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Abstract: Ternary content-addressable memories (TCAMs) are used to design high-speed search
engines. TCAM is implemented on application-specific integrated circuit (native TCAMs) and
field-programmable gate array (FPGA) (static random-access memory (SRAM)-based TCAMs)
platforms but both have the drawback of high power consumption. This paper presents a
pre-classifier-based architecture for an energy-efficient SRAM-based TCAM. The first classification
stage divides the TCAM table into several sub-tables of balanced size. The second SRAM-based
implementation stage maps each of the resultant TCAM sub-tables to a separate row of configured
SRAM blocks in the architecture. The proposed architecture selectively activates at most one row
of SRAM blocks for each incoming TCAM word. Compared with the existing SRAM-based TCAM
designs on FPGAs, the proposed design consumes significantly reduced energy as it activates a part
of SRAM memory used for lookup rather than the entire SRAM memory as in the previous schemes.
We implemented the proposed approach sample designs of size 512 × 36 on Xilinx Virtex-6 FPGA.
The experimental results showed that the proposed design achieved at least three times lower power
consumption per performance than other SRAM-based TCAM architectures.

Keywords: SRAM-based TCAM; field-programmable gate array (FPGA); memory architecture;
power-efficient

1. Introduction

Ternary content-addressable memory (TCAM) selects a word among stored ternary data based on
its contents. It compares the search key with the entire stored TCAM words in parallel and outputs
the address of the matching word in one cycle. The circuitry of a TCAM cell store and compare
three states: 0, 1, and don’t-care state x. TCAM architecture is composed of an array of TCAM cells
and a priority encoder (PE). Each TCAM cell comprises two SRAM cells storing a ternary bit and an
associated comparison circuitry. Search lines (SLs) and match lines (MLs) perform the search operation.
SLs provide search key bits to the corresponding cells of the TCAM words. The comparison results of
each TCAM word are placed on the MLs. In case the matching of the search key is successful with more
than one TCAM word, the PE selects the matching address with the highest priority. Figure 1 shows
a sample design of 4× 3 TCAM. TCAM designed as a dedicated system in the application-specific
integrated circuit (ASIC) is known as native TCAM.

TCAM finds its applications as look-up table in networking routers [1,2], as translations-look-aside
buffers (TLBs) caches in microprocessors [3,4], as database accelerators in big-data analytics [4,5], as a
filter when storing signature patterns in Internet-of-Things [6,7], as Local binary patterns recognition
system in image processing and DNA sequence matching [8,9].
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Figure 1. A 4× 3 TCAM: (MLSAs: Match line sense amplifiers).

However, the dedicated bit comparison circuitry in each native TCAM cell lowers its memory
density and the inherent massive parallelism makes native TCAM power hungry and expensive [10–12].
Moreover, the native TCAMs implemented in ASIC offer limited configurability which renders them
less flexible to comply with the requirements and adaptation to the emerging trends in the applications
of TCAMs [4,13,14].

The significant advancement in CMOS technology have made modern field-programmable gate
arrays (FPGAs) an attractive choice for implementing emerging systems because of their offered
massive parallelism with flexibility through on-the-fly reconfiguration. Contemporary SRAM-based
FPGA device such as the 16-nm Xilinx Virtex UltraSCALE FPGA consist of a large amount of embedded
memory called block RAMs (BRAMs) implemented in silicon substrate [15,16] that operates at high
speed with low power consumption.

The demand for a high-speed flexible (re-configurable) and adaptable (easy for integration) TCAM
configurations renders the embedded memories BRAMs on modern SRAM-based FPGAs attractive
for the design of TCAMs. FPGAs implement TCAM using SRAM, by addressing SRAM with TCAM
contents, and stores information for all data of TCAM table. Each SRAM word stores the existence and
address information for a specific TCAM pattern. Existing SRAM-based TCAMs on FPGAs suffer from
higher energy consumption as they consume excessive power to energize the entire SRAM memory
used per lookup. For example, the SRAM-based TCAM design methodologies presented in recent
works [13,17] consumed 2.5 W and 3.2 W to implement 89 kb and 150 kb TCAM tables using BRAMs
on FPGA, respectively. The higher power consumption of SRAM-based TCAM designs becomes more
severe for larger capacities.

The demand for a low power configurable and easy to integration TCAM design on FPGA makes
the use of pre-classification approach practical for designing an energy-efficient SRAM-based TCAM
(EE-TCAM). It works as follows: First, a TCAM table is partitioned into several sub-tables of balanced
size in the classification stage. Second, in the SRAM-based implementation stage, each resultant TCAM
sub-table is mapped to a separate row of cascaded SRAM blocks in the architecture. The proposed
architecture selectively activates at most one row of SRAM blocks for each incoming TCAM word,
thus attaining a substantial reduction in the overall dynamic power consumption.

The contributions of this work include:

• A TCAM table classification scheme is proposed to create several balanced-size groups of TCAM
words. (Section 3.1)

• To the best of our knowledge, this is the first pre-classifier-based architecture for SRAM-based
TCAM design, which achieves a considerable reduction in power consumption. (Section 3.2)
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• The proposed design is implemented on a state-of-the-art FPGA. The proposed design is compared
in detail with the existing FPGA realizations of TCAM with respect to power consumption
per performance. Compared to prior work, our architecture exhibits at least 3× lower power
consumption per performance. (Section 4)

• The trade-off details between the number of TCAM sub-tables M and the power consumption
and throughput performance of the proposed design are presented. (Section 4.2)

The rest of this paper is organized as follows. Section 2 discusses the related work. The proposed
TCAM table classification scheme and the proposed architecture are described in Section 3. Section 4
details the implementation results and performance evaluation of our proposed architecture. Section 5
concludes this paper. Table 1 lists the notations used in this paper.

