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Abstract: An index-regulation technique functionalized by numerical sampling for direct calibration
of the non-linear wavenumber (k)-domain to a linear domain in spectral domain optical coherence
tomography (SD-OCT) is proposed. The objective of the developed method is to facilitate
high-resolution identification of microstructures in biomedical imaging. Subjective optical alignments
caused by nonlinear sampling of interferograms in the k-domain tend to hinder depth-dependent
signal-to-noise ratios (SNR) and axial resolution in SD-OCT. Moreover, the optical-laser-dependent
k-domain requires constant recalibrated in accordance with each laser transition, thereby necessitating
either hardware or heavy software compensations. As the key feature of the proposed method, a
relatively simple software-based k-domain mask calibration technique was developed to enable
real-time linear sampling of k-domain interpolations whilst facilitating image observation through
use of an index-regulation technique. Moreover, it has been confirmed that dispersion can be
simultaneously compensated with noise residuals generated using the proposed technique, and that
use of complex numerical or hardware techniques are no longer required. Observed results, such as
fall-off, SNR, and axial resolution clearly exhibit the direct impact of the proposed technique, which
could help investigators rapidly achieve optical-laser-independent high-quality SD-OCT images.

Keywords: optical coherence tomography (OCT); Numerical sampling; k-domain; spectral calibration

1. Introduction

Optical-spectrometer-adopted SD-OCT [1–3] is one of the major Fourier domain OCT
(FD-OCT) [3] categories capable of obtaining depth-dependent information by applying Fourier
transforms over a given spectral range. SD-OCT systems have been extensively utilized in medical,
industrial, and agricultural applications owing to their high data-acquisition speeds, higher sensitivity
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(when compared against time-domain OCT (TD-OCT) systems [4,5]), and lower manufacturing costs
(when compared against swept-source OCT (SS-OCT) systems) [6–13]. During SD-OCT, optical
spectrum of the interference fringe is subjected to a discrete Fourier transformation to perform image
reconstruction. An optical spectrometer, tuned to a desired wavelength, is operated to uniformly
collect measurements in terms of wavelengths (λ) with an equidistance of spectral readings according
to wavenumbers given by k = 2π/λ (where k denotes the wavenumber) [14].

To ensure optimal performance of the SD-OCT system, Fourier transforming data points must
be equally spaced in terms of wavenumber. Nevertheless, diffractive grating utilized in the optical
spectrometer linearly separates spectral bands within a given wavelength (λ), thereby becoming
unevenly sampled in the k-domain owing to the aforementioned inverse relationship between k and
λ [15,16]. Owing to this nonlinear relationship, each pixel of line-scan camera of the spectrometer
integrates a different spectral width, which in turn, broadens the point spread function (PSF), thereby
reducing the efficacy. The desired compensation can be achieved by numerically resampling and
uniformly spacing these unevenly sampled wavenumbers to enhance image reconstruction [17].

The above necessity for calibration has attracted considerable research interest, and as a result,
diverse optical-hardware-based techniques and heavy complex-algorithm-based computational
methods have been developed. Resampling schemes involving non-uniform fast Fourier transforms
(FFT) and a graphic processing unit (GPU) have been proposed to offload wavelength to k-domain
conversions, thereby simultaneously improving data-acquisition speeds [18,19]. The nonlinearity can,
moreover, be compensated by approximating an SD-OCT system with a set of linear equations to
formulate an inverse problem, such that solving it would directly reconstruct a given cross-section
of the sample instead of individually estimating depth-direction intensity lines [17]. In addition,
compressed-sensing-method-based k-domain linearization techniques have been developed to simplify
conventionally complex numerical methods [20,21]. Examples of these resampling methods include
linear and cubic spline interpolations, which serve to positively enhance data-processing speeds,
but also generate interpolation errors. Apart from these complex computational resampling techniques,
optical hardware solutions using prisms have been proposed to achieve real-time imaging [16,22–24].
The authors’ group has previously developed a wavelength scanning filter capable of generating
lookup tables in real-time instead of interpolating nonlinear data [25].

