
electronics

Article

Access Adaptive and Thread-Aware Cache
Partitioning in Multicore Systems

Kai Huang 1, Ke Wang 1 ID , Dandan Zheng 1,*, Xiaoxu Zhang 2 and Xiaolang Yan 1

1 Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China; huangk@vlsi.zju.edu.cn (K.H.);
wangke@vlsi.zju.edu.cn (K.W.); yan@vlsi.zju.edu.cn (X.Y.)

2 School of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China;
zhangxx@zjgsu.edu.cn

* Correspondence: zhengdd@vlsi.zju.edu.cn; Tel.: +86-135-8816-7206

Received: 20 July 2018; Accepted: 27 August 2018; Published: 1 September 2018
����������
�������

Abstract: Cache partitioning is a successful technique for saving energy for a shared cache
and all the existing studies focus on multi-program workloads running in multicore systems.
In this paper, we are motivated by the fact that a multi-thread application generally executes faster
than its single-thread counterpart and its cache accessing behavior is quite different. Based on
this observation, we study applications running in multi-thread mode and classify data of the
multi-thread applications into shared and private categories, which helps reduce the interferences
among shared and private data and contributes to constructing a more efficient cache partitioning
scheme. We also propose a hardware structure to support these operations. Then, an access adaptive
and thread-aware cache partitioning (ATCP) scheme is proposed, which assigns separate cache
portions to shared and private data to avoid the evictions caused by the conflicts from the data of
different categories in the shared cache. The proposed ATCP achieves a lower energy consumption,
meanwhile improving the performance of applications compared with the least recently used (LRU)
managed, core-based evenly partitioning (EVEN) and utility-based cache partitioning (UCP) schemes.
The experimental results show that ATCP can achieve 29.6% and 19.9% average energy savings
compared with LRU and UCP schemes in a quad-core system. Moreover, the average speedup of
multi-thread ATCP with respect to single-thread LRU is at 1.89.

Keywords: shared cache partitioning; thread-aware; access type classification; way access permission
registers; thread-aware cache monitor; MILP

1. Introduction

For the desired performance, chip multiprocessor (CMP) architecture has been widely used for
decades. Major vendors like Intel [1] and AMD [2] have developed series of CMPs in general-purpose
computers. Currently, the main competition field of CMPs has turned to embedded systems, in which
energy optimization is essential, since many of them are powered by batteries.

Multicore architectures are typically equipped with a small private L1 cache for each core and a
large shared L2 cache. These cache memories not only make up a large portion of the total area but also
consume a large fraction of the total energy of a chip. In some designs, the energy consumption of the
cache memories reaches as high as over 50% of the whole chip [3–5]. Luckily, the energy consumption of
the relatively large L2 cache can be cut down by turning off the unused ways [6–9] or using a drowsy
cache [5,10] for implementation. Many studies [3,11,12] also show that multiple tasks running in a
shared cache interfere with each other, because they access the shared cache simultaneously and this is
called, for example, cache thrashing. Cache partitioning is an effective way of tackling this problem.
Cache coloring [13,14] is a promising software-based cache partitioning scheme, which prevents the

Electronics 2018, 7, 172; doi:10.3390/electronics7090172 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-2915-820X
http://dx.doi.org/10.3390/electronics7090172
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/7/9/172?type=check_update&version=1

Electronics 2018, 7, 172 2 of 26

tasks from accessing the same set in the shared cache by controlling the virtual-to-physical address
translation. Besides, there are other promising cache management techniques that consider eviction
policy, insertion policy and promotion policy. Eviction policy determines which cache line should be
evicted when refilling the cache. Insertion policy determines the location in which to place the
incoming cache line when refilling the cache. Promotion policy determines how to update the hit cache
line in the replacement priority order. The thread-aware Dynamic Insertion Policy (TADIP) [15–17]
dynamically chooses the insertion policies of the traditional LRU policy and the Bimodal Insertion
Policy, according to the cache requirements of different applications.

Many of the state-of-the-art cache partitioning techniques study single-thread
applications [3–5,11,12,18]. To the best of our knowledge, no previous studies have talked
about cache partitioning for multi-thread applications and studied the actual cache requirements of
the threads of a task on multicore platforms. Currently, multi-threading in multicore systems is the
trend, and most tasks benefit a lot from running in multi-thread mode [19]. For the applications that
can be partitioned into threads in multicore platforms, it is beneficial to run in multi-thread mode.
While for the applications that are not partitionable into threads that happens in certain big data
servers, the only way is to utilize ultra-fine grain instruction level parallelism or ultra-coarse grain
process level parallelism. Moreover, new multi-thread benchmarks [20,21] have been developed to test
the multicore architectures.

Previous studies are not suitable for multi-thread tasks, the detailed reasons are shown in
Section 3. We believe that considering multi-thread during the partitioning of a shared cache can
achieve lower energy consumption and higher performance than that when only single-thread is
considered. This is due to the additional exploration space for partitioning in multi-thread mode and
single-thread mode can be regarded as a special case of the multi-thread mode. When extended to
scheduling problem, scheduling in multi-thread mode has a larger exploration space than that in
single-thread mode and by fully exploiting the larger exploration space a global optimal energy or
performance can be achieved. We also believe that classifying the shared L2 cache accessing type into
different categories helps to alleviate the conflictions in the shared L2 cache. Accessing shareability
type in a shared cache can be private or shared for threads, and the corresponding cache allocation can
also differ.

In this paper, we handle the cache partitioning problem for multi-thread tasks that simultaneously
run on a multicore platform and the aim is to optimize the energy consumption of the shared L2 cache.
To the best of our knowledge, this work is the first to study cache partitioning taking multi-thread and
accessing type into account on multicore platforms. We study the multi-thread tasks and compare
their behavior with that of their single-thread counterparts. Furthermore, we classify L2 cache data
into shared type and private type, then analyze the effect on data conflictions and performance.
Based on the analysis above, we propose a hardware architecture to support the data-type-aware
cache partitioning. Accordingly, we develop a two-stage mixed integer linear programming (TS-MILP)
scheme to partition a shared cache for the given multi-thread tasks. In the first stage, we separately
study each task under various given numbers of cache ways. The objective is to figure out the
number of threads and threads’ corresponding cache allocations that the energy consumption of the
shared cache is minimized. In the second stage, we study the tasks in a task set globally and figure out
the numbers of cache ways for each task in a task set. The objective is to minimize the total energy of
the shared cache consumed by all the tasks.

In this paper, we make the following contributions:

1. We consider multi-thread applications’ execution on multicore platforms and propose a
thread-aware cache partitioning scheme.

2. We introduce the concept of the Share/Private (S/P) shareability type for multicore multi-thread
applications and find a way of categorizing the shareability types and obtaining S/P data for
each thread.

Electronics 2018, 7, 172 3 of 26

3. We present and implement a hardware mechanism to support suitable S/P cache partitioning
for multi-thread tasks. Thread aware cache monitor (TACM) is proposed and cache way access
permission registers (WAPR) are implemented to partition a shared cache.

4. We propose MILP formulations to partition a shared cache for all the tasks in thread level to
optimize the total energy consumption of the shared cache.

5. We study the impact of multi-threading and the shareability type categorization and we also
evaluate our proposed cache partitioning scheme through real-life applications running in our
implemented FPGA logic.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
describes multi-threading and shareability type classifying examples to illustrate our motivations.
Section 4 depicts WAPR, TACM and their cooperation logic when partitioning a shared cache. Section 5
presents the MILP formulation for cache partitioning. Experimental results and evaluation analysis are
shown in Section 6. Section 7 concludes the paper.

2. Related Work

2.1. Cache Partitioning

In recent years, shared cache partitioning in multicore systems has been extensively studied by
many institutions, bringing a lot of literatures. In a typical multicore architecture, as shown in Figure 1,
cores have their private L1 caches and a shared L2 cache. All these caches are on-chip and inside the
multicore architecture.

Electronics 2018, 7, x FOR PEER REVIEW 3 of 26

3. We present and implement a hardware mechanism to support suitable S/P cache partitioning
for multi-thread tasks. Thread aware cache monitor (TACM) is proposed and cache way access
permission registers (WAPR) are implemented to partition a shared cache.

4. We propose MILP formulations to partition a shared cache for all the tasks in thread level to
optimize the total energy consumption of the shared cache.

5. We study the impact of multi-threading and the shareability type categorization and we also
evaluate our proposed cache partitioning scheme through real-life applications running in our
implemented FPGA logic.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
describes multi-threading and shareability type classifying examples to illustrate our motivations.
Section 4 depicts WAPR, TACM and their cooperation logic when partitioning a shared cache. Section
5 presents the MILP formulation for cache partitioning. Experimental results and evaluation analysis
are shown in Section 6. Section 7 concludes the paper.

2. Related Work

2.1. Cache Partitioning

In recent years, shared cache partitioning in multicore systems has been extensively studied by
many institutions, bringing a lot of literatures. In a typical multicore architecture, as shown in Figure
1, cores have their private L1 caches and a shared L2 cache. All these caches are on-chip and inside
the multicore architecture.

Coherency Interconnect L2 Cache
Main
Memory

Instruction
Cache

Data
Cache

Core0

Instruction
Cache

Data
Cache

Core1

Instruction
Cache

Data
Cache

Core2

Instruction
Cache

Data
Cache

Core3

Figure 1. Typical multicore architecture with L1 and L2 caches.

The state-of-the-art studies propose cache partitioning techniques for various purposes. Many
[11,17,18,22] of them focused on reducing the total number of cache misses or improving the
performance. A representative work was proposed by Qureshi et al. [11]. It was an online cache
partitioning technique to minimize the whole number of cache misses based on utility monitors
(UMON). Other design objectives are also presented many times. Yu and Petrov [23] aimed to
increase the throughput of the memory by partitioning the L2 cache according to each task’s
bandwidth requirements. Cook et al. [19] exploited the cache behavior by many experiments on real
hardware measurements and analyzed each aspect; they guaranteed the responsiveness by co-
scheduling background applications with foreground applications and partitioned the shared cache
for them. Authors in Reference [24,25] presented cache partitioning techniques that improved the
throughput of most workloads by partitioning caches at cache line granularity and considering write-
back operations separately. There are also many studies that talk about fairness and throughput
[12,22,26]. Kim et al. [12] kept good fairness for applications by studying the relationship between
fairness and throughput in details and proposed algorithms to partition a shared cache both
dynamically and statically. There are more studies [3–5,18,19,25] that take energy efficiency into
account and the partitioning schemes cover methods from hardware to software and hybrid of them.

Figure 1. Typical multicore architecture with L1 and L2 caches.

The state-of-the-art studies propose cache partitioning techniques for various purposes.
Many [11,17,18,22] of them focused on reducing the total number of cache misses or improving
the performance. A representative work was proposed by Qureshi et al. [11]. It was an online cache
partitioning technique to minimize the whole number of cache misses based on utility monitors
(UMON). Other design objectives are also presented many times. Yu and Petrov [23] aimed to increase
the throughput of the memory by partitioning the L2 cache according to each task’s bandwidth
requirements. Cook et al. [19] exploited the cache behavior by many experiments on real hardware
measurements and analyzed each aspect; they guaranteed the responsiveness by co-scheduling
background applications with foreground applications and partitioned the shared cache for them.
Authors in Reference [24,25] presented cache partitioning techniques that improved the throughput of
most workloads by partitioning caches at cache line granularity and considering write-back
operations separately. There are also many studies that talk about fairness and throughput [12,22,26].
Kim et al. [12] kept good fairness for applications by studying the relationship between fairness
and throughput in details and proposed algorithms to partition a shared cache both dynamically

Electronics 2018, 7, 172 4 of 26

and statically. There are more studies [3–5,18,19,25] that take energy efficiency into account and the
partitioning schemes cover methods from hardware to software and hybrid of them.

All these studies only considered single-thread tasks during cache partitioning. Only Cook et al. in
Reference [19] related about multi-thread applications, however they did not partition a shared cache
at thread level and just performed some experiments on thread scalability instead. No multi-thread
applications were studied, not to mention shareability type categorization among threads.

2.2. Cache Monitor and LRU Policy Inclusion Property

In order to design a cache partitioning scheme on a specific target, we should capture some
basic data which include cache miss numbers [5,11,23,27], cache access numbers [3,11,22,27], cycle
numbers [11,27] and so on. It is very time-consuming to obtain these data by software, so utilizing
hardware cache monitors is a preferable way in general.

Cache miss rate is an elementary value for a cache and it is the foundation of many previous
studies. For a well-designed cache partitioning scheme, the partitioner should know the cache miss
rates of the task when the task is assigned to different portions of the shared cache. Take way-based
cache partitioning [4,11,18,23,27] as an example, cache miss rates of an application under 1-way,
2-way . . . N-way (N is the total number of ways) should be known before cache partitioning.
A straightforward method to obtain these data is to implement N tag directories that are organized
from 1 to N way set-associative. Besides, N access/hit counters and N miss counters should be
implemented as monitors. However, the hardware cost is too expensive. Another direct method is to
run each application N times to get the cache miss rates information from 1-way to N-way but this is
very time-consuming especially when the experiments are done through simulations in which the
execution time is usually intolerable.