Table 1. List of notations used.

Notation Description

D Depth of TCAM table
W Width of TCAM table
RD Depth of the configured SRAM blocks
RW Width of the configured SRAM blocks
log2RD Address bits of the configured SRAM blocks
M Number of TCAM sub-tables/Rows of the SRAM blocks in architecture
V Number of SRAM blocks in each row of the proposed architecture

2. Related Work

RAM-based associative content-addressable memory (CAM) was presented in a U.S. patent [18].
Its memory requirement increases exponentially with the increase in the pattern bits of CAM. For large
bit patterns, it does not scale well in terms of the memory requirement, power consumption, and cost.
Thus, it is not feasible to implement it on ASIC or FPGA platforms. Contrary to this our proposed
work is memory-efficient and achieves a reduction in the dynamic power consumption by reducing
the exponential increase in RAM memory to a linear increase. This is achieved by partitioning the
large width TCAM bit patterns and then implementing them as a cascade of SRAM blocks in the
proposed architecture.

A set-associative memory architecture implemented in hardware using the well-known hashing
method was presented in [19]. It used RAM memory to implement CAM. However, in order to support
TCAM functionality, the architecture suffered from inefficient memory utilization as it required two
bits to encode ternary bits. On the contrary, our proposed solution does not encode ternary bits as
two bits. The proposed solution addresses RAM memory with TCAM content, and each RAM word
corresponds to a specific TCAM data pattern. In order to implement “don’t care” bits, more than one
RAM word is selected. The proposed solution maps all possible TCAM data as RAM addresses.

Two types of FPGA implementations: a CAM based on Xilinx BRAM resource and a TCAM
based on 16-bit shift registers (SRL16E)-are presented in Xilinx application note [20]. This emulation of
TCAM on FPGA consumes one SRL16E for implementing two bits of TCAM. The shift register-based
TCAM works efficiently for smaller TCAMs whereas, for implementing large storage capacity TCAMs,
its design experience routing congestion and timing challenges. The proposed solution implements
TCAM using the embedded SRAM memory blocks available on FPGAs and scales well in terms of
speed and power consumption for implementing TCAMS of large storage capacity.

A low-power SRAM-based CAM design implementation on FPGA was presented in a previous
work [17]. It performs a hierarchical lookup of the design-configured SRAM blocks. It achieves low
power consumption by stopping subsequent SRAM lookup operations if a match is found in the
present SRAM block. Although it reduces the average power consumption of the design, its worst-case
power consumption remains high, which is not beneficial for the designed hardware as the hardware
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is designed based on the worst-case power consumption budget. In contrast, proposed work achieves
a significant reduction in the worst-case power consumption of the implemented TCAM design.

Algorithmic solutions of TCAM implemented in SRAM-based pipelines on FPGAs suffer from
non-deterministic throughput, long latencies, and inefficient memory usage [14,21]. A resource-efficient
SRAM-based TCAM design was presented in [22], which stored the validation information of the
TCAM words in distributed RAM blocks and the address information in the sub-blocks of the
embedded SRAM memory blocks on FPGA. It completed the lookup operation for the incoming
TCAM word via multiple high-speed sequential reads from the sub-blocks of its SRAM blocks and
thus resulted in a degraded system throughput. The multiple high-frequency SRAM read operations
per input word’s lookup resulted in higher dynamic power consumption of the design. Proposed work
stores the validation and address information of the TCAM words in a single SRAM memory block
and a single read operation is performed for completing the incoming TCAM word’s lookup. Thus,
achieves higher throughput with reduced overall power consumption.

The design methodologies presented in [23–25] employs multiple distinct SRAM blocks for
implementing TCAM functionality. These stores the TCAM word’s existence and address information
separately in distinct sets of SRAM blocks. The Input TCAM word is applied to the first set of SRAM
blocks to read its existence information and the address information is read from the second set of
SRAM blocks. These TCAM design methodologies using multiple distinct SRAM blocks utilizes
excessive SRAM memory. These works suffered from higher power consumption as the entire used
excessive SRAM memory is activated for the incoming TCAM word lookup. In contrast, our proposed
work stores the TCAM word’s existence and address information in a single RAM, thus realizing
efficient memory usage. Moreover, proposed work achieves substantially reduced power consumption
by activating at most one row of SRAM blocks for incoming TCAM words.

The SRAM-based design methodology with efficient storage efficiency in previous work [26]
stored the existence and address information of TCAM word in a single SRAM memory block. A similar
approach implemented an SRAM-based TCAM design using Xilinx BRAM or distributed RAM
resource and provided an in-depth theoretical analysis in [13]. However, these works [13,26] energize
all used SRAM memory blocks in the design for each incoming TCAM word’s lookup. Thus, consumes
higher power consumption. In contrast proposed TCAM architecture selectively energizes a part
of SRAM memory blocks used, achieving a substantial reduction in the overall dynamic power
consumption of the design.

A recent work presented in [27] uses multipumping enabled multiported SRAM memory for
implementing memory-efficient TCAM design on FPGA. It stores the sub-blocks of partitioned TCAM
table in the shallow sub-blocks of BRAMs configured as multiported memories on FPGA.