This paper aims at introducing a numerical-sampling-functionalized real-time index-regulation
technique to be applied on an entire pixel array to obtain ultra-fast k-domain mask calibration for
SD-OCT. Compared to conventional techniques, the proposed linearization process can be performed
during image observation, thereby enhancing cross-sectional image quality in real-time by varying the
overall intensity of k-domain index values and simply interpolating numerical values. The proposed
method further compensates for dispersion with noise residuals and also minimizes the necessity of
repetitive calibration trials during successive optical hardware modifications. The robustness, potential
applicability, and simplicity of the proposed technique were compared with previous recalibration
techniques, such as wavelength filter based k-domain calibration and spline interpolations techniques.
Acquired results demonstrate that the proposed index-regulation-based direct k-domain linearization
achieves the best fall-off values of 21 dB, when compared against conventional methods, over the
entire imaging depth without use of complicated numerical and/or hardware techniques.

2. Materials and Methods

2.1. OCT System Configuration

The proposed SD-OCT system, as illustrated in Figure 1, comprised of a superluminescent
light emitting diode with a central wavelength of 840 nm and bandwidth of 50 nm (i.e., a band
of 815–865 nm). Detailed configurations of SD-OCT instrumentation are provided elsewhere [12].
Within the fiber-based interferometer, an optical coupler with a splitting ratio of 50:50 was used
to divide the beam towards reference and sample arms. Backscattered beams were interfered and
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delivered to a laboratory customized spectrometer. Transmission-type diffraction grating (1800 lpmm.
Wasatch Photonics, Durham, NC, USA) was employed in the interferometer, which also comprised a
12-bit complementary metal oxide semiconductor line-scan camera (Sprint spL2048-140k, Basler AG,
Ahrensburg, Germany). During exposure, each pixel of a line-scan camera collects measurements
that correspond to a single optical wavelength. With the entire pixel array, A-line data along the axial
direction are collected. B-mode scanning was performed using galvanometer scanners installed on the
sample arm.
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Figure 1. Proposed spectral domain optical coherence tomography (SD-OCT) system along with
the broadband laser spectrum. (BLS: broadband laser source; C: collimator; DG: diffraction grating;
FC: fiber coupler; FL: focusing lens; GS: galvanometer scanners; LSC: line scan camera; M: mirror;
S: sample).

2.2. Comparison of the Direct Real-Time k-Domain Modeling Algorithm with Conventional Hybrid Wavelength
Scanning Filter Calibration and Spline Interpolation Techniques

To highlight the potential applicability and fundamental performance of the proposed algorithm,
an initial attempt at wavenumber linearization was made using the conventional OCT-hybrid
wavelength scanning filter previously developed by our group. A schematic of the OCT-hybrid
wavelength scanning filter is illustrated in Figure 2a. The implemented translating-slit-based
wavelength scanner provides information concerning each wavenumber at each pixel location.
The desired broadband laser was placed before the corresponding wavelength filter, and the spectrum
was screened using a narrow line-width measuring 0.5 nm. Corresponding measurements were
also simultaneously performed by the line-scan camera of OCT and an optical spectrum analyzer
(OSA) to obtain pixel as well as wavelength measurements. Subsequently, a lookup table was
generated, which could later be used to linearize the measured spectrum of the optical laser in the
k-domain [25]. However, the aforementioned lookup table mapping was also employed during post
data capture, which requires additional optical hardware components, such as the optical wavelength
scanning filter and OSA. Moreover, the overall process is time-consuming as well. The most important
drawback of this method is its optical-laser dependency, which requires repeated calibration trials
and generation of new lookup tables at each optical-laser transition. Spline interpolation [19,26–28]
is another complex numerical calibration technique, where the image pixels are stored in a compute
unified device architecture (CUDA) array and bound to a designated region in a texture memory.
A resampled interference spectrum is created by interpolating between the image pixels at predefined
calibration values, which eventually provides evenly distributed wavenumber values. However,
an averaging process of the spectrum has to be further performed for noise removal and to remove
the autocorrelation signal of the reference arm. Moreover, a Fourier transformation of each individual
A-scan, data conversion from Fourier space to real space, and finally data type conversion from 32-bit
float to 16-bit integer towards host memory have to executed for a complete spectrum calibration.
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Figure 2. (a) Schematic of OCT-hybrid wavelength scanning filter. (b) Architecture of the proposed
direct real-time k-domain modeling algorithm. (BLS: broadband laser source; C: collimator; CIR:
circulator; DG: diffraction grating; FC: fiber coupler; FL: focusing lens; GS: galvanometer scanners;
LSC: line-scan camera; M: mirror; OSA: optical spectrum analyzer; S: sample; TS: translation slit).

