DC Component and the Second Harmonic Component

The DC component and the second harmonic component are computed from
Equations (16) and (18). It is important to note that the first harmonic component is smaller
than the DC component and the second harmonic component in Equations (16) and (18). Therefore,
one has:

C
2

d
dt

(
x2

0 + 2x2
2r + 2x2

2i

)
+

1
R

(
x2

0 + 2x2
2r + 2x2

2i

)
=

V2
m

Rs(1 + β)Vre f
(y0 − y2r). (29)

C
2

d
dt
(2x0x2) +

(
jωmC +

1
R

)
(2x0x2) =

V2
m

Rs(1 + β)Vre f

(
y2 −

1
2

y0

)
. (30)

Equations (19), (21), (29) and (30) form the model describing the DC component and the second
harmonic component. By making all time-derivatives in those four equations equal to zero, one obtains:

1
R

(
x2

0 + 2x2
2r + 2x2

2i

)
=

V2
m

Rs(1 + β)Vre f
(y0 − y2r). (31)

(
jωmC +

1
R

)
(2x0x2) =

V2
m

Rs(1 + β)Vre f

(
y2 −

1
2

y0

)
. (32)

gm

(
Vre f −

1
1 + β

x0

)
= 0. (33)

j2Czωmy2 = −gm
1

1 + β
x2 − j2ωmgmRgmCz

1
1 + β

x2. (34)

From Equations (31)–(34), one obtains the DC component and the second harmonic component.
The steady-state value of the DC component is:

x0 = (1 + β)Vre f . (35)
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When Equation (35) is satisfied, the second harmonic component is zero. Now we can study
Equation (28).

3.3. Stability of the OCC Boost PFC Converter

Based on the DC component and the second harmonic component computed in Section 3.2,
one can simplify Equation (28) into:

M =
gm

Czωm

V2
m

4Rs(1+β)2Vre f(
1

R2 +
ω2

mC2

4

)
x0

 − RgmCzωm
R + ωmC

2 − 3RgmCzω2
mC

2 − 3
R

1
R +

RgmCzω2
mC

2
3ωmC

2 − 3RgmCzωm
R

. (36)

It is important to note that M in (36) is the round-trip signal transfer function of the first harmonic
component. When all eigenvalues of M are less than 1, the first harmonic component converges to
zero. At the same time, the DC component and the second harmonic component are almost constant,
as shown in Section 3.2 and Figure 2. Therefore the converter operates in a stable manner. When
the absolute values of one eigenvalue of M is more than 1, the first harmonic component does not
converge to zero. The converter begins to exhibit period-doubling bifurcation at the line frequency [24].
Therefore, the criterion of the stability of the converter is the eigenvalues of matrix M.
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Figure 2. Illustration of stable and unstable operation of the converter.

4. Non-Linear Phenomena of the OCC Boost PFC Converter

To verify the above-mentioned theory, simulations and experiments are conducted. The same
circuit topology is adopted (Figure 1). The parameters in the converter are shown in Table 1,
unless otherwise specified.

Table 1. Parameters in the OCC Boost PFC converter.

Symbol Quantity Unit

Ts 15 µs
ωm 100π rad/s
L 2 mH
C 100 µF

Rf 1 849 kΩ
Rf 2 37.3 kΩ
Rgm 10.25 kΩ
Cz 32 nF
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Table 1. Cont.

Symbol Quantity Unit

Cp 32 pF
Vref 7 V
Rs 0.645 Ω

R(load) 1600 Ω
gm 40 µS

In the converter, the input voltage and the output capacitance are two important parameters,
which are selected in the design process. In this paper, the effect of these parameters on the non-linear
phenomena of the converter is studied. Figure 3 shows the stability boundaries obtained from
theoretical calculation based on Equation (36) and simulation experiment. From Figure 3, we have the
following conclusions.

1. The effect of the input voltage on the stability of the converter. Figure 3 shows that when the
capacitance is fixed and the input voltage increases, the converter may lose stability.

2. The effect of the output capacitance on the stability of the converter. Figure 3 shows that when
the input voltage is increased, a larger output capacitance is needed in order to assure stable
operation of the converter. This result is important because a larger output capacitance affects the
dynamic performance of the converter.

3. The difference between the two boundaries lies in the fact that some approximations are taken in
the analysis, and only the first and the second harmonic components are taken into consideration.

Electronics 2018, 7, x FOR PEER REVIEW  9 of 13 

 

L 2 mH 

C 100 F  

Rf1 849 kΩ 

Rf2 37.3 kΩ 

Rgm 10.25 kΩ 

Cz 32 nF 

Cp 32 pF 

Vref 7 V 

Rs 0.645 Ω 

R(load) 1600 Ω 

gm 40 S  

In the converter, the input voltage and the output capacitance are two important parameters, 

which are selected in the design process. In this paper, the effect of these parameters on the 

non-linear phenomena of the converter is studied. Figure 3 shows the stability boundaries obtained 

from theoretical calculation based on Equation (36) and simulation experiment. From Figure 3, we 

have the following conclusions. 