For each incoming TCAM word, the existing SRAM-based TCAM architectures energize the
entire SRAM memory of their architectures, resulting in excessive power consumption. In this work,
we present a pre-classifier-based architecture for an energy-efficient SRAM-based TCAM design.
We first classify a TCAM table into several TCAM sub-tables, which are further partitioned vertically.
Each partitioned TCAM sub-table is implemented as a row of cascaded SRAM blocks in the proposed
architecture. For each input TCAM word, at most one row of SRAM blocks is activated in the
proposed design, significantly reducing the dynamic power consumption compared with the existing
SRAM-based TCAMs.

3. Proposed Classification Scheme and Architecture

3.1. Proposed Classification Scheme for TCAM Table

The proposed design uses the bits extracted from specific bit positions of the TCAM words to
classify the TCAM table words into groups called as TCAM sub-tables. In the proposed partitioning
scheme we extract log2M classification bits from the specified bit positions of the TCAM words to
produce M sub-tables. For example, suppose two bits are used for the classification of a sample TCAM
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table of size 6× 6 is presented in Table 2. The TCAM table presented in Table 2 is classified using
two different set of bit positions S1 = {b0, b1} and S2 = {b1, b3} as shown in Figure 2a,b, respectively.
The sub-tables constructed based on the bit values (00, 01, 10, and 11) of bit positions {b0, b1} are
shown in Figure 2a. The number of TCAM words in the constructed sub-tables ST0, ST1, ST2 and
ST3 varies based on the pattern of bits in the bit positions {b0, b1} selected for the classification of
Table 2. TCAM words with ‘x’ as bit value in the classification bit positions are stored in more than
one sub-table. For example, the TCAM word at address 2 has the bit values of ‘x1’ at {b0, b1}, and is
thus stored in both sub-tables ST1 and ST3. This redundancy expands the resultant TCAM sub-tables.
The classification of any realistic dataset based on a specific set of bit positions may not necessarily
produce sub-tables of the same size.

Table 2. A TCAM table of size 6 × 6.

Address TCAM Words

0 001001
1 11x100
2 x10010
3 100x11
4 0x01x1
5 x10001
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Figure 2. Example of the proposed classification algorithm: (a) Description of Classification based
on set of bit positions S1 = {b0, b1}. (b) Description of Classification based on set of bit positions
S2 = {b1, b3}.

The proposed solution is based on the concept that the classification effectiveness of a set of bit
positions varies from that of other bit positions for a specific dataset when the target of the classification
is to construct balanced-size sub-tables. The classification example of the TCAM table in Table 2 using
two different sets of bit positions is illustrated in Figure 2. It shows that the classification using
S2 = {b1, b3} is more effective for the TCAM table presented in Table 2, as the constructed sub-tables
are of balanced size (2), when compared with the unbalanced size sub-tables constructed for bit
positions S1 = {b0, b1} (2, 3, 1, and 3) as explained above.

The constructed TCAM sub-tables are further mapped to the distinct rows of SRAM blocks in
the proposed design. Figure 3 shows the mapping of the proposed classification scheme constructed
sub-tables to SRAM memory. The contents of the four bit places S2 = {b2, b3, b4, b5} of the unbalanced
size sub-tables shown in Figure 2a and that of bit places S2 = {b0, b2, b4, b5} of the balanced size
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sub-tables shown in Figure 2b are vertically partitioned into width of two, further mapped to
the SRAMs with depth D = 4 shown in Figure 3a,b, respectively. It clearly illustrates that the
SRAM memory requirement for storing balanced size TCAM sub-tables constructed for bit positions
S2 = {b1, b3} is lower than that of unbalanced size sub-tables constructed for bit positions S1 = {b0, b1}.
The SRAM memory utilization overhead for pre-classifying the TCAM table contents in the proposed
approach is minimal as balanced size sub-tables are constructed based on effective classification bits.

Figure 3. Example of mapping proposed classiifcation scheme constructed TCAM-subtables to SRAM:
(a) Mapping TCAM sub-tables contents to SRAM constructed based on set of bit positions S1 = {b0, b1}.
(b) Mapping TCAM sub-tables contents to SRAM constructed based on set of bit positions S2 = {b1, b3}.

Algorithm 1 describes the proposed classification scheme. It classifies the TCAM words of the
D×W TCAM table into M sub-tables based on the comparison with the log2M-bit values extracted
from specific bit positions. The resultant sub-tables formed are tested for the maximum depth bound
(MDB) of (

⌊
D

MRW

⌋
+ α)RW , where RW is the width of the configured SRAM blocks of the design on

FPGA and α is a scaling factor with integer values of α ≥ 1. If the number of TCAM words in the
resultant sub-tables exceeds MDB, a subsequent set of bit positions is used for the classification of the
TCAM table. In the worst-case scenario, all subsets of log2M bit positions from W bit positions are
used to classify the TCAM table. The worst-case classification complexity of the proposed Algorithm 1
is reduced by using a relaxed MDB for the construction of sub-tables. An increase in the value of α

by one increases the MDB of the sub-tables by RW . A relaxed MDB of the sub-tables results in an
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increased RAM memory usage, as the resultant sub-tables are mapped to the SRAM blocks of the
proposed design. The value of α provides a trade-off between the time complexity of the proposed
classification algorithm and the overall RAM memory usage of the proposed design.

The words of the M TCAM sub-tables are mapped to the M rows of the SRAM blocks of the
architecture and the corresponding classification bit positions are used to configure the pre-classifier
bit positions in the proposed architecture.

Algorithm 1 Algorithm for the classification of the TCAM table into M sub-tables.