Fortunately, for the commonly used Least Recently Used (LRU) replacement policy for caches,
its inclusion property can be used to handle the problems of expensive hardware cost and time
consumption. Inclusion property or stack property is first studied by Mattson [28] and it is quoted and
developed by many other researchers [11,27,29,30]. Specifically, inclusion property is that: in an LRU
managed cache, an access hit in N sized cache will certainly be an access hit in the cache which is larger
than N sized. For an N-way set-associative cache, the cache miss rates under different cache way size
can be monitored by N + 1 set-specific counters, which are denoted by Cnt1 to CntN+1. Figure 2 shows
an example of N = 8. Cnt1 to CntN count the access hits from most recently used block (MRU) to least
recently used block (LRU) respectively. CntN+1 counts the access misses. When an access matches the
address located in the ith position of the LRU stack, Cnti increases by one and the other counters keep
their values. If the access is a miss one, CntN+1 increases and the other counters keep their values.
By instrumenting an N-way set-associative cache with the counters Cnt1 to CntN+1 and submitting a
sequence of accesses, not only are we able to know the miss rate of such cache but also the miss rate
that any other k-way cache would have had under the same access sequence. The miss rate for a k-way
cache denoted as Rm(k) is shown as follows:

Rm(k) =
i=N+1

∑
i=k+1

Cnti/
i=N+1

∑
i=1

Cnti (1)

where k = 1, 2, . . . , N.
Figure 2 illustrates how these counters are implemented and how the inclusion property works in

the LRU replacement policy. For the whole 8-way LRU cache, the miss rate can be obtained with (1),

that is, Rm(8) = Cnt9/
i=9
∑

i=1
Cnti. Another example, for a 5-way LRU cache, the hit counters Cnt6 to

Cnt8 and the miss counter Cnt9 are all regarded as cache miss counters. Then the miss rate is

Rm(5) =
i=9
∑

i=6
Cnti/ ∑i=9

i=1 Cnti. As long as the cache miss rates of different cache sizes are got, cache

partitioning algorithm can be developed base on the obtained data. Previous literatures utilized

Electronics 2018, 7, 172 5 of 26

the LRU stack counters for single-thread tasks but they cannot work when it comes to multi-thread
applications, as we discuss in Section 3.1.Electronics 2018, 7, x FOR PEER REVIEW 5 of 26

A
c
c
e
s
s

C
o
u
n
t
s

MRU LRUmore recent

misses

hits

Cnt1 Cnt2 Cnt3 Cnt4 Cnt5 Cnt6 Cnt7 Cnt8 Cnt9

Figure 2. LRU stack counters for monitoring.

2.3. Cache Energy Model

There are many ways to evaluate the energy consumption of the cache, such as using hardware
insider monitor [19] or using cache energy model. For early stage research and development, using
hardware monitor is not realistic. We use a representative cache energy model [4,7,8,31] to calculate
the energy dissipation of the cache subsystem denoted as ܧ௠௘௠, which consists of dynamic energy ܧௗ௬௡ and static energy ܧ௦௧௔. We have the following equations:

mem dyn staE E E= + (2)

where

dyn hit acc miss missE E N E N= × + × (3)

_ _ _miss offchip access cpu stall line fillE E E E= + + (4)

sta static allE P T= × (5)

௔ܰ௖௖ and ܰ௠௜௦௦ are the total access number and miss number of the shared L2 cache. ܧ௛௜௧ and ܧ௠௜௦௦
denote the energy consumed by a single cache hit and miss, respectively. ܧ௢௙௙௖௛௜௣_௔௖௖௘௦௦ is the energy
consumed when accessing the off-chip memory. ܧ௖௣௨_௦௧௔௟௟ is the energy dissipation when the core is
waiting for the data from the off-chip memory. ܧ௟௜௡௘_௙௜௟௟ is the energy for filling the fetched data into
a cache line. ௦ܲ௧௔௧௜௖ is the static power of the shared cache and ௔ܶ௟௟ is the total execution time of a
task. The value for ܧ௛௜௧ ௟௜௡௘_௙௜௟௟ܧ , and ௦ܲ௧௔௧௜௖ of a certain cache can be obtained with the cache
modeling tools like CACTI [32]. The same method in Reference [7] can be used to obtain the value of ܧ௢௙௙௖௛௜௣_௔௖௖௘௦௦ and ܧ௖௣௨_௦௧௔௟௟, which refers to the specifications.

3. Motivation

3.1. Multi-Threading

Multi-threading offers a chance to optimize the energy consumption as well as the performance
but none of the related studies mentioned above discussed cache partitioning for multi-thread tasks.
Figure 3 depicts the weighted speedup of the parallel benchmarks in MultiBench [20], with various
numbers of threads on a quad-core platform. We notice that there is a region for many applications
that the execution time scales well with the corresponding number of threads. For example, md5-4M
executes as fast as nearly 2× and 4× with 2-thread and 4-thread compared with 1-thread, respectively.
A similar experimental result is shown in Reference [19]. It is worth mentioning that this comparison
is done with the same cache size, that is, the number of cache ways is fixed.

Figure 2. LRU stack counters for monitoring.

2.3. Cache Energy Model

There are many ways to evaluate the energy consumption of the cache, such as using hardware
insider monitor [19] or using cache energy model. For early stage research and development, using
hardware monitor is not realistic. We use a representative cache energy model [4,7,8,31] to calculate
the energy dissipation of the cache subsystem denoted as Emem, which consists of dynamic energy Edyn
and static energy Esta. We have the following equations:

Emem = Edyn + Esta (2)

where
Edyn = Ehit × Nacc + Emiss × Nmiss (3)

Emiss = Eo f f chip_access + Ecpu_stall + Eline_ f ill (4)

Esta = Pstatic × Tall (5)

Nacc and Nmiss are the total access number and miss number of the shared L2 cache. Ehit and Emiss
denote the energy consumed by a single cache hit and miss, respectively. Eo f f chip_access is the energy
consumed when accessing the off-chip memory. Ecpu_stall is the energy dissipation when the core is
waiting for the data from the off-chip memory. Eline_ f ill is the energy for filling the fetched data into a
cache line. Pstatic is the static power of the shared cache and Tall is the total execution time of a task.
The value for Ehit, Eline_ f ill and Pstatic of a certain cache can be obtained with the cache modeling tools
like CACTI [32]. The same method in Reference [7] can be used to obtain the value of Eo f f chip_access
and Ecpu_stall , which refers to the specifications.

3. Motivation

3.1. Multi-Threading

Multi-threading offers a chance to optimize the energy consumption as well as the performance
but none of the related studies mentioned above discussed cache partitioning for multi-thread tasks.
Figure 3 depicts the weighted speedup of the parallel benchmarks in MultiBench [20], with various
numbers of threads on a quad-core platform. We notice that there is a region for many applications
that the execution time scales well with the corresponding number of threads. For example, md5-4M
executes as fast as nearly 2× and 4× with 2-thread and 4-thread compared with 1-thread, respectively.
A similar experimental result is shown in Reference [19]. It is worth mentioning that this comparison
is done with the same cache size, that is, the number of cache ways is fixed.

Electronics 2018, 7, 172 6 of 26

Electronics 2018, 7, x FOR PEER REVIEW 6 of 26

Figure 3. Weighted speedup of parallel workloads with multi-thread with respect to single-thread.

But when multiple threads are running in parallel, there will be more cache size to be allocated.
For instance, in a dual-core system with an even-partitioned 8-way L2 cache, when task A is running
in single-thread mode with another task B, task A can only use half of the whole L2 cache. Whereas
when it comes to 2-thread mode, task A can use all the L2 cache because each core is running one of
the 2 threads of task A and no other task shares the cache. During this time, task B is not executing
but it will be executed when task A finishes. In this way, multi-thread tasks can achieve a better
performance due to the additional cache space. On the other hand, the number of self-evictions of the
multi-thread task is increased and this would cause performance degradation. As multi-thread tasks
may execute faster, the idle time is prolonged to shut down the whole or part of L2 cache for energy
savings.

As for the scheduling problem, there is a great opportunity for multi-thread tasks to save energy
consumption. Multi-threading shortens the execution time of an application as it reduces the inter-
thread interferences and provides the task with additional cache space, so that it offers much larger
scheduling exploration space for the scheduler. Figure 4 illustrates how the scheduler can achieve
better task dispatching scheme with multi-threading. There are 3 tasks named T1, T2 and T3 to be
scheduled in a dual-core system. The shared 8-way L2 cache is partitioned in way granularity and
the deadline of the tasks is 10 ms. The execution time of T1, T2 and T3 in single-thread mode is 5 ms,
4 ms and 10 ms, respectively. In single-thread mode, T1 and T3 start simultaneously and T2 starts
after T1 finishes. T1 and T2 occupy the same three ways (3W) under a cache partitioning scheme and
the other five ways (5W) are allocated to T3. In multi-thread mode, the scheduling is different. First,
the tasks are running with 2 threads. T1θ0 and T1θ1 represent thread0 and thread1 of T1 and so it is
with T2 and T3. Second, cache ways can be classified into two categories, private ways (PW) and
shared ways (SW). In this case, the threads of T1 share 3 cache ways and so are the threads of T2.
T3θ0 shares 3 cache ways with T3θ1 and each of them has one private cache way.

We assume that the total L2 access and miss numbers are the same in multi-thread and single-
thread mode. Therefore, the dynamic energy dissipation in the two modes are the same, denoted as ܧௗ௬௡. In reality, tasks running in multi-thread mode miss less in L2 cache. As shown in Section 6,
applications running in multi-thread mode with shareability type categorization always have fewer
total L2 cache misses, since inter-thread interferences are avoided. This follows the same rule that
cache partitioning among different tasks will eliminate the inter-task interference and decrease the
cache miss rate [5]. Moreover, the total number of L2 cache reference of an application in single-
thread and multi-thread mode are usually the same, as it is determined by the characteristic of the
application. So, with the same number of cache references and fewer cache misses, the dynamic
energy in multi-thread mode cannot be more than that in single-thread mode. Next, we compare the
static energy dissipation of the motivational example in Figure 4. Let static power of a single cache
way be ௪ܲ௔௬. Then the total static energy consumption of the shared cache in single-thread and multi-
thread mode are ܧ௦௧௔ଵ = 0.077 ௪ܲ௔௬ and ܧ௦௧௔ଶ = 0.04 ௪ܲ௔௬. Let ௖ܲ௣௨ denote the power consumption

50%

100%

150%

200%

250%

300%

350%

400%

1 2 3 4

W
e
i
g
h
t
e
d

S
p
e
e
d
u
p

Number of Threads

ippktcheck-4M

ipres-4M

rotate-color1Mp

md5-4M

rgbcmyk-4M

rotate-4Ms1

rotate-4Ms64

x264-4Mq

iDCT-4M

Figure 3. Weighted speedup of parallel workloads with multi-thread with respect to single-thread.

But when multiple threads are running in parallel, there will be more cache size to be allocated.
For instance, in a dual-core system with an even-partitioned 8-way L2 cache, when task A is running
in single-thread mode with another task B, task A can only use half of the whole L2 cache. Whereas
when it comes to 2-thread mode, task A can use all the L2 cache because each core is running one of the
2 threads of task A and no other task shares the cache. During this time, task B is not executing but it
will be executed when task A finishes. In this way, multi-thread tasks can achieve a better performance
due to the additional cache space. On the other hand, the number of self-evictions of the multi-thread
task is increased and this would cause performance degradation. As multi-thread tasks may execute
faster, the idle time is prolonged to shut down the whole or part of L2 cache for energy savings.

As for the scheduling problem, there is a great opportunity for multi-thread tasks to save
energy consumption. Multi-threading shortens the execution time of an application as it reduces
the inter-thread interferences and provides the task with additional cache space, so that it offers much
larger scheduling exploration space for the scheduler. Figure 4 illustrates how the scheduler can
achieve better task dispatching scheme with multi-threading. There are 3 tasks named T1, T2 and
T3 to be scheduled in a dual-core system. The shared 8-way L2 cache is partitioned in way granularity
and the deadline of the tasks is 10 ms. The execution time of T1, T2 and T3 in single-thread mode is
5 ms, 4 ms and 10 ms, respectively. In single-thread mode, T1 and T3 start simultaneously and T2
starts after T1 finishes. T1 and T2 occupy the same three ways (3W) under a cache partitioning scheme
and the other five ways (5W) are allocated to T3. In multi-thread mode, the scheduling is different.
First, the tasks are running with 2 threads. T1θ0 and T1θ1 represent thread0 and thread1 of T1 and
so it is with T2 and T3. Second, cache ways can be classified into two categories, private ways (PW)
and shared ways (SW). In this case, the threads of T1 share 3 cache ways and so are the threads of T2.
T3θ0 shares 3 cache ways with T3θ1 and each of them has one private cache way.

We assume that the total L2 access and miss numbers are the same in multi-thread and
single-thread mode. Therefore, the dynamic energy dissipation in the two modes are the same,
denoted as Edyn. In reality, tasks running in multi-thread mode miss less in L2 cache. As shown in
Section 6, applications running in multi-thread mode with shareability type categorization always
have fewer total L2 cache misses, since inter-thread interferences are avoided. This follows the
same rule that cache partitioning among different tasks will eliminate the inter-task interference and
decrease the cache miss rate [5]. Moreover, the total number of L2 cache reference of an application in
single-thread and multi-thread mode are usually the same, as it is determined by the characteristic of
the application. So, with the same number of cache references and fewer cache misses, the dynamic
energy in multi-thread mode cannot be more than that in single-thread mode. Next, we compare

Electronics 2018, 7, 172 7 of 26

the static energy dissipation of the motivational example in Figure 4. Let static power of a single
cache way be Pway. Then the total static energy consumption of the shared cache in single-thread
and multi-thread mode are Esta1 = 0.077Pway and Esta2 = 0.04Pway. Let Pcpu denote the power
consumption of the core. Then total energy consumption in single-thread and multi-thread mode are
E1 = 0.019Pcpu + Esta1 + Edyn and E2 = 0.02Pcpu + Esta2 + Edyn, respectively. For modern L2 caches,
Pway and Pcpu are of the same magnitude. So, it is very likely that 0.02Pcpu + 0.04Pway is less than
0.019Pcpu + 0.077Pway and E2 is less than E1. The calculation process is shown in Appendix A.

Electronics 2018, 7, x FOR PEER REVIEW 7 of 26

of the core. Then total energy consumption in single-thread and multi-thread mode are ܧଵ =0.019 ௖ܲ௣௨ + ௦௧௔ଵܧ + ଶܧ ௗ௬௡ andܧ = 0.02 ௖ܲ௣௨ + ௦௧௔ଶܧ + ௗ௬௡, respectively. For modern L2 caches, ௪ܲ௔௬ܧ
and ௖ܲ௣௨ are of the same magnitude. So, it is very likely that 0.02 ௖ܲ௣௨ + 0.04 ௪ܲ௔௬ is less than 0.019 ௖ܲ௣௨ + 0.077 ௪ܲ௔௬ and ܧଶ is less than ܧଵ. The calculation process is shown in Appendix A.