1. The effect of the input voltage on the stability of the converter. Figure 3 shows that when the 

capacitance is fixed and the input voltage increases, the converter may lose stability. 

2. The effect of the output capacitance on the stability of the converter. Figure 3 shows that when 

the input voltage is increased, a larger output capacitance is needed in order to assure stable 

operation of the converter. This result is important because a larger output capacitance affects 

the dynamic performance of the converter. 

3. The difference between the two boundaries lies in the fact that some approximations are taken 

in the analysis, and only the first and the second harmonic components are taken into 

consideration. 

 

Figure 3. Stability boundaries of the input voltage obtained from the theoretical calculation and 

simulation experiment. 

The simulation waveforms of the output voltage and the inductor current are shown in Figures 

4 and 5 when the input voltage 40 VmV   and 66.5 VmV  , respectively. (For the MATLAB 

model file, please contact the corresponding author by e-mail: zhangrui@cqust.eud.cn.) In Figure 4, 

the converter operate stably. In Figure 5, the converter exhibits line frequency instability as a result 

50 60 70 80 90 100
20

25

30

35

40

45

50

55

60

65

70

C (  F)

V
m

 (
 V

 )
 

 

 

Caculation results

Simulation results

unstable

stable

Figure 3. Stability boundaries of the input voltage obtained from the theoretical calculation and
simulation experiment.

The simulation waveforms of the output voltage and the inductor current are shown in
Figures 4 and 5 when the input voltage Vm = 40 V and Vm = 66.5 V, respectively. (For the MATLAB
model file, please contact the corresponding author by e-mail: zhangrui@cqust.eud.cn.) In Figure 4,
the converter operate stably. In Figure 5, the converter exhibits line frequency instability as a result of
the period-doubling bifurcation at the line frequency. The instability reduces the power factor of the
converter to be considerably lower than 1. If the input voltage increases further, the converter may
exhibit chaotic phenomena.



Electronics 2018, 7, 203 9 of 12

Electronics 2018, 7, x FOR PEER REVIEW  10 of 13 

 

of the period-doubling bifurcation at the line frequency. The instability reduces the power factor of 

the converter to be considerably lower than 1. If the input voltage increases further, the converter 

may exhibit chaotic phenomena. 

 

Figure 4. Simulation waveforms of the output voltage and the inductor current when the input 

voltage 40 VmV  , the load 1600 R    and the output capacitance 100 FC   . 

 

Figure 5. Simulation waveforms of the output voltage and the inductor current when the input 

voltage 66.5 VmV  , the load 1600 R    and the output capacitance 100 FC   . 

5. Experimental Verifications 

To verify the line frequency instability from the theoretical analysis, an experimental circuit 

prototype was implemented using IR1150 (Infineon Technologies AG, Neubiberg, Germany), which 

is a classical OCC Boost PFC IC. In our experiment, the circuit parameters are identical to the above 

theoretical analysis. The current probe (FLUKE i5s, Everett, WA, USA) AC (400 mV/A) current 

clamp is used to detect the line current. The input voltage, the inductor current and the output 

voltage (AC coupling) are shown in Figures 6 and 7 when the input voltage 40 VmV   and 

68 VmV  , respectively. In Figure 6, the converter operates in a stable manner and the frequencies 

160

165

170

175

 v
o
 (

 V
 )

1 1.02 1.04 1.06 1.08 1.1
0

0.5

1

1.5

2

t(s)

 i
 L

 (
 A

 )

160

165

170

175

 v
 0

 (
 V

 )

1 1.02 1.04 1.06 1.08 1.1
0

0.5

1

1.5

2

t(s)

 i
 L

 (
 A

 )

Figure 4. Simulation waveforms of the output voltage and the inductor current when the input voltage
Vm = 40 V, the load R = 1600 Ω and the output capacitance C = 100 µF.
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Figure 5. Simulation waveforms of the output voltage and the inductor current when the input voltage
Vm = 66.5 V, the load R = 1600 Ω and the output capacitance C = 100 µF.