INPUT: D ternary words of W bits: Ti,j, where Ti,j ∈ {0, 1, x}W , i = 0, 1, . . . , D − 1, All
possible subsets of log2M bit positions from W bit positions: Su,v, where u = 1, 2, . . . , ( W

log2 M),
v = 0, 1, . . . , log2M− 1.
OUTPUT: M sub-tables (STs) with identification addresses of AM = 0, 1, 2, . . . , M− 1, and each ST
of (
⌊

D
MRW

⌋
+ α)RW ternary words of W bits: STi,j, where STi,j ∈ {0, 1, x}W , i = 0, 1, . . . , (

⌊
D

MRW

⌋
+

α)RW − 1.
for u = 1, 2, . . . , ( W

log2 M) do
for i = 0, 1, . . . , D− 1 do

// Check for the maximum depth bound
if (SizeAM == (

⌊
D

MRW

⌋
+ α)RW) then

break
else

// Extraction of classification bits & construction of sub-tables
Cbits ← Extract(Su,v, Ti,j)

if (AM == Cbits) then
Add_ST(AM, Ti,j)

SizeAM ← SizeAM + 1
end if

end if
end for

end for
Cbits: Extracted classification bits
SizeAM : Size of constructed sub-tables

3.2. Proposed Architecture

The TCAM table of D×W size is classified into M sub-tables using the proposed classification
scheme in Algorithm 1. The W-bit TCAM words of M sub-tables constructed are further divided into
V sub-words of log2RD-bits. The resultant M×V sub-partitions of the TCAM table are mapped to the
M rows of the V SRAM blocks in the proposed architecture as shown in Figure 5. Each TCAM table
sub-partition of size (

⌊
D

MRW

⌋
+ α)RW × log2RD is implemented using an SRAM block. The SRAM

block is a cascade of (
⌊

D
MRW

⌋
+ α) number of RD × RW size SRAM blocks.

The proposed architecture comprises a pre-classifier unit and an SRAM-based TCAM.
The pre-classifier unit of the proposed architecture is shown in Figure 4. The bit positions of the
pre-classifier bits are specified using Algorithm 1 provided log2M number of pre-classification
bit positions. The pre-classifier bits are extracted from the log2M bit positions of the incoming
TCAM words using the log2M number of select lines of W-to-1 multiplexers as shown in Figure 4.
The extracted log2M bits are further decoded to get an M-bit control signal that selectively activates at
most one row of SRAM blocks of the proposed architecture.

The proposed SRAM-based TCAM architecture is shown in Figure 5. The incoming W-bit TCAM
word is divided into V sub-words of log2RD-bits. The V sub-words are provided as addresses to the
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selected row of V SRAM blocks in parallel and V SRAM words are read. The V SRAM words read
undergo a bit-wise AND operation and the resultant matching information bit vector is provided to
the associated PE. The PE unit encodes the highest-priority matching bit position with the level high
as the matching address.

Input word

W

1

S2

Slog M

M
1

1

1

2

log2M x M
decoderlog2W

og2W

log2W

Figure 4. Architecture of the pre-classifier unit: (S: Select lines for extracting the pre-classification bits,
log2W: Number of bits in the, log2 M: Number of pre-classifier bits, M: Number of enable control bits
for the M rows of SRAM blocks).
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M
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W log2RD log2RD log2RD
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Figure 5. Proposed overall architecture: (M: Number of rows of SRAM blocks, V: Number of SRAM
blocks in a row, PE: priority encoder unit, MA: matching address, log2RD: Address bits of the configured

SRAM blocks, (
⌊

D
MRW

⌋
+ α)RW : Configured SRAM blocks words width).
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3.3. Update Operation

The proposed TCAM design maps a new TCAM table dataset of the same size to the SRAM blocks
of the configured architecture on FPGA. The SRAM blocks of the architecture has storage space for
(
⌊

D
MRW

⌋
+ α)RW number of log2RD-bit TCAM sub-words. Algorithm 1 finds the set of classification bit

positions, which makes TCAM sub-tables considering the maximum depth limitation of the configured
architecture SRAM blocks on FPGA. The updated TCAM sub-tables are mapped to the SRAM blocks
of the design on FPGA. The corresponding classification bit positions from Algorithm 1 configure the
pre-classifier unit. The classification bits are now extracted from the updated set of bit positions for the
incoming TCAM words. The proposed solution performs reconfiguration of the hardware design on
FPGA in two cases: first, when the number of TCAM words in the Algorithm 1 constructed TCAM
sub-tables exceeds the storage space of the configured architecture SRAM blocks, resulting in a relaxed
MDB on the updated TCAM sub-tables. Second, when a TCAM table of different size is implemented
in the proposed design.

During run-time, an update process of a TCAM word in proposed design includes the writing of
the update word to the respective TCAM sub-table first, and the updated sub-table is then written to
the corresponding row of SRAM blocks in the proposed architecture. The number of TCAM words
in updated sub-tables is tested for the MDB of (

⌊
D

MRW

⌋
+ α)RW as this is the storage capacity of a

row of configured SRAM blocks in proposed architecture. Owing to the presence of the don’t-care
bits (x) in the TCAM words, EE-TCAM in the worst case writes the entire used SRAM memory to
complete the update process of a TCAM word. The partitioned sub-tables are written in parallel to the
corresponding SRAM blocks in the proposed architecture, and the depth RD of the configured BRAMs
determines the update latency of EE-TCAM design. The update latency of EE-TCAM is 513 cycles.
While native TCAMs have also comparable worst case TCAM write time of O(N) for updating a TCAM
word, where N is the number of words in the TCAM table [28–31].