T1θ0 T2θ0

T3θ1

3SW

5 10

core1

core0

T1θ1

3

T2θ1

3SW

T3θ0
3SW1PW

T1 T2

3W 3W

5W

5 9 10

core1

core0

time(ms)

T3

time(ms)

single-thread mode multi-thread mode

3SW 3SW 3SW1PW

 W: cache way
SW: shared cache way
PW: private cache way

Figure 4. Scheduling in single-thread and multi-thread modes.

3.2. Shareability Type Categorization

In a multicore architecture, L2 cache is typically shared by all the cores and the user data and
instructions are all disorganized inside it. However, the data and instructions exhibit distinct
characteristics which lead to different behavior in L2 cache [33]. In terms of shareability type,
instructions can be purely private or all shared because no coherent realizations can be done for it.
But user data consists of both private data and shared data. We assume:

• Shared data is read or written by more than one thread.
• Private data is used by only one thread.

Moreover, there are situations that private data should be protected [34]. So, the shareability
type categorization in a shared cache is needed. To cope with these problems, the shared cache should
be aware of the shareability of the data inside it.

As far as we know, this is the first study that takes shareability type into consideration when
partitioning shared caches in multi-thread mode. Besides the interference elimination talked above,
a shareability type categorized cache can obtain better energy efficiency. Figure 5 compares the data
placement of our proposed thread-aware cache with that of the un-managed cache and frequently
cited Utility-based Cache Partitioning (UCP) managed cache [11]. There shows a L2 cache and the
data in each set and way of a dual-core processor. The data consists of private data and shared data
and the owner of the shared data is the core that most recently accesses the shared data. For clarity,
core0’s data is white and core1’s data is shadowed in gray and the unused blocks are marked in yellow.
In an un-managed cache, any type of data can be in any cache way. In a UCP cache, each core’s owned
size in each set is fixed. For instance, core0 owns 5 ways of any sets and core1 occupies the other 3
ways. But the shared data are double counted in this scheme, because the UCP’s UMON counts the
data of each core in their work.

Figure 5. Data placement in shared caches with different cache partitioning schemes. (a) Un-managed
placement, (b) UCP placement, (c) Thread-aware placement.

Figure 4. Scheduling in single-thread and multi-thread modes.

3.2. Shareability Type Categorization

In a multicore architecture, L2 cache is typically shared by all the cores and the user data
and instructions are all disorganized inside it. However, the data and instructions exhibit distinct
characteristics which lead to different behavior in L2 cache [33]. In terms of shareability type,
instructions can be purely private or all shared because no coherent realizations can be done for it.
But user data consists of both private data and shared data. We assume:

• Shared data is read or written by more than one thread.
• Private data is used by only one thread.

Moreover, there are situations that private data should be protected [34]. So, the shareability type
categorization in a shared cache is needed. To cope with these problems, the shared cache should be
aware of the shareability of the data inside it.

As far as we know, this is the first study that takes shareability type into consideration when
partitioning shared caches in multi-thread mode. Besides the interference elimination talked above, a
shareability type categorized cache can obtain better energy efficiency. Figure 5 compares the data
placement of our proposed thread-aware cache with that of the un-managed cache and frequently
cited Utility-based Cache Partitioning (UCP) managed cache [11]. There shows a L2 cache and the
data in each set and way of a dual-core processor. The data consists of private data and shared data
and the owner of the shared data is the core that most recently accesses the shared data. For clarity,
core0’s data is white and core1’s data is shadowed in gray and the unused blocks are marked in yellow.
In an un-managed cache, any type of data can be in any cache way. In a UCP cache, each core’s owned
size in each set is fixed. For instance, core0 owns 5 ways of any sets and core1 occupies the other 3 ways.
But the shared data are double counted in this scheme, because the UCP’s UMON counts the data of
each core in their work.

Assume that the shared data A, B, C, private data D, E, F, G are in the same set of the L2 cache.
The data access sequence is: A, B, D, E, F accessed by core0, followed by A, C, G accessed by core1. Then
the UCP’s UMON counts 5 for core0 and 3 for core1. But our proposed scheme counts 3 for shared
space, 3 for core0’s private space and 1 for core1’s private space. If all other sets have a similar behavior,
UCP will allocate 5 ways for core0 and 3 ways for core1 but we will use totally 7 ways only. Finally,
we have 6 ways for core0 and 4 ways for core1 in which 3 ways are shared. Each core has a larger cache
space (1 more cache way) in the proposed cache partitioning scheme compared with UCP’s scheme.
For one thing, more ways will improve the performance of both cores. For another, using fewer ways of

Electronics 2018, 7, 172 8 of 26

total shared cache helps to save energy since the unused ways can be shut down. In this paper, we use
this shareability type aware cache partitioning scheme for multi-thread applications.

Electronics 2018, 7, x FOR PEER REVIEW 7 of 26

of the core. Then total energy consumption in single-thread and multi-thread mode are ܧଵ =0.019 ௖ܲ௣௨ + ௦௧௔ଵܧ + ଶܧ ௗ௬௡ andܧ = 0.02 ௖ܲ௣௨ + ௦௧௔ଶܧ + ௗ௬௡, respectively. For modern L2 caches, ௪ܲ௔௬ܧ
and ௖ܲ௣௨ are of the same magnitude. So, it is very likely that 0.02 ௖ܲ௣௨ + 0.04 ௪ܲ௔௬ is less than 0.019 ௖ܲ௣௨ + 0.077 ௪ܲ௔௬ and ܧଶ is less than ܧଵ. The calculation process is shown in Appendix A.

T1θ0 T2θ0

T3θ1

3SW

5 10

core1

core0

T1θ1

3

T2θ1

3SW

T3θ0
3SW1PW

T1 T2

3W 3W

5W

5 9 10

core1

core0

time(ms)

T3

time(ms)

single-thread mode multi-thread mode

3SW 3SW 3SW1PW

 W: cache way
SW: shared cache way
PW: private cache way

Figure 4. Scheduling in single-thread and multi-thread modes.

3.2. Shareability Type Categorization

In a multicore architecture, L2 cache is typically shared by all the cores and the user data and
instructions are all disorganized inside it. However, the data and instructions exhibit distinct
characteristics which lead to different behavior in L2 cache [33]. In terms of shareability type,
instructions can be purely private or all shared because no coherent realizations can be done for it.
But user data consists of both private data and shared data. We assume:

• Shared data is read or written by more than one thread.
• Private data is used by only one thread.

Moreover, there are situations that private data should be protected [34]. So, the shareability
type categorization in a shared cache is needed. To cope with these problems, the shared cache should
be aware of the shareability of the data inside it.

As far as we know, this is the first study that takes shareability type into consideration when
partitioning shared caches in multi-thread mode. Besides the interference elimination talked above,
a shareability type categorized cache can obtain better energy efficiency. Figure 5 compares the data
placement of our proposed thread-aware cache with that of the un-managed cache and frequently
cited Utility-based Cache Partitioning (UCP) managed cache [11]. There shows a L2 cache and the
data in each set and way of a dual-core processor. The data consists of private data and shared data
and the owner of the shared data is the core that most recently accesses the shared data. For clarity,
core0’s data is white and core1’s data is shadowed in gray and the unused blocks are marked in yellow.
In an un-managed cache, any type of data can be in any cache way. In a UCP cache, each core’s owned
size in each set is fixed. For instance, core0 owns 5 ways of any sets and core1 occupies the other 3
ways. But the shared data are double counted in this scheme, because the UCP’s UMON counts the
data of each core in their work.

Figure 5. Data placement in shared caches with different cache partitioning schemes. (a) Un-managed
placement, (b) UCP placement, (c) Thread-aware placement.
Figure 5. Data placement in shared caches with different cache partitioning schemes. (a) Un-managed
placement, (b) UCP placement, (c) Thread-aware placement.

4. Thread-Aware Partitioned Cache

In this section, we first present the implementation of the way access permission registers (WAPR)
and the way they work together. Next, we describe the thread-aware cache monitor (TACM) that is
responsible for collecting the cache information. Finally, we integrate the WAPR and TACM into a
typical multicore processor and illustrate how our cache partitioning scheme works.

4.1. Way Access Permission Registers (WAPR)

As depicted in Figure 5c, the shared cache can be partitioned into shared ways and private ways.
When a core sends a data request to the shared cache, the cache way accessing logic determines which
cache ways should be accessed. This logic ensures that a private data request only accesses the private
cache ways of the specific core and a shared data request accesses the shared cache ways.

Hardware implementation of the cache way accessing logic is adopted in this paper for
performance considerations. In our implementation, the shared cache is partitioned automatically
after WAPR are programmed. Figure 6 illustrates the WAPR and their cooperation logic. For X cores
named from core0 to coreX−1, each of them has two registers. One is for the access permission of the
shared ways and the other for the access permission of the private ways. They are denoted as wsk
and wpk for the kth core corek, respectively. The width of the two registers is N, where N is the total
number of ways of the cache. Bit-0 of each register decides the accessing permission of way-0 and so are
the other bits of the two registers and 1’b1 in any bit indicates the corresponding way is accessible and
vice versa.

Electronics 2018, 7, x FOR PEER REVIEW 8 of 26

Assume that the shared data A, B, C, private data D, E, F, G are in the same set of the L2 cache.
The data access sequence is: A, B, D, E, F accessed by core0, followed by A, C, G accessed by core1.
Then the UCP’s UMON counts 5 for core0 and 3 for core1. But our proposed scheme counts 3 for
shared space, 3 for core0’s private space and 1 for core1’s private space. If all other sets have a similar
behavior, UCP will allocate 5 ways for core0 and 3 ways for core1 but we will use totally 7 ways only.
Finally, we have 6 ways for core0 and 4 ways for core1 in which 3 ways are shared. Each core has a
larger cache space (1 more cache way) in the proposed cache partitioning scheme compared with
UCP’s scheme. For one thing, more ways will improve the performance of both cores. For another,
using fewer ways of total shared cache helps to save energy since the unused ways can be shut down.
In this paper, we use this shareability type aware cache partitioning scheme for multi-thread
applications.

4. Thread-Aware Partitioned Cache

In this section, we first present the implementation of the way access permission registers
(WAPR) and the way they work together. Next, we describe the thread-aware cache monitor (TACM)
that is responsible for collecting the cache information. Finally, we integrate the WAPR and TACM
into a typical multicore processor and illustrate how our cache partitioning scheme works.

4.1. Way Access Permission Registers (WAPR)

As depicted in Figure 5c, the shared cache can be partitioned into shared ways and private ways.
When a core sends a data request to the shared cache, the cache way accessing logic determines which
cache ways should be accessed. This logic ensures that a private data request only accesses the private
cache ways of the specific core and a shared data request accesses the shared cache ways.

Hardware implementation of the cache way accessing logic is adopted in this paper for
performance considerations. In our implementation, the shared cache is partitioned automatically
after WAPR are programmed. Figure 6 illustrates the WAPR and their cooperation logic. For X cores
named from ܿ݁ݎ݋଴ to ܿ݁ݎ݋௑ିଵ, each of them has two registers. One is for the access permission of
the shared ways and the other for the access permission of the private ways. They are denoted as ݏݓ௞ and ݌ݓ௞ for the ݇௧௛ core ܿ݁ݎ݋௞, respectively. The width of the two registers is N, where N is
the total number of ways of the cache. Bit-0 of each register decides the accessing permission of way-
0 and so are the other bits of the two registers and 1’b1 in any bit indicates the corresponding way is
accessible and vice versa.

WAPR

…

ws0[N-1] wp0[N-1]

ws1[N-1] wp1[N-1]

wsX-1[N-1] wpX-1[N-1]

M
U
X

…

domain

ws[N-1]

wp[N-1] M
U
X way_en[N-1]

TID

Figure 6. Way access permission registers and way enable logic.

Theoretically, it is functionally correct to use only one way-permission register for each core,
since the shared ways and private ways can be inferred from the settings of the registers of all cores.
For example, if ܿ݁ݎ݋଴ and ܿ݁ݎ݋ଵ run 2 threads on a 4-way shared cache, way-permission of them can
be 4’b1110 and 4’b0111. Then way-0 is ܿ݁ݎ݋଴′ݏ private way, way-1 and way-2 are shared by both cores
and way-3 is ܿ݁ݎ݋ଵ′ݏ private way. However, all the registers should be checked and compared in
order to get the private/shared ways’ permission of each core. It is barely acceptable when the number
of cores and the number of ways are small. But it is a disaster when the numbers increase to ten or

Figure 6. Way access permission registers and way enable logic.

Theoretically, it is functionally correct to use only one way-permission register for each core,
since the shared ways and private ways can be inferred from the settings of the registers of all cores.

Electronics 2018, 7, 172 9 of 26

For example, if core0 and core1 run 2 threads on a 4-way shared cache, way-permission of them can be
4’b1110 and 4’b0111. Then way-0 is core0

′s private way, way-1 and way-2 are shared by both cores and
way-3 is core1

′s private way. However, all the registers should be checked and compared in order to
get the private/shared ways’ permission of each core. It is barely acceptable when the number of
cores and the number of ways are small. But it is a disaster when the numbers increase to ten or even
more, because the complex logic deteriorates the timing and performance of the multicore processor.
For these reasons, we use two registers for each core as described above.