To overcome the aforementioned complex optical and numerical calibration techniques, a direct
real-time k-domain modeling algorithm was developed and illustrated in flowchart shown in Figure 2b.
The initial raw index acquisition of the architecture represents the acquisition of nonlinear index array
corresponds to the original image of the system. This main data stream contains different values
between the line image cell index and the correlated index in the k-domain, which is the main cause
for the non-linearized wavenumber domain. Once the raw index is arranged, the next step of the
proposed algorithm is executed by varying the fundamental index intensity through the use of numerical
multiplication factor (numerical unit with hundredth decimal point starting from 1). The utilization of this
numerical factor results adjustments of the index weight and sampling of the entire array, which simply
leads to an index interpolation to linearize the wavenumber domain. Next, the PSF representations
were analyzed at each depth range qualitatively by imaging the reflectivity profile of mirror reflection
to confirm the k-domain linearization for the whole depth range. The exact numerical factor, which
linearizes the k-domain is verified after successful interpolation attempts, and the entire interpolated raw
index array is Fourier transformed and log scaled for the image visualization. Simultaneously, the index
intensity can be continuously varied to enhance the image quality until the k-domain linearization is
satisfactorily accomplished. The fundamental index array can be determined in accordance with the
bandwidth of the optical laser (50 nm; i.e., 815–865 nm, where values of k-domain indications include in
the range of 7.77 to 7.26 µm−1). Thus, this software-based laboratory customized algorithm can simply
overcome the above-mentioned necessity of index array reported in our previous attempt. Moreover,
this algorithm can invert the index array according to the direction of the line camera and moves the
index signal size and index direction left and right correcting the image finely by the decimal point unit
using linear interpolation. The user can easily change the index shape while viewing the image to further
optimize k-domain linearization, and the range of index arrays can be expanded by means of numerical
sampling. This validates the potential high-speed and accuracy of the proposed technique with regard
to any further optical-laser transition (with different central wavelengths).

3. Results and Discussion

3.1. Experimental Validation of Sensitivity Roll-Off

The frequency domain was traced for seven different optical path differences incremented in steps
of 300 µm at each instance up to 2.1 mm to measure PSF. The obtained normalized intensity results



Electronics 2018, 7, 182 5 of 10

of three PSF trials including non-linearized k-domain, wavelength scanning filter based linearized
k-domain, and proposed linearization based k-domain are depicted in Figure 3a–c. Since continuous
variations of the laser source power were identified, the total output optical power value of the laser
was hourly monitored prior to the experiment. The monitored values were measured, summed up,
averaged, and normalized to compensate the power fluctuation. The depth-dependent fall-off curve
corresponding to the non-linearized k-domain (Figure 3a) exhibits large decay with existence of side lobes
when compared against those obtained for the two k-domain linearization techniques (78% normalized
intensity fall-off between 0 and 2.1 mm). The maximum fall-off detected from the non-linearized
k-domain spectrometer was 0.77 ± 0.05 a.u. at 2.1 mm. Intensity peaks shown in Figure 3b were
observed to be much sharper and remain constant with changes in depth in cases corresponding to
full-range calibrations. Also, much less decay (nearly 58.1% normalized intensity fall-off between 0 and
2.1 mm and maximum fall-off of 0.57 ± 0.05 a.u. at 2.1 mm) was detected for the case corresponding
to the wavelength-scanning-filter-based linearized k-domain spectrometer when compared against the
non-linearized k-domain, thereby indicating the reduction in imaging quality with increasing depth.
Figure 3c shows the PSF representation obtained using the proposed technique, and it clearly confirms
exceptional sharpness of the width of information at each peak without existence of side lobes. Results
obtained through use of the proposed technique demonstrated the least decay (nearly 39% normalized
intensity fall-off between 0 and 2.1 mm and maximum fall-off of 0.39 ± 0.05 a.u. at 2.1 mm). The above
comparison demonstrates that the proposed k-space spectrometer effectively improves signal sensitivity
and image contrast in the deeper imaging regions of a SD-OCT system. In addition to the benefit of
improved sensitivity fall-off, the proposed k-domain linearization algorithm serves to remove artifacts
by eliminating the existence shoulders or side-lobes, which have direct impact on signal-to-noise
ratios. Figure 3d depicts the qualitative illustration of acquired PSF values within the range of 0.3
to 2.1 mm. The aforementioned intensity peak sharpness, blurring effect, and existence of side lobes are
well-described and qualitatively confirmed by the acquired PSF information.Electronics 2018, 7, x FOR PEER REVIEW  6 of 11 
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Figure 3. (a) Sensitivity roll-off comparison between non-linearized k-domain, (b) linearized k-domain
employing conventional wavelength scanning filter technique, and (c) linearized k-domain employing
proposed linearization technique. (d) Qualitative illustration of the acquired point spread function
(PSF) using the three different techniques.