4. FPGA Implementation Results & Performance Evaluation

We used a Xilinx Virtex-6 XC6VLX760-2FF1760 FPGA device for the proposed EE-TCAM design
of a 512× 36 TCAM. Three design cases of 512× 36 TCAM were implemented with the following
design parameters: [M = 4, V = 4] denoted EE-TCAM-I and [M = 8, V = 4] denoted EE-TCAM-II
using 36 kb BRAMs and [M = 16, V = 4] denoted EE-TCAM-III using 18 kb BRAMs. Algorithm 1 was
used to classify 512 TCAM words into M = 4, 8, and 16 TCAM sub-tables.

The minimum depth limitation on the configuration of BRAM is 512 = 29. The storage capacity
of BRAMs is maximum when used in minimum depth configurations of 512× 36 for 18 kb size and
512× 72 for 36 kb size [13,27]. Thus, the contents of the TCAM sub-tables formed were further divided
into V = 4 sub-words of width = 9, which addresses the configured BRAMs of depth 29 = 512.
The resultant M×V sub-partitions were mapped to the configured BRAMs of the EE-TCAM designs
on FPGA. The proposed EE-TCAM designs were implemented using Xilinx ISE 14.7 and were verified
via behavioural and post-route simulations using the Xilinx ISim simulator. The Xilinx Place and Route
report was used to evaluate the FPGA resource utilization and speed. The Xilinx Xpower Analyzer
tool [32] was used for the estimation of the dynamic power consumption of the design. Table 3 lists
the FPGA resource utilization parameters such as slice registers, LUTs, and BRAMs of the EE-TCAM I,
II, and III designs for implementing a 512× 36 TCAM table.

Table 3. FPGA resource utilization of EE-TCAM on Xilinx Virtex-6.

Proposed Design Cases Slice Registers LUTs BRAMs

EE-TCAM-I [M = 4] 652 1535 32
EE-TCAM-II [M = 8] 687 1455 32

EE-TCAM-III [M = 16] 712 1419 32



Electronics 2018, 7, 186 10 of 15

4.1. Scalability of EE-TCAM

We have evaluated the scalability of EE-TCAM using important performance evaluation metrics,
like memory utilization, clock rate, and power consumption implementing various sizes of TCAM
tables. Table 4 lists the memory utilization, clock rate, and power consumption for the TCAM tables of
width W = 36, 54, and 72 for depth D = 256, 512, and 1024 with TCAM sub-tables of M = 4, 8, and 16
configurations implemented using EE-TCAM.

Table 4. Performance trend for increasing EE-TCAM depth (D), width (W) in various configurations.

No. of TCAM TCAM Depth 256 512 1024

Sub-Tables TCAM Width 36 54 72 36 54 72 36 54 72

Memory utilization (kb)

M = 4 576 864 1152 1152 1728 2304 2304 3456 4608
M = 8 576 864 1152 1152 1728 2304 2304 3456 4608
M = 16 1152 1728 2304 1152 1728 2304 2304 3456 4608

Clock rate (MHz)

M = 4 326 313 299 276 260 243 264 252 233
M = 8 338 323 308 321 306 261 297 272 246
M = 16 346 335 317 336 316 270 310 293 251

Power consumption (mW)

M = 4 26.3 37.3 55.2 33.7 52.9 70 62 89.1 134
M = 8 23.6 36.8 51.3 27.7 50.3 64.5 36.1 59.1 80
M = 16 32.1 54.2 72.7 27.7 47.9 61.4 30.9 55.5 72.1

Table 4 shows that the memory usage of EE-TCAM grows proportionally with an increase in the
width or depth of the implemented TCAM table size. The memory usage of EE-TCAM remains same
with an increase in the number of TCAM sub-tables M.

Table 4 shows that EE-TCAM achieves high clock rates of (233 MHz–346 MHz) for the specified
sizes of TCAM tables. EE-TCAM achieve a linear decrease in the clock rate with a linear increase in
the depth or width of the implemented TCAM tables when M is constant. The delay in EE-TCAM
increases because of the increase in the number of wide bit-wise ANDing operations and associated
routing delay. The EE-TCAM showed an increase in the clock rate with an increase in the number of
TCAM sub-tables M owing to the reduced bit-wise ANDing complexity of a row of SRAM blocks.

Table 4 illustrates that the dynamic power consumption of EE-TCAM increases linearly with an
increase in the width and depth of the implemented TCAM table when M is constant. The memory
usage of a row of SRAM memory blocks increases with an increase in the size of the implemented
TCAM table, which results in an increase in the power consumption of EE-TCAM. The dynamic power
consumption of EE-TCAM decreases with an increase in the number of TCAM sub-tables M owing to
the activation of reduced size SRAM memory of a row of SRAM blocks.

The EE-TCAM design implementations for depth D = 256 and width W = 36, 54, 72 with M = 16
does not follow the same performance trend in memory usage and power consumption as shown in
Table 4. The memory usage of EE-TCAM implementations for the specified sizes with M = 16 gets
double from that of the same sizes implementations with M = 8. This is because the memory size
of a row of SRAM blocks for M = 16 remains the same (72 kb) as that of M = 8 and the number of
rows of SRAM-blocks gets double (16 from 8). This is due to the minimum 36 bit width configuration
for depth = 512 of 18 kb BRAM on Xilinx FPGAs [15]. This increase in the memory usage of a row of
SRAM-blocks results in the increased power consumption of proposed EE-TCAM implementations for
specified sizes with M = 16 as illustrated in the Table 4.
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4.2. Trade-Off between the Number of TCAM Sub-Tables (M) and Performance

The number of TCAM sub-tables M determines the depth of the sub-tables formed, and when
mapped to the SRAM memory determines the RAM memory usage of each row of SRAM blocks in
the EE-TCAM design. An increase in M reduces the RAM memory usage of each row of SRAM blocks
in the EE-TCAM design. This leads to a reduction in the overall power consumption of the proposed
design with an increase in M as the reduced memory of at most one row of SRAM blocks is energized
per lookup for incoming words.