In our implementation, two way-permission registers are used for each core’s running thread,
that is, wsk and wpk as described earlier. The way-permission or way-enable logic can be
easily constructed from these registers as Figure 6 depicts. There are only two multiplex stages.
At the first stage, the specific core’s wsk and wpk are selected out by the request’s thread ID (TID) of
the current core. At the second stage, the way-enable value is selected from the value of ws and wp
register by the domain value. Domain value can simply indicate whether the data is shared or private,
or whether it may contain more information when a multicore cluster is considered. Ingeniously,
we use TID rather than core ID to distinguish the registers of different cores. In this way, the contents
in the cache can avoid flushing and reallocating when threads migrate among the cores. Every core has
its running thread’s TID, it is set by the scheduler and stored in a register. The domain value here is
the identical information of the current access request, just like TID. The source of domain value is
the programming data that is stored in the page table of memory management unit (MMU). For any
data access request from any core, a way-enable signal is timely produced, indicating which ways are
allowed to access by this request.

Look at the way-permission values 4’b1110 and 4’b0111 previously talked about. In our WAPR,
the same effect can be achieved by setting ws0 = 4′b0110, wp0 = 4′b1000, ws1 = 4′b0110 and
wp1 = 4′b0001. Take the settings in Figure 5c for another example, as Bit-i of each register
decides the accessing permission of way-i, the WAPR are ws0 = 8′b01110000, wp0 = 8′b00000111,
ws1 = 8′b01110000, wp1 = 8′b00001000. For the cores running different tasks, the same bits of their
way-permission registers will not be set at the same time, because our cache partitioning scheme
eliminates the inference among the tasks. For the cores executing the same task in multi-thread mode,
their ws and wp registers should follow the rules below.

• All wsk registers share a same value, name it with REGS.
• For any private cache way, only one corresponding bit is set among all the wpk registers.
• All the wpk registers and REGS have no same bit that is set to 1 simultaneously.

If these properties are violated, the data consistency and coherency of the multicore system
cannot be guaranteed. Some monitors can be added to keep monitoring these rules for status signs.

4.2. Thread-Aware Cache Monitor (TACM)

As described in Section 2.2, the information of the cache such as the numbers of cache access and
cache miss should be collected for the cache partitioning algorithm. Monitoring all this information
from an application requires a mechanism that traces the information in all possible ways. We use the
LRU stack counters [28] and dynamic set sampling (DSS) techniques [11] to develop our thread-aware
cache monitor (TACM). The key idea of DSS is that the characteristics of the shared cache can be
estimated by sampling only a few cache sets.

A TACM for a dual-core system is shown in Figure 7. There are 4 sub-monitors in total and they
are monitoring the shared regions for core0, core1 and the private regions for core0, core1. A decoder
chooses which sub-monitor to use according to the TID and the domain of the current data access.
Each sub-monitor contains an auxiliary tag directory (ATD), stack counters (SC) and other logic to
generate the control signals and the data path to ATD and SC. Furthermore, each sub-monitor has one
port to the interconnection of cores and another port to the system bus.

Electronics 2018, 7, 172 10 of 26
Electronics 2018, 7, x FOR PEER REVIEW 10 of 26

//update current ATD entry
if(acc_vld){
 if(miss){
 v_mru=1'b1;
 tag_mru=acc_tag;
 all lru signs increase by 1;
 }
 else{
 all v bits stay;
 all tags stay;
 if(lruX<hit_lru)
 lru=lru+1;
 else if(lruX>hit_lru)
 lru stays;
 else //current hit lru
 lru=0;
 }
}

S
y
s
t
e
m

B
u
s

…

DSS ATD

Cnt1(MRU)

Cnt8(LSU)

…

Cnt9(miss)

update
logic

(B/32)·A + A

Stack Counters

v0,tag0,lru0 v7,tag7,lru7…

v0,tag0,lru0 v7,tag7,lru7…

…

set 64·31 + 31

set 64·0 + 0

Acc. Info.

s+4 5 4 031 s+5 Acc.

Addr.
Tag indexTID domain

Decoder

hit[7:0]

set A

v,T==v0,T0

v,T==v7,T7

…

M
U
X

lru0

lru7

… lruX

v=1

T=Tag

TACM

capture logic

req

=

Figure 7. An example of TACM architecture.

To save storage resources, we use DSS technique [11] when organizing ATD. For a cache that
holds ܤ = 2௕ sets, only K (K<B) sets are sampled. The sampled sets can be selected with the pattern: (ܤ ⁄ܭ) × ܣ + Here, B is the number of the total sets, A is a non-negative integer (ranging from 0 to .ܣ
K-1) and K is the number of the sampled sets. If a cache has B = 2048 sets in total and we sample K =
32 sets, the selected sampling sets are 0, 65, 130, …, 2015. ATD hold the tags of each cache way and
their corresponding signs like valid bits and LRU bits. Figure 7 shows the ATD for an 8-way set-
associative cache. When an access request from a core arrives, it comes along with the information
like TID, domain, physical address and so forth. A physical address has three parts: tag bits, index
bits and offset bits. The example in Figure 7 shows a 32-bit physical address with the cache line size
of 32 bytes and 2048 sets in all. TACM checks whether current accessing address has an index that
matches the pattern (ܤ 32⁄) × ܣ + If the condition is met, then a valid request will be sent to ATD .ܣ
for query and the queried entry is indexed by A.

Next, the capture logic of the stack counters takes the current accessing information and the
queried results as inputs. By matching the current tag with the tags of the selected set in ATD, an 8-
bit hit signal is generated. If the current access hits any of the cache way, the corresponding hit bit is
set. Then the hit way’s LRU bits’ corresponding stack counter (ݐ݊ܥଵ to ଼ݐ݊ܥ) will increase by 1 and
other stack counters keep their values. But if the current access misses in the selected cache set, the
miss counter (ݐ݊ܥଽ) increases while all other counters hold their previous values. Finally, the captured
values are stored in stack counters and they reflect the L2 cache access behavior of the cores.

There is also an update logic for ATD, as the LRU bits of each way should be maintained. The
pseudo code of this logic is exhibited on the left in Figure 7. When a valid access is monitored, the
selected ATD entry should be updated. If a miss is detected, the way that has the largest LRU sign
sets its valid bit and stores the current tag. Moreover, all LRU signs increases by 1 if they have not
reached the maximum value. This means LRU sign’s value 0 represents the most recently used and
all LRU bits set to 1 means least recently used. If a hit is detected, all valid bit and tag bits keep, only
the LRU signs change. The LRU sign of the hit way is set to 0 (MRU). The LRU sign that is smaller
than the hit way’s, increases by one. The LRU sign that is larger than the hit way’s keeps the same.

Figure 7. An example of TACM architecture.

To save storage resources, we use DSS technique [11] when organizing ATD. For a cache that
holds B = 2b sets, only K (K<B) sets are sampled. The sampled sets can be selected with the pattern:
(B/K)× A + A. Here, B is the number of the total sets, A is a non-negative integer (ranging from 0 to
K-1) and K is the number of the sampled sets. If a cache has B = 2048 sets in total and we sample
K = 32 sets, the selected sampling sets are 0, 65, 130, . . . , 2015. ATD hold the tags of each cache way
and their corresponding signs like valid bits and LRU bits. Figure 7 shows the ATD for an 8-way
set-associative cache. When an access request from a core arrives, it comes along with the information
like TID, domain, physical address and so forth. A physical address has three parts: tag bits, index bits
and offset bits. The example in Figure 7 shows a 32-bit physical address with the cache line size of
32 bytes and 2048 sets in all. TACM checks whether current accessing address has an index that
matches the pattern (B/32)× A + A. If the condition is met, then a valid request will be sent to ATD
for query and the queried entry is indexed by A.

Next, the capture logic of the stack counters takes the current accessing information and the
queried results as inputs. By matching the current tag with the tags of the selected set in ATD, an
8-bit hit signal is generated. If the current access hits any of the cache way, the corresponding hit
bit is set. Then the hit way’s LRU bits’ corresponding stack counter (Cnt1 to Cnt8) will increase by
1 and other stack counters keep their values. But if the current access misses in the selected cache
set, the miss counter (Cnt9) increases while all other counters hold their previous values. Finally,
the captured values are stored in stack counters and they reflect the L2 cache access behavior of
the cores.

There is also an update logic for ATD, as the LRU bits of each way should be maintained.
The pseudo code of this logic is exhibited on the left in Figure 7. When a valid access is monitored,
the selected ATD entry should be updated. If a miss is detected, the way that has the largest LRU sign
sets its valid bit and stores the current tag. Moreover, all LRU signs increases by 1 if they have not
reached the maximum value. This means LRU sign’s value 0 represents the most recently used and all
LRU bits set to 1 means least recently used. If a hit is detected, all valid bit and tag bits keep, only the

Electronics 2018, 7, 172 11 of 26

LRU signs change. The LRU sign of the hit way is set to 0 (MRU). The LRU sign that is smaller than
the hit way’s, increases by one. The LRU sign that is larger than the hit way’s keeps the same.

4.3. Integration of WAPR and TACM

We integrate the WAPR and TACM into a typical multicore architecture that is shown in Figure 1.
Then we present our access adaptive and thread-aware cache partitioning (ATCP) scheme in Figure 8.
The work flow is as follows. First, TACM monitor the data accesses on the port of the L2 cache and
the behavior is recorded by the stack counters in TACM. Second, the cache partitioning algorithm is
developed based on the values of these stack counters. The details of our cache partitioning generation
are described comprehensively in Section 5. Finally, the best way permission settings are programmed
into WAPR according to the results of the partitioning algorithm and then the produced way enable
signals will control the access of the L2 cache.

Electronics 2018, 7, x FOR PEER REVIEW 11 of 26

4.3. Integration of WAPR and TACM

We integrate the WAPR and TACM into a typical multicore architecture that is shown in Figure
1. Then we present our access adaptive and thread-aware cache partitioning (ATCP) scheme in Figure
8. The work flow is as follows. First, TACM monitor the data accesses on the port of the L2 cache and
the behavior is recorded by the stack counters in TACM. Second, the cache partitioning algorithm is
developed based on the values of these stack counters. The details of our cache partitioning
generation are described comprehensively in Section 5. Finally, the best way permission settings are
programmed into WAPR according to the results of the partitioning algorithm and then the produced
way enable signals will control the access of the L2 cache.

Cache
partitioning
algorithm

WAPR

…
ws0 wp0

ws1 wp1

wsX-1 wpX-1

M
U
X…

ws
wp M

U
X

= = = =

logic

req[3]req[2]req[1]req[0]

miss

way_en[3:0]

way to be replaced

way_en[3:0] & 4{access}

L2 Cache

data
array0

data
array1

data
array2

data
array3

replacement
signs
array

tag arrays

index

TID domain

M
U
X

4'hF

index

TID domain addressInterconnet access…
TACM

Stack
counters

ATDupdate
logic

capture
logic

Figure 8. ATCP scheme for multicore processor.

The enable bits of the cache ways also have effects on the tag comparing logic. If only partial
tags are needed for comparison, the unused/invalid tag comparators are switched off. The way-
enable signal is selected between WAPR logic and all-1 bits (4’hF as an example), where the all-1 bits
are used as the default value which represents the unpartitioned situation. Operating system decides
whether to shut down the unused cache banks or not and we offer a mechanism to support this
operation. In our example, four sub-monitors make up the TACM, that is, this is a dual-core processor
and 4 types of data accesses are possible at most. The 4 types of data accesses are private data access
from core0, shared data access from core0, private data access from core1 and shared data access from
core1.

5. Cache Partitioning Algorithm

Linear programming (LP) is a method to achieve the best outcome (such as the maximum profit
or the lowest cost) in a mathematical model whose requirements are represented by linear
relationships [35]. Mixed integer linear programming (MILP) is a special case of LP, because some of
the unknown variables are required to be integers.

Our cache partitioning scheme is based on the values of the stack counters and the target is to
find the best settings for energy saving. We propose a two-stage MILP (TS-MILP) formulation to
partition a cache for energy minimization. In the first stage, we figure out the best settings under
different cache way sizes for each task. The settings refer to the number of threads and the numbers
of shared & private ways of all threads. In the second stage, we partition a shared cache for multiple
tasks in multi-thread mode to optimize the energy consumption. The total energy consumption and
cache way allocations of every task are obtained in this stage. We also compare the two-stage method

Figure 8. ATCP scheme for multicore processor.

The enable bits of the cache ways also have effects on the tag comparing logic. If only partial tags
are needed for comparison, the unused/invalid tag comparators are switched off. The way-enable
signal is selected between WAPR logic and all-1 bits (4’hF as an example), where the all-1 bits are
used as the default value which represents the unpartitioned situation. Operating system decides
whether to shut down the unused cache banks or not and we offer a mechanism to support this
operation. In our example, four sub-monitors make up the TACM, that is, this is a dual-core processor
and 4 types of data accesses are possible at most. The 4 types of data accesses are private data
access from core0, shared data access from core0, private data access from core1 and shared data access
from core1.

5. Cache Partitioning Algorithm

Linear programming (LP) is a method to achieve the best outcome (such as the maximum
profit or the lowest cost) in a mathematical model whose requirements are represented by linear
relationships [35]. Mixed integer linear programming (MILP) is a special case of LP, because some of
the unknown variables are required to be integers.

Our cache partitioning scheme is based on the values of the stack counters and the target is to find
the best settings for energy saving. We propose a two-stage MILP (TS-MILP) formulation to partition

Electronics 2018, 7, 172 12 of 26

a cache for energy minimization. In the first stage, we figure out the best settings under different
cache way sizes for each task. The settings refer to the number of threads and the numbers of shared
& private ways of all threads. In the second stage, we partition a shared cache for multiple tasks in
multi-thread mode to optimize the energy consumption. The total energy consumption and cache way
allocations of every task are obtained in this stage. We also compare the two-stage method with the
one-stage method at last. We list the partitioning variables, intermediate variables and constant values
of the MILP problem in Tables 1 and 2 for clarity.

Table 1. Variables and Constants of the MILP Problem for Stage-1.