3.2. Evaluation of Depth Dependent Signal-To-Noise Ratio (SNR) and Axial Resolution Comparison

Figure 4a represents a comparison of SNR values obtained using the aforementioned
non-linearized k-domain, linearized k-domain employing conventional wavelength scanning filter
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technique, and linearized k-domain employing the proposed technique. As shown in the Figure 4a,
the highest SNR can be obtained at 0.3 mm was the order of 75 dB. The range of SNR values obtained
using the proposed technique varies from 75 to 54 dB over a depth range of 0 to 2.1 mm. The SNR value
range recorded for the non-linearized k-domain demonstrating an SNR variation between 75 to 22 dB
over the aforementioned depth range. Corresponding SNR range obtained using the conventional
wavelength scanning filter technique was 75–41 dB over the 0–2.1 mm depth range. It can be noted that
a significant sensitivity loss occurs at greater axial depths in the non-linearized k-domain; although
depth dependent sensitivity of the conventional calibration technique is higher than non-linearized
k-domain state, particular sensitivity loss is occurred compared to the developed direct k-domain
calibration method. Since two additional optical devices, such as optical wavelength scanning filter
and OSA are involved apart from optical spectrometer, the possible reasons behind this discrepancy of
the conventional k-domain linearization method are the calibration inaccuracy of OSA, misalignment of
wavelength scanning filter, and the insertion losses of additionally utilized optical fibers. The proposed
linearization algorithm demonstrated the minimum fall-off value of 21 dB across the entire depth range,
whereas the other two systems suffered 53 dB and 34 dB decrease in sensitivity, thereby confirming
the improvement in sensitivity fall-off obtained through use of the proposed algorithm. In a similar
manner, comparison of quantitative representations of axial resolutions obtained for the above three
cases is depicted in Figure 4b emphasizing a significant enhancement in axial resolution through the
use of the proposed technique. Therefore, the proposed technique is capable of performing real-time
index regulation to achieve the finest tuning of axial resolution of the OCT image, which potentially
benefits for biomedical imaging and visualization of anatomical microstructures.
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quantitative representations of axial resolutions obtained in the above three cases.

3.3. Image Quality Assessment and Comparison of Non-linearized, Conventional, and Proposed Techniques

Finally, performance of the proposed index-regulating direct k-domain linearization method was
demonstrated on an infrared detection card whilst performing in vivo human finger nail imaging.
The images were acquired over an integration time of 25 µs, and image acquisition was performed
using the customized Labview application (Labview 2017, National Instruments, Austin, TX, USA),
wherein all three cases (non-linearized, conventionally linearized, and linearized via proposed
techniques) could be rapidly interchanged and visualized in real-time. The emphasized B-mode
images corresponded to a static location and were obtained using three different states.