To evaluate the impact of the change in M on the performance of the proposed EE-TCAM design,
we implemented three EE-TCAM design cases I, II, and III, with M = 4, 8, and 16, respectively, using
Xilinx BRAM resource for a 512× 36 TCAM table. The RAM memory usage of a row of SRAM blocks
in the EE-TCAM design shows a decreasing trend with the increase in the value of M. The proposed
design cases EE-TCAM I, II, and III, activate at most one row of SRAM blocks per lookup i.e., 288 kb
(8 BRAMs of size 36 kb), 144 kb (4 BRAMs of size 36 kb), and 72 kb (4 BRAMs of size 18 kb), respectively.
The individual BRAM resource power consumption of the EE-TCAM design cases I, II, and III shows a
decreasing trend 18.41 mW, 9.03 mW, and 4.16 mW, respectively, as shown in Figure 6. The increase
in the number of TCAM sub-tables M has a decreasing impact on the size of the activated BRAM
resource in the proposed EE-TCAM design. Thus, the individual power consumption of the BRAM
resource in proposed EE-TCAM shows a decreasing trend with an increasing value of M.

The overall power consumption of the EE-TCAM design III does not show an exactly decreasing
trend. This is because of the increased individual clock and signal resource power consumption as
shown in Figure 6. Compared to EE-TCAM I with M = 4, the number of design units in EE-TCAM II
(M = 8) and EE-TCAM III (M = 16) doubles and quadruples, respectively. Thus, EE-TCAM II and
EE-TCAM III show an increased clock distribution and interconnect power consumption as shown in
Figure 6.
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Figure 6. Trade-Off between the Number of TCAM Sub-Tables (M) and Power Consumption Performance.

The operational frequencies of the EE-TCAM design listed in Table 4 shows an increasing trend
with the increase in the number of TCAM sub-tables M, owing to the reduced complexity of bit-wise
AND operation and PE units, as the size of the SRAM words decreases with the increase in the value
of M.
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Overall, the trade-off between the number of TCAM sub-tables M and the power consumption and
throughput performance of the proposed EE-TCAM design showed that considerable improvement in
performance is achieved with an increase in M.

4.3. Power Consumption

RAM memory accounts for a major proportion of the power consumption in the design of
SRAM-based TCAMs. In the SRAM-based solutions of TCAM, the depth of TCAM table determines
the width of the SRAM memory and is implemented as a cascade of D

RW
number of SRAM blocks.

The width of TCAM table is encoded as the address of the SRAM memory and implemented as a
cascade of W

log2RD
number of SRAM blocks. The minimum achieved power consumption of the existing

SRAM-based TCAM design methodologies on FPGAs in terms of the SRAM blocks used can be
formulated using Equation (1) as follows:

PE =

[
D

RW

] [
W

log2(RD)

]
× PSU (1)

where PSU denotes the power consumption of an SRAM block. The proposed design activates at most
1/M number of entire used SRAM blocks to complete the lookup operation for an incoming TCAM
word. Thus, achieves a considerable reduction in the power consumption by a factor of M as expressed
using Equation (2).

PP =
1
M

[
D

RW

] [
W

log2(RD)

]
× PSU (2)

Column 7 of Table 5 shows the power consumption comparison of our proposed EE-TCAM
design with previous works. It shows that the power consumption of the proposed EE-TCAM design
is at least two times lower than that of [20,23–26] for implementing a 18 kb size 512× 36 TCAM table.

4.4. Power Consumption per Performance

Table 5 presents a comparison of the proposed EE-TCAM designs with the existing state-of-the-art
FPGA-based TCAMs with respect to the power consumption per performance from [33] given by
Equation (3).

Normalized power consumption [µW/ TCAM Depth]
Performance [Gb/s]

(3)

For a fair comparison with [22] and [13], we normalized their reported frequency and power
consumption results to 40-nm CMOS technology using Equation (4), modified from previous study
in [34].

F∗ = F×
(

Technolgy(nm)

40(nm)

)
×
(

1.0
VDD

)
P∗ = P×

(
40(nm)

Technology(nm)

)
×
(

1.0
VDD

)2 (4)

The normalized frequency and power consumption factors are denoted as F∗ and P∗, respectively,
when considering 40-nm CMOS technology and a supply voltage of 1.0 V. The original results of the
respective works are reported in parentheses.

EE-TCAM designs I, II, and III implemented a 512 × 36 (18 kb) TCAM table consuming
33.72 mW, 27.70 mW, and 27.68 mW, respectively, and achieved the speed of 276 MHz, 321 MHz,
and 336 MHz, respectively. Thus, the power consumption per performance of EE-TCAM I, II, and III
was 6.8 (µW/(TCAMDepth.Gb/s)), 4.8 (µW/(TCAMDepth.Gb/s)), and 4.6 (µW/(TCAMDepth.Gb/s)),
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respectively. Table 5 shows that the power consumption per performance of the proposed EE-TCAM
designs is at least three times lower than that of UE-TCAM [26], which is the lowest among the existing
FPGA implementations of SRAM-based TCAMs.

Table 5. Comparison of the power consumption per performance with previous works.