Partitioning Variables

Variable Name Description
TH number of threads of the given task
pwθ number of private ways for thread θ
swθ number of shared ways for thread θ

Constant Values Intermediate Variables

Constant Name Description Variable Name Description

Pstatic, Ehit, Emiss

power and energy
constants for one cache

way
En

sta, En
dyn

static and dynamic
energy for a thread with

n ways

Cntθ,s
k , Cntθ,p

k

shared and private
sub-monitor values for

thread θ
Nn

acc, Nn
miss

numbers of cache access
and miss for a thread

with n ways

Tθ
all

execution time for thread
θ

Esw
mem

energy of shared cache
ways

M number of cores Epw
mem

energy of private cache
ways

W number of cache ways
for the task EW

mem energy of the task

Table 2. Variables and Constants of the MILP Problem for Stage-2.

Partitioning Variables

Variable Name Description
KtW task t is assigned with W cache ways

Constant Values Intermediate Variables

Constant Name Description Variable Name Description

{E, S} energy and settings of
each task

Ett total energy of all tasks
N number of ways of the

shared cache

EW
t

energy of task t with W
cache ways

5.1. Stage-1: Task Level Optimization

The inputs of stage-1 are the values of the LRU stack counters and the goal is to find out the
best settings for all cache way sizes. So the problem statement of stage-1 is: given a task and its stack
counters’ set (in TACM) C of all settings, a multicore processor with M cores and a N-way set-associative
shared L2 cache, the target is to find the best settings S that the energy consumption of the shared L2
cache E is minimized under various cache capacity constraints. The settings refer to the number of
threads and the numbers of shared & private ways of all threads.

In our cache partitioning scheme, the numbers of cache access and cache miss Nacc and Nmiss are
calculated with the stack counters in TACM. For a thread of a task, the static power is proportional to

Electronics 2018, 7, 172 13 of 26

its number of allocated cache ways. For a thread owning n ways, its static power is n · Pstatic, where
Pstatic here indicates the static power of a single cache way. So (5) can be rewritten as follows.

En
sta = n× Pstatic × Tall (6)

The same property is applicable for the energy consumed by a hit access. Let Ehit denote the
energy consumption of a hit access of one cache way, then we rewrite (3) as follows.

En
dyn = n× Ehit × Nn

acc + Emiss × Nn
miss (7)

where

Nn
acc =

k=n

∑
k=1

Cntk, Nn
miss =

k=N+1

∑
k=n+1

Cntk (8)

For the given problem, a task running with TH concurrent threads and W cache ways, TACM
uses 2 · TH sub-monitors to monitor the data accesses of the TH cores’ shared and private cache ways.{

Cntm,s
k , Cntm,p

k

}
∈ C, Cntm,s

k and Cntm,p
k represent the value of Cntk in the mth core’s shared and

private sub-monitor, respectively. For a thread θ of the given task that is assigned with pwθ private
and swθ shared ways, the energy dissipation Eθ

mem of the shared cache for thread θ is shown below.

Eθ
mem = Eswθ

mem + Epwθ
mem (9)

where Eswθ
mem and Epwθ

mem denote the energy consumption of the shared and private ways, respectively.
We order the thread ID in accordance with the core ID, that is, thread-i runs on core-i. Then Cntm,s

k
and Cntθ,s

k share the same meaning. Combining this with (2), (6), (7) and (8), Eswθ
mem and Epwθ

mem can be
rewritten as follows.

Eswθ
mem = Eswθ

sta + Eswθ
dyn = swθ × Pstatic × Tθ

all + swθ × Ehit × Nswθ
acc + Emiss × Nswθ

miss

= swθ × Pstatic × Tθ
all + swθ × Ehit ×

k=swθ

∑
k=1

Cntθ,s
k + Emiss ×

k=W+1
∑

k=swθ+1
Cntθ,s

k

Epwθ
mem = Epwθ

sta + Epwθ

dyn = pwθ × Pstatic × Tθ
all + pwθ × Ehit × Npwθ

acc + Emiss × Npwθ
miss

= pwθ × Pstatic × Tθ
all + pwθ × Ehit ×

k=pwθ

∑
k=1

Cntθ,p
k + Emiss ×

k=W+1
∑

k=pwθ+1
Cntθ,p

k

(10)

where Tθ
all denotes the total execution time of thread θ.

Our goal is to optimize the energy consumption of all the TH threads of the task running with W
cache ways and the objective function is shown as follows.

EW
mem =

θ=TH−1

∑
θ=0

Eθ
mem (11)

where the number of threads TH is a positive variable. The total used ways W can be 1, 2, . . . , N
and it is a constant value for the equations above. By solving (11) with MILP, the optimal setting
sW =

〈
THW , pwW

0 , swW
0 , . . . , pwW

M−1, swW
M−1

〉
is derived and THW is the best number of threads under

the constraints that the number of used ways is W. pwW
i is the number of private ways of core-i and

swW
i is the number of shared ways. sW ∈ S indicates the setting of the given task with TH threads and

W cache ways. EW
mem ∈ E is the energy consumption. {E, S} is the target of stage-1 and it contains the

elements from W = 1 to W = N.
The number of threads can be any positive integer in theory. But it is not the more the better [19,36]

and the number of threads running at the same time cannot be more than the number of cores. So,
we have the following constraint:

TH ≤ M (12)

Electronics 2018, 7, 172 14 of 26

Another constraint is that: the shared ways of all threads are the same, the private ways of a
thread do not overlap with its shared ways and the private ways of other threads. The constraint is
presented as follows: 

swall = swi = swj; for all i, j ∈ {1, . . . , TH}
pwi ∩ swj = ∅; i, j ⊂ {1, . . . , TH}

pwi ∩ pwj = ∅; i 6= j;
(13)

Finally, the sum of the numbers of the shared and private ways cannot exceed the predetermined
number of ways W (W ≤ N). The constraint is shown as follows:

swall +
θ=TH−1

∑
θ=0

pwθ ≤W (14)

The algorithm implemented with AMPL [37] is shown in Figure A1 in Appendix B.

5.2. Stage-2: Task-Set Level Optimization

The problem statement of stage-2 is: given a task set with T tasks, a multicore processor with M
(M ≥ T) cores and N-way set-associative shared L2 cache, the best energy results and their settings
{E, S} in stage-1 of each task, the target is to find an optimal cache partition CP so that the energy
consumption of the shared L2 cache memory Ett is minimized under the cache capacity constraint.
Here, we constrain M ≥ T, since the cache partitioning problem in this paper is within a concurrent
running time slice of all tasks. Moreover, our cache partitioning algorithm can be used to reschedule all
the T tasks by taking other scheduling constraints into account, such as the deadline and the available
resources [3,6].

A set of binary variables KtW are used to describe which setting is used from stage-1: KtW = 1
means task t is assigned with W cache ways and KtW = 0 means task t is not assigned with W cache
ways and {EW

t ,sW
t } represent the corresponding energy consumption and cache way settings. Each task

can only have one cache way setting and we have the following equation.

W=N

∑
W=1

KtW = 1 (15)

Furthermore, the sum of the numbers of ways assigned to each task cannot exceed the number of
ways of the shared cache. So, we have the constraint below:

t=T

∑
t=1

W × KtW ≤ N (16)

For the MILP expression, the objective function to be minimized of the problem in stage-2 is
presented as follows.

Ett =
t=T

∑
t=1

W=N

∑
W=1

EW
t × KtW (17)

5.3. Comparison with One-Stage Method

Using one-stage MILP, the statement of cache partitioning problem is: given a task set with T
tasks, a multicore processor with M cores and an N-way set-associative shared L2 cache and all the
stack counter values (in TACM) C of each task with all settings, the target is to find an optimal cache
partition CP so that the energy consumption of the shared L2 cache memory Ett is minimized under
the cache capacity constraint. Here, we also constrain M ≥ T like the constraint of the two-stage model.

Electronics 2018, 7, 172 15 of 26

In the one-stage model, the problem is a combination of stage-1 and stage-2. The objective function
can be derived by rewriting (17) with (11).

Ett =
t=T

∑
t=1

(KtW ×
θ=TH−1

∑
θ=0

Eθ
t) (18)

The constraints are the same with those in the two-stage model, that is, constraints (12), (13), (14),
(15) and (16).

The solution of the two-stage model is also a feasible solution of the one-stage model but it may be
sub-optimal. The one-stage model always gives an energy value smaller than or equal to that of the
two-stage model. The one-stage model has a larger exploration space because it analyzes the cache
partitioning problem at thread granularity and all threads of all tasks are taken into account at the
same time. In contrast, the two-stage model first analyzes the threads in a single task, intermediate
results {E, S} are obtained in stage-1 and the problem in stage-2 is based on the results of the previous
stage. The problems in the two stages are quite simple compared with that of the one-stage model.
As shown in Reference [38], increasing the number of integer variables will tremendously enlarge
the exploration space and prolong the solving time of the MILP problem. For a multicore system
with M cores and a N-way set-associative shared L2 cache, partitioning for T tasks, the number of
integer variables is (N ×M + N × T) for TS-MILP and it is N ×M× T for the one-stage method. So,
the execution time of TS_MILP is predictably less.

The results of stage-1 are optimal for all the individual tasks and they can be profiled offline.
Moreover, our technique can be extended to tackle online dynamic scheduling and cache partitioning
problems with the results of stage-1. The only shortcoming of the two-stage model is that its final result
may not be the optimal, since not all settings are saved in the intermediate results.

6. Experiments and Evaluations

6.1. Platform and Benchmarks

Simulation based experiments are always time-consuming, especially when the benchmarks have
large codes and data size. It has also been pointed out that simulation based studies have reported
much more performance improvements than reality [19]. In this paper, we use a hardware platform
for our experiments and we implement a classical multicore SoC in Xilinx Virtex-6 FPGA using ISE
(Release Version 13.1). The architecture is the same with that in Figure 1 in Section 2.1. In addition, some
other IPs like timers (TIMER), interrupter controllers (INTC) and UART are also implemented. Table 3
shows the parameter configurations of the key components used in our experiments. We use dual-core
and quad-core processors for the experiments and each processor core is a CK810 [39]. CK810 core has
a 16-entry out-of-order execution buffer. Every core has its private L1 instruction cache and data cache.
All cores share a L2 cache and the L2 cache supports way-based cache partitioning. MT16LSDF6464HG
is used as the main memory in our system.

Table 3. Key Component Configurations on the FPGA Platform.

Key Component Configurations

Processor Core 16-entry reorder buffer, 4 KB branch history table,
512-entry BTB

L1 cache I-cache and D-cache, 32 KB total size, 32B cache line
size, 4-way set-associative, FIFO replacement policy

L2 cache
1 MB total size, 64B cache line size, 8-way

set-associative, LRU replacement policy, way-based
partition, 10 cycles for hit

Main Memory 16 DRAM banks, about 400 CPU cycles L2 miss
access penalty

Electronics 2018, 7, 172 16 of 26

We use EEMBC MultiBench to evaluate our proposal. MultiBench is a suite of embedded
benchmarks that allows processor and system designers to analyze, test and improve multicore
architectures and platforms [36]. In EEMBC terminology, benchmark kernel means the algorithm to be
executed (e.g., jpeg decompression). Work item binds a kernel to specific data (e.g., jpeg decompression of
16 images) whereas workload consists of one or more work items (e.g., jpeg decompression of 16 images,
rotation of the results and jpeg compression). One or multiple worker threads can be assigned to each
work item [40]. Comparing with our previous expressions, work item is equivalent to task or application
and worker is equivalent to thread. There are 8 benchmark kernels covering automotive, consumer, digital
entertainment, networking and office automation. They are listed in Table 4.

Table 4. EEMBC Benchmark Kernel.

Benchmark Description

idctrn
Simulate an embedded automotive/industrial

application performing digital video and graphics
applications such as image recognition

rgbcmyk Benchmark for digital image processing performance
in printers and other digital imaging products

md5test Calculate the MD5 checksum over multiple
input buffers

ipres Measure a processor’s performance in reconstructing
the disjointed IP packages

ippktcheck Model a subset of the IP header validation work

tcp
Designed to reflect the performance in three different

network scenarios: TCP Jumbo, TCP Bulk and
TCP Mixed

rotate Rotate a binary image (greyscale or color) of arbitrary
size by 90/180/270 degrees

x264 A porting of x264 open source coder

All workloads are working with these benchmark kernels. There are about 30 workloads in
EEMBC MultiBench suite. According to different settings, they can be divided into three categories.
First, the multi-mode workload: only one work item is contained and one worker is assigned to the
item. It is similar to previous studied single-thread multi-task applications [3–5,11,12,18]. Second,
the parallel-mode workload: one work item is contained but several workers are assigned to the item. Last,
the mix-mode workload: a workload has several work items and each item has several workers. In this paper,
we do not study the multi-mode workload, because previous studies have studied them extensively.
Parallel-mode and mix-mode workloads are multi-thread workloads and they are our study objects.

6.2. Shareability Type Categorization Evaluation

First, we analyze the effect of shareability type categorization by studying the parallel-mode
workloads. As parallel-mode workload contains only one work item, the effectiveness of data
categorizing can be seen from the results in Table 5 clearly. A workload runs multiple times
with different numbers of threads. It also runs with single thread but without shareability type
categorization for the basic configuration. As shown in previous functions, the total number of L2
misses is a reflection of the power dissipation metric. Fewer L2 cache misses will lower the total energy
consumption of an application.

Electronics 2018, 7, 172 17 of 26

Table 5. EEMBC parallel-mode workloads.

No. Workload Description

1 iDCT-4M Inverse discrete cosine transform, 4 MB buffer size
2 ippktcheck-4M Check IP packet headers over 4 MB of data
3 ipres-4M Send 4 greyscale images to a printer over the network
4 md5-4M Message-digest checksum used in cryptography, 4MB buffer size
5 rgbcmyk-4M Convert RGB to CMYK color
6 rotate-4Ms1 Rotate grayscale images by 90 degrees, image size is 4 MB, 1 slice
7 rotate-4Ms64 Rotate grayscale images by 90 degrees, image size is 4 MB, 64 slices
8 rotate-color1Mp Rotate 1M Pixel color image by 90 degrees
9 x264-4Mq Encode a stream of image in YUV format to H.264 main profile

The workloads are executed in a quad-core platform. The experimental results in Figure 9 show
that all the workloads running with shareability type categorization have fewer L2 misses compared to
those without shareability type categorization, and this is due to the lesser memory boundness of the
application. Table A1 in Appendix C presents the absolute numbers of L2 misses of 1/2/4/8 threads
for the workloads listed in Table 5. Different WAPR settings are used for different numbers of threads
(i.e., workers) and workloads.Electronics 2018, 7, x FOR PEER REVIEW 17 of 26

Figure 9. Normalized total L2 misses of 1/2/4/8 threads running with shareability type categorization
with respect to 1-thread running without shareability type categorization.