To evaluate our method quantitatively, a depth-profile analysis was performed to obtain quantified
OCT signal information about the aforementioned infrared detection card and in vivo human finger
nail. In Figure 5a–c, b-mode images were obtained for the non-linearized k-domain state, conventional
k-domain linearization state, and lastly using the proposed direct k-domain technique. Figure 5d–f
shows the representative normalized depth profile information. The vertical blue, green, and red color
dashed arrows of the OCT images illustrate the exact location where the depth profile signals were
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analyzed. The fundamental algorithm of the utilized depth profile technique was reported in a past
work [29]. Continuous depth profile peaks represent the infrared detection card layer information.
Both cross-sectional layer information and depth profile intensity peak representations shown in
Figure 5a,d appear to be largely blurred due to broad shoulder effects and the existence of side
lobes, while Figure 5b,e and Figure 5c,f maintain more detailed structures comparatively. Although
attempts at image enhancement were made using both the conventional and proposed techniques,
the cross-sections and the corresponding sharp intensity peaks acquired after utilizing the developed
direct k-domain technique (Figure 5c,f) confirm the most detailed structures with a greatly improved
axial resolution over non-k-domain state and conventional k-domain state. Thus, the thickness of the
sharp intensity peaks of the proposed technique (Figure 5f) confirms the sufficient applicability for
SD-OCT systems compared to conventional spectral calibration techniques.
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The same evaluation process was repeated to analyze the in vivo human finger nail specimen.
Figure 6a–c depict two dimensional images, which were obtained at non-linearized k-domain state,
conventional k-domain linearization state, and direct k-domain technique. Figure 6d–f show the
representative normalized depth profile information. Similar to the previous analysis, vertical blue,
green, and red color dashed arrows indicated on cross-sections illustrate the exact location of the
depth profile signals, which were precisely chosen to observe and compare detailed morphological
differences. As expected based on the previous qualitative and quantitative assessments, similar
behavior was identified through acquired results. The intensity peak information detected from direct
k-domain linearized results revealed the highest sharpness among all three methods confirming the
spectral calibration capability of the developed method. Nevertheless, vertical artifacts can be observed
as a result of high back reflection from the structural layers in both Figures 5 and 6, which can be
resolved by adjusting the overall optical power of the interferometer. The depth profiles were analyzed
after extracting the artifacts of the 2D-OCT images.
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Figure 6. Cross-sectional and quantitative representations of in vivo human finger nail specimen at
non-linearized k-domain state (a,d), conventional k-domain linearization state (b,e), and proposed
direct k-domain state (c,f).

Though both techniques adequately achieve k-domain linearization and compensate for the
blurring effect, the proposed technique offers further advantages when compared against the
conventional technique by successfully facilitating microstructure visualization at a much higher
axial resolution by fine tuning the k-domain index in real-time. The obtained qualitative images and
illustrations adequately confirm the applicability and positive impact of the proposed linearization
technique in biomedical imaging. Moreover, the proposed technique was also demonstrated to be
capable of compensating for the unbalanced dispersion of object-inspecting sample and reference
arms within the OCT system. Along with accomplishment of k-domain linearization, dispersion
compensation was simultaneously achieved via index manipulation through use of no additional
computational or numerical algorithms. Although similar optical components were employed in the
sample and reference arms, a certain amount of dispersion was required to be compensated for. It was
confirmed that index manipulation performed using the proposed technique worked effectively
in compensating for the dispersion, thereby facilitating better visualization of microstructures.
Therefore, implementation of the proposed technique in ophthalmic applications, such as retinal and
corneal inspections, would turn out to be ideal with regard to attainment of near-perfect dispersion
compensation without the use of additional complex optical hardware in the reference arm.

4. Conclusions

The proposed study demonstrates the utility of the numerical-sampling-functionalized real-time
index regulation technique for direct k-domain calibration to be employed for SD-OCT. The proposed
technique is also capable of performing dispersion compensation, which is an additional advantage.
The technique works equally well for small amounts of dispersion present over the entire imaging
range as well as high dispersions concentrated at a single depth, and may, therefore, become an
integral part of future optical coherence microscopy (OCM) systems. The proposed technique makes
obsolete the necessity of hardware and/or software recalibration of the optical spectrometer after each
successive laser transition, thereby facilitating the realization of real-time linear sampling of k-domain
interpolation through index regulation during object inspection. Quantitative results obtained in this
study reveal that the proposed technique demonstrates the least sensitivity roll-of decay and achieves
the best SNR fall-off (21 dB) over the entire image depth range whilst also achieving higher axial
resolution in images when compared against conventional techniques. Therefore, in view of future
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clinical imaging applications, the calibration method based on the proposed index-regulation technique
demonstrates excellent stability and accuracy through use of the aforementioned linearization
technique, thereby resulting in extraordinary image visualizations.
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