Architecture FPGA TCAM Size Speed
AM/L (a) Throughput Power

PC/P (b)
(D × W) (MHz) (Gb/s) (mW)

Locke [20] Virtex-6 512 × 36 166 2304 5.8 253 85
Qian [17] Virtex-6 504 × 180 133 5040 23.4 2548 216
REST [22] Kintex-7 72 × 28 35 (50) 36 1.4 161 (113) 2329
HP-TCAM [23] Virtex-6 512 × 36 118 2016 4.2 188 89
Z-TCAM [24] Virtex-6 512 × 36 159 1440 5.6 109 38
E-TCAM [25] Virtex-6 512 × 36 164 1440 5.8 91 31
UE-TCAM [26] Virtex-6 512 × 36 202 1152 7.1 78 21
Jiang [13] Virtex-7 1024 × 150 97 (139) 9792 20.4 4587 (3211) 315
EE-TCAM-I Virtex-6 512 × 36 276 288 9.7 33.72 6.8
EE-TCAM-II Virtex-6 512 × 36 321 144 11.3 27.7 4.8
EE-TCAM-III Virtex-6 512 × 36 336 72 11.8 27.68 4.6

(a) AM/L: Activated memory/lookup (kb); (b) PC/P: Power consumption/performance
(µW/(TCAMDepth.Gb/s).

5. Conclusions

TCAM-based search engines play an important role in networking routers. Researchers have
proposed several SRAM-based TCAM designs on re-configurable hardware. Native TCAMs and
existing SRAM-based TCAMs suffer from higher power consumption.

This paper presented a pre-classifier-based architecture for an energy-efficient SRAM-based
TCAM, which selectively activates at most one row of SRAM blocks for lookup rather than activating
the entire SRAM memory as in the existing architectures. The experimental results showed that the
proposed design exhibits at least three times lower power consumption per performance than the
existing FPGA realizations of TCAM.

Author Contributions: I.U. devised the main research idea, performed the experiments on tools and wrote the
paper. Authors Z.U. and J.-A.L. provided guidance, suggestions, and reviewed the writing of this work. Z.U. and
J.-A.L. supervised and finalized this paper.

Funding: This study was supported by research fund from Chosun University, 2018.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Etzel, K. Answering IPv6 Lookup Challenges; Technical Article; Cypress Semiconductor Corporation: San Jose,
CA, USA, 2004.

2. Taylor, D.E. Survey and taxonomy of packet classification techniques. ACM Comput. Surv. (CSUR) 2005,
37, 238–275. [CrossRef]

3. Haigh, J.R.; Clark, L.T. High performance set associative translation lookaside buffers for low power
microprocessors. Integr. VLSI J. 2008, 41, 509–523. [CrossRef]

4. Karam, R.; Puri, R.; Ghosh, S.; Bhunia, S. Emerging trends in design and applications of memory-based
computing and content-addressable memories. Proc. IEEE 2015, 103, 1311–1330. [CrossRef]

5. Nguyen, X.T.; Hoang, T.T.; Nguyen, H.T.; Inoue, K.; Pham, C.K. An FPGA-Based Hardware Accelerator for
Energy-Efficient Bitmap Index Creation. IEEE Access 2018, 6, 16046–16059. [CrossRef]

6. Chang, M.F.; Lin, C.C.; Lee, A.; Chiang, Y.N.; Kuo, C.C.; Yang, G.H.; Tsai, H.J.; Chen, T.F.; Sheu, S.S. A 3T1R
nonvolatile TCAM using MLC ReRAM for frequent-off instant-on filters in IoT and big-data processing.
IEEE J. Solid-State Circuits 2017, 52, 1664–1679. [CrossRef]

http://dx.doi.org/10.1145/1108956.1108958
http://dx.doi.org/10.1016/j.vlsi.2007.11.003
http://dx.doi.org/10.1109/JPROC.2015.2434888
http://dx.doi.org/10.1109/ACCESS.2018.2816039
http://dx.doi.org/10.1109/JSSC.2017.2681458


Electronics 2018, 7, 186 14 of 15

7. Tsai, H.J.; Yang, K.H.; Peng, Y.C.; Lin, C.C.; Tsao, Y.H.; Chang, M.F.; Chen, T.F. Energy-efficient TCAM search
engine design using priority-decision in memory technology. IEEE Trans. Very Large Scale Integr. Syst. 2017,
25, 962–973. [CrossRef]

8. Mujahid, O.; Ullah, Z.; Mahmood, H.; Hafeez, A. Fast Pattern Recognition Through an LBP Driven CAM on
FPGA. IEEE Access 2018, 6, 39525–39531. [CrossRef]

9. Lin, K.J.; Wu, C.W. A low-power CAM design for LZ data compression. IEEE Trans. Comput. 2000, 49,
1139–1145.

10. Agrawal, B.; Sherwood, T. Modeling TCAM power for next generation network devices. In Proceedings
of the 2006 IEEE International Symposium on Performance Analysis of Systems and Software, Austin, TX,
USA, 19–21 March 2006; pp. 120–129.

11. Lambiri, C. (Senior staff architect IDT). Private communication, 2008.
12. Akhbarizadeh, M.J.; Nourani, M.; Vijayasarathi, D.S.; Balsara, T. A nonredundant ternary CAM circuit for

network search engines. IEEE Trans. Very Large Scale Integr. Syst. 2006, 14, 268–278. [CrossRef]
13. Jiang, W. Scalable ternary content addressable memory implementation using FPGAs. In Proceedings of the

Ninth ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS),
San Jose, CA, USA, 21–22 October 2013; pp. 71–82.

14. Jiang, W.; Prasanna, V.K. Parallel IP lookup using multiple SRAM-based pipelines. In Proceedings of
the IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2008), Miami, FL, USA,
14–18 April 2008; pp. 1–14.