Moreover, running in single-thread mode with shareability type categorization results in fewer
L2 misses than the basic configuration. This is because we set all the instruction codes to private type
and set all the program data to shared type for single-thread mode. Instructions and user data do not
disturb each other, although only one thread is used. Most workloads have significant L2 miss
reduction with shareability type categorization. The minimum reduction is 3.0% with 8-thread for #3
workload and the maximum reduction is 33.2% with 4-thread for #5 workload. For all workloads
except for x264-4Mq, their lowest L2 misses are achieved with 2-thread or 4-thread. In some cases,
more threads do not result in fewer L2 misses, such as #1 and #8 workloads. In some other cases,
more threads result in more L2 misses, such as #7 and #9 workloads. The reason is that they have too
many slices or streaming characters, then the degradation caused by the increased synchronization
overrides the benefit of the increased number of threads.

6.3. Energy Consumption of ATCP

Next we evaluate the energy consumption of our ATCP in the quad-core system. In our
experiments, we adopt the energy model in Reference [4] which is described in Section 2.3. Hardware
related information can be obtained from the specifications. We capture the number of access, the
number of miss and the number of execution cycles by running the workloads in the FPGA. As multi-
thread and multi-task application should be tested, we use mix-mode workloads in EEMBC
MultiBench which are listed in Table 6. Only 6 single-item workloads are in mix-mode and we
combine them to construct the multi-item workloads.

Table 6. EEMBC mix-mode workloads.

Name Items Name Items
B1 4M-check B7 B1+B2
B2 4M-reassembly B8 B1+B3
B3 4M-tcp-mixed B9 B4+B5
B4 4M-cmykw2 B10 B5+B3
B5 4M-rotatew2 B11 B1+B2+B4+B5
B6 4M-x264w2 B12 B1+B2+B3+B6

For the multi-item workloads, when there are more items than cores, the items with longer
execution time will not be scheduled until there are cores available. When the number of items is less

0

0.2

0.4

0.6

0.8

1

#1 #2 #3 #4 #5 #6 #7 #8 #9

N
o
r
m
a
l
i
z
e
d

L
2

m
i
s
s
e
s

w
i
t
h

s
h
a
r
e
a
b
i
l
i
t
y

t
y
p
e

c
a
t
e
g
o
r
i
z
a
t
i
o
n

Workload No.

1 thread 2 threads 4 threads 8 threads

Figure 9. Normalized total L2 misses of 1/2/4/8 threads running with shareability type categorization
with respect to 1-thread running without shareability type categorization.

Moreover, running in single-thread mode with shareability type categorization results in fewer
L2 misses than the basic configuration. This is because we set all the instruction codes to private type
and set all the program data to shared type for single-thread mode. Instructions and user data do
not disturb each other, although only one thread is used. Most workloads have significant L2 miss
reduction with shareability type categorization. The minimum reduction is 3.0% with 8-thread for
#3 workload and the maximum reduction is 33.2% with 4-thread for #5 workload. For all workloads
except for x264-4Mq, their lowest L2 misses are achieved with 2-thread or 4-thread. In some cases,
more threads do not result in fewer L2 misses, such as #1 and #8 workloads. In some other cases,
more threads result in more L2 misses, such as #7 and #9 workloads. The reason is that they have
too many slices or streaming characters, then the degradation caused by the increased synchronization
overrides the benefit of the increased number of threads.

Electronics 2018, 7, 172 18 of 26

6.3. Energy Consumption of ATCP

Next we evaluate the energy consumption of our ATCP in the quad-core system.
In our experiments, we adopt the energy model in Reference [4] which is described in Section 2.3.
Hardware related information can be obtained from the specifications. We capture the number of
access, the number of miss and the number of execution cycles by running the workloads in the FPGA.
As multi-thread and multi-task application should be tested, we use mix-mode workloads in EEMBC
MultiBench which are listed in Table 6. Only 6 single-item workloads are in mix-mode and we combine
them to construct the multi-item workloads.

Table 6. EEMBC mix-mode workloads.

Name Items Name Items

B1 4M-check B7 B1+B2
B2 4M-reassembly B8 B1+B3
B3 4M-tcp-mixed B9 B4+B5
B4 4M-cmykw2 B10 B5+B3
B5 4M-rotatew2 B11 B1+B2+B4+B5
B6 4M-x264w2 B12 B1+B2+B3+B6

For the multi-item workloads, when there are more items than cores, the items with longer
execution time will not be scheduled until there are cores available. When the number of items is less
than that of cores, some cores are not utilized. All the items in a workload start to work at the beginning
and the shared cache is partitioned for them. But if any item is finished, the cache is repartitioned for
the remaining executing items.

We evaluate the L2 cache energy consumption of our data adaptive thread-aware cache
partitioning scheme (ATCP), by comparing it with three other cache partitioning schemes, that is,
non-partitioned (LRU), core-based evenly partitioned (used in Reference [4], EVEN) and utility-based
cache partition (in Reference [11], UCP). EVEN partitions a shared L2 cache evenly to all cores that
each core occupies the same portion of the L2 cache. UCP in this work has minor modifications and we
use UCP-M to represent it. The UCP-M algorithm is shown in the Matlab M-file format in Figure 10.
We use a Threshold to avoid using extremely low utility cache ways.

Electronics 2018, 7, x FOR PEER REVIEW 18 of 26

than that of cores, some cores are not utilized. All the items in a workload start to work at the
beginning and the shared cache is partitioned for them. But if any item is finished, the cache is
repartitioned for the remaining executing items.

We evaluate the L2 cache energy consumption of our data adaptive thread-aware cache
partitioning scheme (ATCP), by comparing it with three other cache partitioning schemes, that is,
non-partitioned (LRU), core-based evenly partitioned (used in Reference [4], EVEN) and utility-based
cache partition (in Reference [11], UCP). EVEN partitions a shared L2 cache evenly to all cores that
each core occupies the same portion of the L2 cache. UCP in this work has minor modifications and
we use UCP-M to represent it. The UCP-M algorithm is shown in the Matlab M-file format in Figure
10. We use a Threshold to avoid using extremely low utility cache ways.

1 function U=get_mu_value(app,a,b)
2 Cnts = importdata('cnt-data.txt');
3 miss = 0;
4 for i=a+1:1:b
5 miss=miss + Cnts(app,i);
6 end
7 U=miss/(b-a);
8 end

1 function [max_mu,blk_req]=…
get_max_mu(app,alloc,balance)

2 max_mu=0;
3 blk_req=0;
4 for i=1:1:balance
5 mu=get_mu_value(app,alloc,alloc+i);
6 if mu > max_mu
7 max_mu = mu;
8 blk_req = i;
9 end
10 end
11 end

1 function [allocations]=lookahead(startapp,endapp)
2 APPS=18; %APPS in data-for-ucp
3 balance=8; %WAY number
4 Threshold=100; %value define extreme low utility
5 allocations=zeros(APPS,1); max_mu=zeros(APPS,1);
6 blk_req=zeros(APPS,1);
7 while (balance>0)
8 for app=startapp:1:endapp
9 alloc = allocations(app);
10 [max_mu(app),blk_req(app)]=get_max_mu(app,alloc,balance);
11 end

12 winner = 1;
13 for app=startapp:1:endapp
14 if max_mu(app)> max_mu(winner);
15 winner = app;
16 end
17 end
18 if max_mu(winner)<=Threshold %remove too small utility ways
19 break;
20 end
21 allocations(winner)=allocations(winner)+blk_req(winner);
22 balance = balance - blk_req(winner);
23 end
24 end

UCP-M lookahead algorithm

Figure 10. Modified UCP algorithm.

The energy consumptions of the L2 cache with these cache partitioning schemes are shown in
Figures 11 and 12, in which Estatic stands for the leakage energy consumption (J) and Edynamic stands
for the dynamic energy consumption (J). EVEN-2/ATCP-2 means EVEN/ATCP scheme in dual-core
system and EVEN-4/ATCP-4 means EVEN/ATCP scheme in quad-core system. LRU/UCP-M
partitioning scheme has no different results between dual-core and quad-core systems for single-item
workloads, because it only cares about the current running tasks (items) and the number of cores. For
multi-item workloads, there are differences between the occasion that items are more than cores and
the occasion that items are less than cores. B11 and B12 have these differences and we use LRU-
2/UCP-M-2 in dual-core system and LRU-4/UCP-M-4 in quad-core system.

Figure 10. Modified UCP algorithm.

Electronics 2018, 7, 172 19 of 26

The energy consumptions of the L2 cache with these cache partitioning schemes are shown in
Figures 11 and 12, in which Estatic stands for the leakage energy consumption (J) and Edynamic stands
for the dynamic energy consumption (J). EVEN-2/ATCP-2 means EVEN/ATCP scheme in dual-core
system and EVEN-4/ATCP-4 means EVEN/ATCP scheme in quad-core system. LRU/UCP-M
partitioning scheme has no different results between dual-core and quad-core systems for single-item
workloads, because it only cares about the current running tasks (items) and the number of cores.
For multi-item workloads, there are differences between the occasion that items are more than cores
and the occasion that items are less than cores. B11 and B12 have these differences and we use
LRU-2/UCP-M-2 in dual-core system and LRU-4/UCP-M-4 in quad-core system.
Electronics 2018, 7, x FOR PEER REVIEW 19 of 26

0

0.4

0.8

1.2

1.6

2

2.4

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.03

0.06

0.09

0.12

0.15

0.18

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.4

0.8

1.2

1.6

2

2.4

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.02

0.04

0.06

0.08

0.1

0.12

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

Estatic

Edynamic

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

Figure 11. Energy consumed by L2 for single-item mix-mode workloads.

0

0.04

0.08

0.12

0.16

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

Edynamic Estatic

0

0.04

0.08

0.12

0.16

0.2

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.5

1

1.5

2

2.5

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.5

1

1.5

2

2.5

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.5

1

1.5

2

2.5

LR
U-
2

UC
P-

M-
2

EV
EN
-2

AT
CP
-2

LR
U-
4

UC
P-

M-
4

EV
EN
-4

AT
CP
-4

0

0.5

1

1.5

2

2.5

3

LR
U-
2

UC
P-

M-
2

EV
EN
-2

AT
CP
-2

LR
U-
4

UC
P-

M-
4

EV
EN
-4

AT
CP
-4

Figure 12. Energy consumed by L2 for multi-item mix-mode workloads.

For total energy consumption (Estatic plus Edynamic) in dual-core system: EVEN partitioning
and UCP-M partitioning consume no more energy than LRU partitioning for single-item workloads.
But EVEN may consume more energy than LRU for multi-item workloads (e.g., B7, B8). ATCP
consumes the least energy for all the workloads, not only for single-item ones but also for the multi-
item ones. EVEN uses fewer cache ways, so it consumes much less static energy compared with LRU.
For most cases, EVEN performs better than LRU, especially when static energy dominates the total
energy consumption (e.g., B1, B3). UCP-M benefits from both shutting down the low utility ways (in
single-item workloads) and rearranging the idle cache ways for reuse (in multi-item workloads).
ATCP also uses relatively small amount of cache ways for single-item workloads, so the static energy
of ATCP is less than other schemes. Furthermore, ATCP reduces the interferences between different
threads (multi-thread) and it also reduces the interferences between instruction codes and user data
(single-thread). So less dynamic energy is consumed by cache misses, which is owed to multi-thread

Figure 11. Energy consumed by L2 for single-item mix-mode workloads.

Electronics 2018, 7, x FOR PEER REVIEW 19 of 26

0

0.4

0.8

1.2

1.6

2

2.4

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.03

0.06

0.09

0.12

0.15

0.18

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.4

0.8

1.2

1.6

2

2.4

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.02

0.04

0.06

0.08

0.1

0.12

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4
Estatic

Edynamic

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

LR
U

UC
P-

M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

Figure 11. Energy consumed by L2 for single-item mix-mode workloads.

0

0.04

0.08

0.12

0.16

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

Edynamic Estatic

0

0.04

0.08

0.12

0.16

0.2

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.5

1

1.5

2

2.5

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.5

1

1.5

2

2.5

LR
U

UC
P-
M

EV
EN

-2

AT
CP

-2

EV
EN

-4

AT
CP

-4

0

0.5

1

1.5

2

2.5

LR
U-
2

UC
P-

M-
2

EV
EN
-2

AT
CP
-2

LR
U-
4

UC
P-

M-
4

EV
EN
-4

AT
CP
-4

0

0.5

1

1.5

2

2.5

3

LR
U-
2

UC
P-

M-
2

EV
EN
-2

AT
CP
-2

LR
U-
4

UC
P-

M-
4

EV
EN
-4

AT
CP
-4

Figure 12. Energy consumed by L2 for multi-item mix-mode workloads.

For total energy consumption (Estatic plus Edynamic) in dual-core system: EVEN partitioning
and UCP-M partitioning consume no more energy than LRU partitioning for single-item workloads.
But EVEN may consume more energy than LRU for multi-item workloads (e.g., B7, B8). ATCP
consumes the least energy for all the workloads, not only for single-item ones but also for the multi-
item ones. EVEN uses fewer cache ways, so it consumes much less static energy compared with LRU.
For most cases, EVEN performs better than LRU, especially when static energy dominates the total
energy consumption (e.g., B1, B3). UCP-M benefits from both shutting down the low utility ways (in
single-item workloads) and rearranging the idle cache ways for reuse (in multi-item workloads).
ATCP also uses relatively small amount of cache ways for single-item workloads, so the static energy
of ATCP is less than other schemes. Furthermore, ATCP reduces the interferences between different
threads (multi-thread) and it also reduces the interferences between instruction codes and user data
(single-thread). So less dynamic energy is consumed by cache misses, which is owed to multi-thread

Figure 12. Energy consumed by L2 for multi-item mix-mode workloads.