5. Experimental Verifications

To verify the line frequency instability from the theoretical analysis, an experimental circuit
prototype was implemented using IR1150 (Infineon Technologies AG, Neubiberg, Germany), which is
a classical OCC Boost PFC IC. In our experiment, the circuit parameters are identical to the above
theoretical analysis. The current probe (FLUKE i5s, Everett, WA, USA) AC (400 mV/A) current
clamp is used to detect the line current. The input voltage, the inductor current and the output
voltage (AC coupling) are shown in Figures 6 and 7 when the input voltage Vm = 40 V and Vm = 68 V,
respectively. In Figure 6, the converter operates in a stable manner and the frequencies of all waveforms
are 100 Hz. In Figure 7, the converter exhibits period-doubling phenomena. Furthermore, the first
harmonic frequency of the inductor current and the output voltage ripple are 50 Hz, which is half of
the rectified AC voltage. As shown in Figures 6 and 7, the experimental results are consistent with
the analytical results. It is important to note that when the PFC converter exhibits period-doubling
bifurcation, the voltage ripple of the output voltage is larger compared with the normal operation.
This value is important for the performance and lifetime of a electrolytic capacitor.
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R = 1600 Ω and the output capacitance C = 100 µF. CH1: the input voltage (20 V/div), CH3:
the inductor current (500 mV/div) and CH2: the output voltage (5 V/div) (AC coupling).

6. Conclusions

The OCC PFC converters have a simpler control circuit compared to the traditional averaged
current mode PFC converters. In this paper, the method of double averaging was adopted to study
the dynamics of an OCC Boost PFC converter. The first averaging is applied to the switching period,
and the second averaging is applied to the line period. We derived the round-trip signal transfer
function of the first harmonic component in the converter, and the stability of the converter is decided
by the eigenvalues of the round-trip signal transfer function. By calculating the eigenvalues, we gave
theoretical prediction of the stability of the converter under different output capacitors. Simulation
and experimental results verified theoretical prediction. The method of double averaging can predict
nonlinear phenomena which traditional method cannot predict. It is important to note that when
the OCC PFC converter exhibits line frequency instabilities, the power factor decreases dramatically.
Therefore, theoretical analysis in this paper is of great importance in designing the OCC PFC converter.
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Appendix A

Some important properties: (
du(t)

dt

)
k
=

duk(t)
dt

+ jkωmuk. (A1)

(u(t) cos 2ωmt)k =
1
2
(uk−2 + uk+2). (A2)(

u2(t)
)

0
= u2

0 + 2|u1|2 + 2|u2|2. (A3)(
u2(t)

)
1
= 2u0u1 + 2(u1ru2r + u1iu2i + j(u1ru2i − u1iu2r)). (A4)(

u2(t)
)

2
= (u∗1)

2 + 2u0u2. (A5)

where u1 = u1r + ju1i, u2 = u2r + ju2i.

References

1. García, O.; Cobos, J.A.; Prieto, R.; Alou, P.; Uceda, J. Single phase power factor correction: A survey.
IEEE Trans. Power Electron. 2003, 18, 749–755. [CrossRef]

2. Giaouris, D.S.; Banerjee, B.; Zahawi, V. Pickert, Control of fast scale bifurcations in power-factor correction
converters. IEEE Trans. Circuits Syst. II 2007, 54, 805–809. [CrossRef]

3. Lai, Z.; Smedley, K.M. A family of continuous-conduction-mode power-factor-correction controllers based
on the general pulse-width modulator. IEEE Trans. Power Electr. 1998, 13, 501–510.

4. Orabi, M.; Nimoniya, T. Non-linear dynamic of power factor correction converter. IEEE Trans. Ind. Electron.
2003, 50, 1116. [CrossRef]

5. Iu, H.H.C.; Zhou, Y.F.; Tse, C.K. Fast-scale instability in a PFC boost converter under average current-mode
control. Int. J. Circ. Theor. App. 2003, 31, 611–624. [CrossRef]

6. Orabi, M.; Ninomiya, T. Stability investigation of the cascade twostage PFC converter. IEICE Trans. Commun.
2004, E87-B, 3506–3514.

7. Chu, G.; Tse, C.K.; Wong, S.C. Line-frequency instability of PFC power supplies. IEEE Trans. Power Electron.
2009, 24, 469–482. [CrossRef]

8. El Aroudi, A.; Orabi, M.; Haroun, R.; Martínez-Salamero, L. Asymptotic slow-scale stability boundary of
PFC AC-DC power converters: Theoretical prediction and experimental validation. IEEE Trans. Ind. Electron.
2011, 58, 3448–3460. [CrossRef]

9. Wang, F.; Zhang, H.; Ma, X. Analysis of slow-scale instability in boost PFC converter using the method of
harmonic balance and floquet theory. IEEE Trans. Circuits Syst. Regul. Pap. 2010, 57, 405–414. [CrossRef]

10. El Aroudi, A.; Orabi, M. Stabilizing technique for AC-DC boost PFC converter based on time delay feedback.
IEEE Trans. Circuits Syst. Express Briefs 2010, 57, 56–60. [CrossRef]