15. Xilinx. Virtex-6 FPGA Memory Resources User Guide. Available online: http://www.xilinx.com
(accessed on 15 July 2018).

16. Alfke, P. Creative Uses of Block RAM; White Paper: Virtex and Spartan FPGA Families; Xilinx: San Jose, CA,
USA, 2008.

17. Qian, Z.; Margala, M. Low power RAM-based hierarchical CAM on FPGA. In Proceedings of the
2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico,
8–10 December 2014; pp. 1–4.

18. Somasundaram, M. Circuits to Generate a Sequential Index for an Input Number in a Pre-Defined List of
Numbers. U.S. Patent 7,155,563, 26 December 2006.

19. Cho, S.; Martin, J.; Xu, R.; Hammoud, M.; Melhem, R. CA-RAM: A High-Performance Memory Substrate
for Search-Intensive Applications. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems Software, (ISPASS 2007), San Jose, Ca, USA, 25–27 April 2007; pp. 230–241. [CrossRef]

20. Locke, K. Parameterizable content-addressable memory. In Xilinx Application Note XAPP1151; Xilinx:
San Jose, CA, USA, 2011.

21. Jiang, W.; Prasanna, V.K. Large-scale wire-speed packet classification on FPGAs. In Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA,
22–24 February 2009; pp. 219–228.

22. Ahmed, A.; Park, K.; Baeg, S. Resource-Efficient SRAM-Based Ternary Content Addressable Memory.
IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 1583–1587. [CrossRef]

23. Ullah, Z.; Ilgon, K.; Baeg, S. Hybrid partitioned SRAM-based ternary content addressable memory.
IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2969–2979. [CrossRef]

24. Ullah, Z.; Jaiswal, M.K.; Cheung, R.C. Z-TCAM: An SRAM-based architecture for TCAM. IEEE Trans. Very
Large Scale Integr. Syst. 2015, 23, 402–406. [CrossRef]

25. Ullah, Z.; Jaiswal, M.; Cheung, R. E-TCAM: An Efficient SRAM-Based Architecture for TCAM. Circuits Syst.
Signal Process. 2014, 33, 3123–3144. [CrossRef]

26. Ullah, Z.; Jaiswal, M.K.; Cheung, R.C.C.; So, H.K.H. UE-TCAM: An ultra efficient SRAM-based TCAM.
In Proceedings of the 2015 IEEE Region 10 Conference (TENCON 2015), Macau, China, 1–4 November 2015;
pp. 1–6. [CrossRef]

27. Ullah, I.; Ullah, Z.; Lee, J.A. Efficient TCAM Design Based on Multipumping-Enabled Multiported SRAM
on FPGA. IEEE Access 2018, 6, 19940–19947. [CrossRef]

28. Wang, Z.; Che, H.; Kumar, M.; Das, S.K. CoPTUA: Consistent policy table update algorithm for TCAM
without locking. IEEE Trans. Comput. 2004, 53, 1602–1614. [CrossRef]

29. Shah, D.; Gupta, P. Fast incremental updates on Ternary-CAMs for routing lookups and packet classification.
In Proceedings of the Hot Interconnects, Stanford,CA, USA, 16–18 August 2000.

http://dx.doi.org/10.1109/TVLSI.2016.2624990
http://dx.doi.org/10.1109/ACCESS.2018.2854306
http://dx.doi.org/10.1109/TVLSI.2006.871760
http://www.xilinx.com
http://dx.doi.org/10.1109/ISPASS.2007.363753
http://dx.doi.org/10.1109/TVLSI.2016.2636294
http://dx.doi.org/10.1109/TCSI.2012.2215736
http://dx.doi.org/10.1109/TVLSI.2014.2309350
http://dx.doi.org/10.1007/s00034-014-9796-3
http://dx.doi.org/10.1109/TENCON.2015.7372837
http://dx.doi.org/10.1109/ACCESS.2018.2822311
http://dx.doi.org/10.1109/TC.2004.108


Electronics 2018, 7, 186 15 of 15

30. Shah, D.; Gupta, P. Fast updating algorithms for TCAM. IEEE Micro 2001, 21, 36–47. [CrossRef]
31. Syed, F.; Ullah, Z.; Jaiswal, M.K. Fast Content Updating Algorithm for an SRAM based TCAM on FPGA.

IEEE Embed. Syst. Lett. 2017, 10, 73–76. [CrossRef]
32. Xilinx. Xilinx Xpower Analyzer. Available online: http://www.xilinx.com (accessed on 15 July 2018).
33. Nakahara, H.; Sasao, T.; Iwamoto, H.; Matsuura, M. LUT Cascades Based on Edge-Valued Multi-Valued

Decision Diagrams: Application to Packet Classification. IEEE J. Emerg. Sel. Top. Circuits Syst. 2016, 6, 73–86.
[CrossRef]

34. Chen, O.C.; Sheen, R.B. A power-efficient wide-range phase-locked loop. IEEE J. Solid-State Circuits 2002,
37, 51–62. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/40.903060
http://dx.doi.org/10.1109/LES.2017.2770225
http://www.xilinx.com
http://dx.doi.org/10.1109/JETCAS.2016.2528638
http://dx.doi.org/10.1109/4.974545
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Classification Scheme and Architecture
	Proposed Classification Scheme for TCAM Table
	Proposed Architecture
	Update Operation

	FPGA Implementation Results & Performance Evaluation
	Scalability of EE-TCAM
	Trade-Off between the Number of TCAM Sub-Tables (M) and Performance
	Power Consumption
	Power Consumption per Performance

	Conclusions
	References