Electronics 2018, 7, 172 20 of 26

For total energy consumption (Estatic plus Edynamic) in dual-core system: EVEN partitioning and
UCP-M partitioning consume no more energy than LRU partitioning for single-item workloads.
But EVEN may consume more energy than LRU for multi-item workloads (e.g., B7, B8).
ATCP consumes the least energy for all the workloads, not only for single-item ones but also for the
multi-item ones. EVEN uses fewer cache ways, so it consumes much less static energy compared with
LRU. For most cases, EVEN performs better than LRU, especially when static energy dominates the
total energy consumption (e.g., B1, B3). UCP-M benefits from both shutting down the low utility ways
(in single-item workloads) and rearranging the idle cache ways for reuse (in multi-item workloads).
ATCP also uses relatively small amount of cache ways for single-item workloads, so the static energy of
ATCP is less than other schemes. Furthermore, ATCP reduces the interferences between different
threads (multi-thread) and it also reduces the interferences between instruction codes and user data
(single-thread). So less dynamic energy is consumed by cache misses, which is owed to multi-thread
running and shareability type categorization in ATCP. For all workloads running in dual-core system,
our ATCP scheme achieves 23.3%, 14.6% and 19.5% energy savings on average compared with LRU,
UCP-M and EVEN. The maximum energy saving is 38.2% in B4, 25.3% in B1 and 32.3% in B7, compared
with LRU, UCP-M and EVEN respectively.

The experimental results in quad-core system are similar to the results in dual-core system.
Our ATCP scheme achieves 29.6%, 19.9% and 15.3% energy savings on average compared with LRU,
UCP-M and EVEN. The maximum energy saving is 39.2% in B4, 35.9% in B1 and 23.4% in B9, compared
with LRU, UCP-M and EVEN respectively. But there are some changes worthy of mentioning. First,
ATCP-4 consumes no more energy than ATCP-2 for all the workloads. The reason is that ATCP-4
contains ATCP-2 in terms of scheduling the same workload. Second, EVEN-4 is not always better
than EVEN-2 (e.g., B5). EVEN-4 uses fewer cache ways and consumes less static energy but more
dynamic energy may be consumed because there are more cache misses. Third, UCP-M does not
always outperform EVEN (e.g., B10 and B12) but it is never any worse than the performance of LRU.

6.4. Weight Speedup Performance of ATCP

We also evaluate the impact on execution time of our ATCP. We use normalized speedup to
reflect the differences to the three-cache partitioning scheme. Speedup is 1/time and we normalize the
speedup values to LRU. For LRU, EVEN and UCP-M, the execution time is measured in single thread.
For ATCP, the execution time is the one when the best energy saving is achieved. All the experimental
results are depicted in Figure 13.

Electronics 2018, 7, x FOR PEER REVIEW 20 of 26

running and shareability type categorization in ATCP. For all workloads running in dual-core
system, our ATCP scheme achieves 23.3%, 14.6% and 19.5% energy savings on average compared
with LRU, UCP-M and EVEN. The maximum energy saving is 38.2% in B4, 25.3% in B1 and 32.3% in
B7, compared with LRU, UCP-M and EVEN respectively.

The experimental results in quad-core system are similar to the results in dual-core system. Our
ATCP scheme achieves 29.6%, 19.9% and 15.3% energy savings on average compared with LRU,
UCP-M and EVEN. The maximum energy saving is 39.2% in B4, 35.9% in B1 and 23.4% in B9,
compared with LRU, UCP-M and EVEN respectively. But there are some changes worthy of
mentioning. First, ATCP-4 consumes no more energy than ATCP-2 for all the workloads. The reason
is that ATCP-4 contains ATCP-2 in terms of scheduling the same workload. Second, EVEN-4 is not
always better than EVEN-2 (e.g., B5). EVEN-4 uses fewer cache ways and consumes less static energy
but more dynamic energy may be consumed because there are more cache misses. Third, UCP-M
does not always outperform EVEN (e.g., B10 and B12) but it is never any worse than the performance
of LRU.

6.4. Weight Speedup Performance of ATCP

We also evaluate the impact on execution time of our ATCP. We use normalized speedup to
reflect the differences to the three-cache partitioning scheme. Speedup is 1/time and we normalize
the speedup values to LRU. For LRU, EVEN and UCP-M, the execution time is measured in single
thread. For ATCP, the execution time is the one when the best energy saving is achieved. All the
experimental results are depicted in Figure 13.

(a) Speedup in dual-core (b) Speedup in quad-core

Figure 13. Normalized speedup of various cache partitioning schemes. (a) Speedup in dual-core, (b)
Speedup in quad-core.

For single-item workloads, EVEN takes more execution time than LRU as a result of using fewer
cache ways. UCP-M has approximately the same results as EVEN in both dual-core and quad-core
systems for single-item workloads. The differences of UCP-M and EVEN appear in multi-item
workloads. EVEN has a degradation in speed with respect to LRU for most multi-item workloads.
UCP-M shows speedup compared with LRU for most multi-item workloads. For our ATCP, it shows
a great speedup for most workloads in both dual-core and quad-core systems. Maximum speedup
arrives at 3.76 which is obtained in B4 in quad-core system, because it is executed with 4 threads.
Average speedup is 1.6 for dual-core system and 1.89 for quad-core system. Single-item workloads
speedup better than multi-item workloads in average in quad-core system, because they have a
higher chance to be executed with more threads. When the number of items equals to the number of
cores (e.g., B11 and B12), all items can run in parallel at the beginning, so multi-thread does not obtain
much superior speedup compared with other cache partitioning schemes.

0.6
0.8
1

1.2
1.4
1.6
1.8
2

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12N
o
r
m
a
l
i
z
e
d

s
p
e
e
d
u
p

Workload No.

LRU UCP-M EVEN ATCP

0.5
1

1.5
2

2.5
3

3.5
4

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12N
o
r
m
a
l
i
z
e
d

s
p
e
e
d
u
p

Workload No.

LRU UCP-M EVEN ATCP

Figure 13. Normalized speedup of various cache partitioning schemes. (a) Speedup in dual-core,
(b) Speedup in quad-core.

Electronics 2018, 7, 172 21 of 26

For single-item workloads, EVEN takes more execution time than LRU as a result of using fewer
cache ways. UCP-M has approximately the same results as EVEN in both dual-core and quad-core
systems for single-item workloads. The differences of UCP-M and EVEN appear in multi-item
workloads. EVEN has a degradation in speed with respect to LRU for most multi-item workloads.
UCP-M shows speedup compared with LRU for most multi-item workloads. For our ATCP, it shows
a great speedup for most workloads in both dual-core and quad-core systems. Maximum speedup
arrives at 3.76 which is obtained in B4 in quad-core system, because it is executed with 4 threads.
Average speedup is 1.6 for dual-core system and 1.89 for quad-core system. Single-item workloads
speedup better than multi-item workloads in average in quad-core system, because they have a higher
chance to be executed with more threads. When the number of items equals to the number of cores
(e.g., B11 and B12), all items can run in parallel at the beginning, so multi-thread does not obtain much
superior speedup compared with other cache partitioning schemes.

6.5. Hardware Overhead

TACM is the major hardware overhead of our ATCP. We use a similar cache monitor as UMON
that Qureshi and so forth, proposed in Reference [11]. The differences are: (1) we count L2 accesses
by thread ID rather than core ID; (2) we also use domain attribute when implementing ATDs and
SCs. In our implementation, each ATD entry has 1-bit valid, 18-bit tag and 3-bit LRU, totally 22 bits.
There are totally 32 sampled sets and 8 ATD entries per set. So an ATD requires 704 Bytes (22 bits/way
× 8 ways/set × 32 sets) storage overhead. Another aspect, a SC group has 36 Bytes (9 counters ×
4B/counter) overhead. We use private and shared domain ATDs and SCs for each core. Finally, for our
quad-core, 1 MB L2 cache system, 5920 Bytes (2 × 4 × 740 Bytes) storage is required. Compared with
total L2 cache’s 1108 K Bytes (84 KB tag + 1 M data) storage, only 0.52% hardware overhead is needed
for TACM.

Replacement signs array (in Figure 8) is another major hardware overhead. To support
cache partition in way aligned as Figure 5 shows, replacement block cannot distribute across
different partitions. So, each partition region has its own replacement sign (i.e., LRU bits in ours).
For the worst case, one sign is for one cache way and 21 bits (7 ways × 3 bits/way) are needed for
one set. In our quad-core processor, 5376 Bytes (21 bits/set × 2048 sets) storage is needed, which is
0.47% of the total L2 cache.

In summary, less than 1% storage overhead is required for our ATCP in a quad-core processor.
As for a dual-core processor, the overhead is even less, which is about 0.5%. For other resources,
the domain bit is stored in MMU but it is only 1-bit hardware overhead. As for software aspect,
the domain attribute is programmed with other page table information such as cacheable, writeable
and virtual to physical address mapping, so no software overhead exists. WAPRs also require some
storage, which is 64 bits in total for a quad-core processor. Other hardware overheads are some ‘AND’
and ‘MUX’ logic, which are negligible in area and timing.

7. Conclusions and Future Work

In this paper, we analyze the applications running in multi-thread mode and classify data of the
multi-thread applications into different categories. Then an access adaptive and thread-aware cache
partitioning (ATCP) scheme is proposed to avoid data conflicts of different categories in the shared
cache. In ATCP, tasks can run in either multi-thread mode or single-thread mode, it can fully take the
advantage of multi-threading to reduce the execution time. The cache ways of the shared L2 cache are
allocated by thread IDs and shareability types (shared or private). ATCP achieves 23.3% and 14.6%
average energy savings over LRU managed and utility-based (UCP-M) managed cache in the dual-core
system. The results for the quad-core system are 29.6% and 19.9%. Maximum energy savings are
up to 38.2% and 25.3% in the dual-core system, 39.2% and 35.9% in the quad-core system, respectively.
Meanwhile, the execution time of the applications may be shortened. In our experimental results,
the maximum speedup arrives at 3.76 in quad-core system and the average speedup is 1.89 in quad-core

Electronics 2018, 7, 172 22 of 26

system and 1.6 in dual-core system with respect to the LRU managed shared cache. We also propose a
hardware structure to support the cache partitioning scheme, with less than 1% storage overhead in a
quad-core processor. We should note that our approach can tackle various kinds of applications and it
can even be extended to deal with scheduling problems if the corresponding constraints are added in
Section 5.

We use off-line ILP algorithm to find the optimum solution and cache partitioning settings
currently. But there are connections between the best number of threads and the number of
available cores and the size of cache portion is related to the number of portions and total data
size. We are studying these problems in detail to design an adaptive online algorithm for cache
partitioning. Instruction codes are set to pure private or pure shared now in our experiments and it is
not automatically set for different applications. We will improve this for future work. Finally, domain
attribute can be extended, more bits can distinguish more domain regions, rather than currently just
one bit for shared and private.

Author Contributions: Conceptualization, K.H., K.W. and X.Z.; Methodology, K.H., K.W. and X.Z.; Software,
K.W. and X.Z.; Validation, K.W. and X.Z.; Formal Analysis, K.H., K.W. and X.Z.; Investigation, K.W. and X.Z.;
Resources, K.H., D.Z. and X.Y.; Data Curation, K.W. and X.Z.; Writing-Original Draft Preparation, K.W. and X.Z.;
Writing-Review & Editing, K.H. and D.Z.; Supervision, K.H., D.Z. and X.Y.; Project Administration, K.H., D.Z.
and X.Y.; Funding Acquisition, K.H., D.Z. and X.Y.

Funding: This research was funded by National Science and Technology Major Project grant
number 2017ZX01030-102-002.

Acknowledgments: This research was supported by the grant 2017ZX01030-102-002 from the National Science
and Technology Major Project.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The calculation process in Section 3.1 is shown as follows.

Esta1 = 3ways× Pway × (5ms + 4ms) + 5ways× Pway × 10ms
= 3ways× Pway × (0.005s + 0.004s) + 5ways× Pway × 0.010s

= 0.077Pway

Esta2 = 3ways× Pway × (3ms + 2ms) + 3ways× Pway × 5ms + 1way× Pway × 5ms
+ 1way× Pway × 5ms

= 3ways× Pway × (0.003s + 0.002s) + 3ways× Pway × 0.005s
+ 1way× Pway × 0.005s + 1way× Pway × 0.005s

= 0.04Pway

E1 = Pcpu × (5ms + 4ms + 10ms) + Esta1 + Edyn
= Pcpu × (0.005s + 0.004s + 0.010s) + Esta1 + Edyn

= 0.019Pcpu + Esta1 + Edyn
E2 = Pcpu × (3ms + 2ms + 5ms + 3ms + 2ms + 5ms) + Esta2 + Edyn

= Pcpu × (0.003s + 0.002s + 0.005s + 0.003s + 0.002s + 0.005s) + Esta2 + Edyn
= 0.02Pcpu + Esta2 + Edyn

Appendix B

The algorithm implemented with AMPL [37] is shown below.

Electronics 2018, 7, 172 23 of 26

Electronics 2018, 7, x FOR PEER REVIEW 22 of 26

Author Contributions: Conceptualization, K.H., K.W. and X.Z.; Methodology, K.H., K.W. and X.Z.; Software,
K.W. and X.Z.; Validation, K.W. and X.Z.; Formal Analysis, K.H., K.W. and X.Z.; Investigation, K.W. and X.Z.;
Resources, K.H., D.Z. and X.Y.; Data Curation, K.W. and X.Z.; Writing-Original Draft Preparation, K.W. and
X.Z.; Writing-Review & Editing, K.H. and D.Z.; Supervision, K.H., D.Z. and X.Y.; Project Administration, K.H.,
D.Z. and X.Y.; Funding Acquisition, K.H., D.Z. and X.Y.