11. Ma, W.; Wang, M.; Liu, S.; Li, S.; Yu, P. Stabilizing the average current-mode-controlled boost PFC converter
via washout-filter-aided method. IEEE Trans. Circuits Syst. Express Briefs 2011, 58, 595–599. [CrossRef]

12. Zou, J.; Ma, X.; Tse, C.K.; Dai, D. Fast-scale bifurcation in power-factor-correction buck-boost converters and
effects of incompatible periodicities. Int. J. Circuit Theory Appl. 2006, 34, 251–264. [CrossRef]

13. Wu, X.; Tse, C.K.; Dranga, O.; Lu, J. Fast-scale instability of single-stage power-factor-correction power
supplies. IEEE Trans. Circuits Syst. Regul. Pap. 2006, 53, 204–213.

http://dx.doi.org/10.1109/TPEL.2003.810856
http://dx.doi.org/10.1109/TCSII.2007.900350
http://dx.doi.org/10.1109/TIE.2003.819576
http://dx.doi.org/10.1002/cta.253
http://dx.doi.org/10.1109/TPEL.2008.2009165
http://dx.doi.org/10.1109/TIE.2010.2090832
http://dx.doi.org/10.1109/TCSI.2009.2023933
http://dx.doi.org/10.1109/TCSII.2009.2036546
http://dx.doi.org/10.1109/TCSII.2011.2161170
http://dx.doi.org/10.1002/cta.334


Electronics 2018, 7, 203 12 of 12

14. Wong, S.-C.; Tse, C.K.; Orabi, M.; Ninomiya, T. The Method of Double Averaging: An Approach for Modeling
Power-Factor-Correction Switching Converters. IEEE Trans. Circuits Syst. Regul. Pap. 2006, 53, 454–464.
[CrossRef]

15. Orabi, M.; Haron, R.; Youssef, M.Z. Stability analysis of PFC converters with one-cycle control. In Proceedings
of the 31st International Telecommunications Energy Conference, Incheon, Korea, 18–22 October 2009.

16. Smedley, K.M.; Cuk, S. One-Cycle Control of Switching Converters. IEEE Trans. Power Electr. 1995, 10,
625–633. [CrossRef]

17. Smedley, K.M.; Cuk, S. Dynamics of One-Cycle controlled cuk converters. IEEE Trans. Power Electr. 1995, 10,
634–639. [CrossRef]

18. Fang, C.C.; Abed, E.H. Robust feedback stabilization of limit cycles in PWM DC-DC converters.
Nonlinear Dyn. 2002, 27, 295–309. [CrossRef]

19. Fang, C.-C. Sampled-Data modeling and analysis of One-Cycle control and charge control. IEEE Trans.
Power Electr. 2001, 16, 345–350. [CrossRef]

20. Lee, F.; Iwens, R.; Yu, Y.; Triner, J. Generalized computer-aided discrete time domain modeling and analysis
of dc-dc converters. In Proceedings of the 1977 IEEE Power Electronics Specialists Conference, Palo Alto,
CA, USA, 14–16 June 1977.

21. Sanders, S.R.; Verghese, G.C. Synthesis of averaged circuit models for switched power converters. IEEE Trans.
Circuits Syst. 1991, 8, 905–915. [CrossRef]

22. Maksimovic, D.; Zane, R.; Erickson, R. Impact of digital control in power electronics. In Proceedings of the
16th International Symposium on Power Semiconductor Devices & ICs, Kitakyushu, Japan, 24–27 May 2004.

23. Caliskan, V.A.; Verghese, O.C.; Stankovic, A.M. Multifrequency averaging of DC/DC converters. IEEE Trans.
Power Electron. 1999, 1, 124–133. [CrossRef]

24. Dorf, R.C.; Bishop, R.H. Modern Control Systems, 11th ed.; Pearson Education, Inc.: Upper Saddle River, NJ,
USA, 2008.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCSI.2005.855744
http://dx.doi.org/10.1109/63.471281
http://dx.doi.org/10.1109/63.471282
http://dx.doi.org/10.1023/A:1014402431119
http://dx.doi.org/10.1109/63.923766
http://dx.doi.org/10.1109/31.85632
http://dx.doi.org/10.1109/63.737600
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The OCC Boost PFC Converter 
	The OCC Boost PFC Converter and Its Control Circuit 
	The OCC Boost PFC Converter Model 

	Stability of the OCC Boost PFC Converter 
	The First Harmonic Component 
	The DC Component and the Second Harmonic Component 
	Stability of the OCC Boost PFC Converter 

	Non-Linear Phenomena of the OCC Boost PFC Converter 
	Experimental Verifications 
	Conclusions 
	
	References