Funding: This research was funded by National Science and Technology Major Project grant number
2017ZX01030-102-002.

Acknowledgments: This research was supported by the grant 2017ZX01030-102-002 from the National Science
and Technology Major Project.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The calculation process in Section 3.1 is shown as follows. ܧ௦௧௔ଵ = ݏݕܽݓ3 × ௪ܲ௔௬ × ݏ5݉) + (ݏ4݉ + ݏݕܽݓ5 × ௪ܲ௔௬ × =											 ݏ10݉ ݏݕܽݓ3 × ௪ܲ௔௬ × ݏ0.005) + (ݏ0.004 + ݏݕܽݓ5 × ௪ܲ௔௬ × =											 ݏ0.010 0.077 ௪ܲ௔௬ ܧ௦௧௔ଶ = ݏݕܽݓ3 × ௪ܲ௔௬ × ݏ3݉) + (ݏ2݉ + ݏݕܽݓ3 × ௪ܲ௔௬ × ݏ5݉ + ݕܽݓ1 × ௪ܲ௔௬ × +ݏ5݉ ݕܽݓ1 × ௪ܲ௔௬ × =										 ݏ5݉ ݏݕܽݓ3 × ௪ܲ௔௬ × ݏ0.003) + (ݏ0.002 + ݏݕܽݓ3 × ௪ܲ௔௬ × ݏ0.005 + ݕܽݓ1 × ௪ܲ௔௬× ݏ0.005 + ݕܽݓ1 × ௪ܲ௔௬ × =										 ݏ0.005 0.04 ௪ܲ௔௬ ܧଵ 				= ௖ܲ௣௨ × ݏ5݉) + ݏ4݉ + (ݏ10݉ + ௦௧௔ଵܧ + =										 ௗ௬௡ܧ ௖ܲ௣௨ × ݏ0.005) + ݏ0.004 + (ݏ0.010 + ௦௧௔ଵܧ + =										 ௗ௬௡ܧ 0.019 ௖ܲ௣௨ + ௦௧௔ଵܧ + ଶܧ ௗ௬௡ܧ 				= ௖ܲ௣௨ × ݏ3݉) + ݏ2݉ + ݏ5݉ + ݏ3݉ + ݏ2݉ + (ݏ5݉ + ௦௧௔ଶܧ + =										 ௗ௬௡ܧ ௖ܲ௣௨ × ݏ0.003) + ݏ0.002 + ݏ0.005 + ݏ0.003 + ݏ0.002 + (ݏ0.005 + ௦௧௔ଶܧ + =										 ௗ௬௡ܧ 0.02 ௖ܲ௣௨ + ௦௧௔ଶܧ + ௗ௬௡ܧ

Appendix B

The algorithm implemented with AMPL [37] is shown below.

data;

param Tcpu 1E-9 ;
param Tmem 10E-9 ;
param Cmem 12 ;
param Vmem 3.3 ;
param Imem 1016E-3 ;
param Cap 30E-12 ;
param CORE 4 ;
param W 8 ;

param: WAY: way:= w01 1 w02 2 w03 3 w04 4 w05 5 w06 6 w07 7 w08 8 ;
set BENCH := B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 ;
param: TH: th:= T1 1 T2 2 T3 3 T4 4 ;
param: CNTS: cnt:= C1 1 C2 2 C3 3 C4 4 C5 5 C6 6 C7 7 C8 8 C9 9;

#Set Tall …, Set CntS …, Set CntP...

Data

(a) DATA file of stage-1 in AMPL. Electronics 2018, 7, x FOR PEER REVIEW 23 of 26

#data
param Tcpu >0;
param Tmem >0;
param Cmem >0;
param Vmem >0;
param Imem >0;
param Cap >0;
param W >0;
param CORE >0;

set BENCH;
set WAY;
set TH;
set CNTS;

param way{WAY}>=0, <=8;
param cnt{CNTS}>=0, <=9;
param th{TH}>=0, <=4;

param Tall{BENCH, TH} >0;
param CntS{TH, CNTS, BENCH} >=0;
param CntP{TH, CNTS, BENCH} >=0;

start
param Cmiss := 52*Tmem/Tcpu;
param Eoffchip_acc := Cmem*Tmem*Vmem*Imem + 0.5*Vmem^2*Cap*(64*8+32);
#CK810 65nm(G) 0.4mW/MHz
param Pcpu_stall := 0.1*(1/Tcpu)/10^(6)*0.4;
param Ecpu_stall := Cmiss*Tcpu*(Pcpu_stall*10^(-3));

information from compiler or simulator
Num of access, Num of miss. From data file
infomation from cacti
param Eway_spc := 203.645*10^(-3)*Tcpu; #128KB SRAM
param Eway_hit := 0.06*10^(-9); #
param Eline_fill := 0.04*10^(-9); #one-write

param KmissS{t in WAY, k in CNTS} = if cnt[k]>way[t] then 1 else 0;
param KmissP{t in WAY, k in CNTS} = if cnt[k]>way[t] then 1 else 0;

var K_th{t in TH} binary;
var Ksw{TH,WAY} binary;
var Kpw{TH,WAY} binary;

var NaccS{TH} >=0;
var NaccP{TH} >=0;
var NmissS{TH} >=0;
var NmissP{TH} >=0;
var Nmiss_S{TH,WAY} >=0;
var Nmiss_P{TH,WAY} >=0;
var Sway{TH} >=0;
var Pway{TH} >=0;

minimize energy_stage1:
sum {t in TH} (K_th[t]*((Sway[t]+Pway[t])*Eway_spc*Tall['B1','T1'] +
Eway_hit*(NaccS[t]+NaccP[t])+(Eline_fill*(Sway[t]+Pway[t])+
Eoffchip_acc+Ecpu_stall)*(NmissS[t]+NmissP[t])));

#for static
subject to total_wayS {t in TH}:

Sway[t] = sum {w in WAY} Ksw[t,w]*way[w];
subject to total_wayP {t in TH}:

Pway[t] = sum {w in WAY} Kpw[t,w]*way[w];
#for hit ones
subject to accS_num {t in TH}:

 NaccS[t] = sum {k in CNTS} (CntS[t,k,'B1']);
subject to accP_num {t in TH, w in WAY}:

 NaccP[t] = sum {k in CNTS} (CntP[t,k,'B1']);
#for miss ones
subject to missS_num {t in TH}:

NmissS[t] = sum{w in WAY} (Ksw[t,w]*Nmiss_S[t,w]);
subject to missP_num {t in TH}:

NmissP[t] = sum{w in WAY} (Kpw[t,w]*Nmiss_P[t,w]);
subject to missS_marix {t in TH,w in WAY}:

Nmiss_S[t,w] = sum {k in CNTS} (KmissS[w,k]*CntS[t,k,'B1']);
subject to missP_marix {t in TH,w in WAY}:

Nmiss_P[t,w] = sum {k in CNTS} (KmissP[w,k]*CntP[t,k,'B1']);
subject to total_ways:

sum {t in TH} (K_th[t]*(Sway[t]+Pway[t])) <= W;
subject to thread_vs_core { t in TH}:

th[t] <= CORE;
subject to thread_only:

sum {t in TH} K_th[t] =1;
subject to Sway_only{t in TH}:

sum {w in WAY} Ksw[t,w]=1;
subject to Pway_only{t in TH}:

sum {w in WAY} Kpw[t,w]=1;
(b) MODEL file of stage-1 in AMPL.

Figure A1. Modeling ATCP stage-1 with AMPL language.
Figure A1. Modeling ATCP stage-1 with AMPL language.

Electronics 2018, 7, 172 24 of 26

Appendix C

Table A1 presents the absolute numbers of L2 misses of 1/2/4/8 threads for the workloads with
shareability type categorization listed in Table 5.

Table A1. Absolute Numbers of L2 misses.

1 Thread 2 Threads 4 Threads 8 Threads

iDCT-4M 559762 562259 561684 562798
ippktcheck-4M 457806 494438 501275 509947
ipres-4M 1194471 1188617 1189926 1212975
md5-4M 1069036 1067770 1068777 1069591

rgbcmyk-4M 1697595 1695523 1696440 1697729
rotate-4Ms1 977084 981723 982958 985802
rotate-4Ms64 976646 1107929 1108632 1108981
rotate-color1Mp731586 733462 734911 737384
x264-4Mq 8192807 9079863 9884366 10235233

References

1. 8th Gen Intel Core Processor Families. Available online: https://www.intel.com/content/www/us/en/
products/docs/processors/core/8th-gen-core-family-datasheet-vol-1.html (accessed on 10 July 2018).

2. AMD Ryzen 7 PRO 1700X Processor. Available online: https://www.amd.com/en/products/cpu/amd-
ryzen-7-pro-1700x (accessed on 30 August 2018).

3. Chen, G.; Huang, K.; Huang, J.; Knoll, A. Cache partitioning and scheduling for energy optimization of
real-time MPSoCs. In Proceedings of the IEEE 24th International Conference on Application-Specific Systems,
Architectures and Processors, Washington, DC, USA, 5–7 June 2013; pp. 35–41.

4. Wang, W.; Mishra, P.; Ranka, S. Dynamic cache reconfiguration and partitioning for energy optimization in
real-time multi-core systems. In Proceedings of the 48th ACM/EDAC/IEEE Design Automation Conference,
New York, NY, USA, 5–9 June 2011; pp. 948–953.

5. Reddy, R.; Petrov, P. Cache partitioning for energy-efficient and interference-free embedded multitasking.
ACM Trans. Embed. Comput. Syst. 2010, 9, 1–35. [CrossRef]

6. Wang, W.; Mishra, P.; Gordon-Ross, A. Dynamic cache reconfiguration for soft real-time systems. ACM Trans.
Embed. Comput. Syst. 2012, 11, 1–31. [CrossRef]

7. Zhang, C.J.; Vahid, F.; Najjar, W. A highly configurable cache for low energy embedded systems. ACM Trans.
Embed. Comput. Syst. 2005, 4, 363–387. [CrossRef]

8. Zhang, C.; Vahid, F.; Lysecky, R. A self-tuning cache architecture for embedded systems. ACM Trans. Embed.
Comput. Syst. 2004, 3, 407–425. [CrossRef]

9. Powell, M.; Yang, S.H.; Falsafi, B.; Roy, K.; Vijaykumar, T.N. Gated-Vdd: A circuit technique to reduce
leakage in deep-submicron cache memories. In Proceedings of the 2000 International Symposium on Low
Power Electronics and Design, Rapallo, Italy, 25–27 July 2000; pp. 90–95.

10. Flautner, K.; Kim, N.S.; Martin, S.; Blaauw, D.; Mudge, T. Drowsy caches: Simple techniques for reducing
leakage power. In Proceedings of the 29th Annual International Symposium on Computer Architecture,
Anchorage, AK, USA, 25–29 May 2002; pp. 148–157.

11. Qureshi, M.K.; Patt, Y.N. Utility-based cache partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In Proceedings of the 39th IEEE/ACM International Symposium on
Microarchitecture, Orlando, FL, USA, 9–13 December 2006; pp. 423–432.

12. Kim, S.; Chandra, D.; Yan, S. Fair Cache sharing and partitioning in a chip multiprocessor architecture. In
Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques,
Antibes, Juan-les-Pins, France, 3 October 2004; pp. 111–122.

13. Mancuso, R.; Dudko, R.; Betti, E.; Cesati, M.; Caccamo, M.; Pellizzoni, R. Real-time cache management
framework for multi-core architectures. In Proceedings of the 19th Real-Time and Embedded Technology
and Applications Symposium, Philadelphia, PA, USA, 9–11 April 2013; pp. 45–54.

https://www.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-core-family-datasheet-vol-1.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-core-family-datasheet-vol-1.html
https://www.amd.com/en/products/cpu/amd-ryzen-7-pro-1700x
https://www.amd.com/en/products/cpu/amd-ryzen-7-pro-1700x
http://dx.doi.org/10.1145/1698772.1698774
http://dx.doi.org/10.1145/2220336.2220340
http://dx.doi.org/10.1145/1067915.1067921
http://dx.doi.org/10.1145/993396.993405

Electronics 2018, 7, 172 25 of 26

14. Suzuki, N.; Kim, H.; Niz, D.D.; Andersson, B.; Wrage, L.; Klein, M.; Rajkumar, R. Coordinated bank and cache
coloring for temporal protection of memory accesses. In Proceedings of the 16th International Conference on
Computational Science and Engineering, Sydney, Australia, 3–5 December 2013; pp. 685–692.

15. Jaleel, A.; Hasenplaugh, W.; Qureshi, M.; Sebot, J.; Steely, S.; Emer, J. Adaptive insertion policies for managing
shared caches. In Proceedings of the 2008 International Conference on Parallel Architectures and Compilation
Techniques, Toronto, ON, Canada, 25–29 October 2008; pp. 208–219.

16. Rolan, D.; Andrade, D.; Fraguela, B.B.; Doallo, R. A fine-grained thread-aware management policy for shared
caches. Concurr. Comput. 2014, 26, 1355–1374. [CrossRef]

17. Wu, J.; Sui, X.; Tang, Y.; Zhu, X.; Wang, J.; Chen, G. Cache management with partitioning-aware eviction and
thread-aware insertion/promotion policy. In Proceedings of the International Symposium on Parallel and
Distributed Processing with Applications, Taipei, Taiwan, 6–9 September 2010; pp. 374–381.

18. Sundararajan, K.T.; Porpodas, V.; Jones, T.M.; Topham, N.P.; Franke, B. Cooperative partitioning:
Energy-efficient cache partitioning for high-performance CMPs. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture, New Orleans, LA, USA, 25–29 February 2012;
pp. 1–12.

19. Cook, H.; Moreto, M.; Bird, S.; Dao, K.; Patterson, D.A.; Asanovic, K. A hardware evaluation of cache
partitioning to improve utilization and energy-efficiency while preserving responsiveness. ACM Sigarch
Comput. Archit. News 2013, 41, 308–319. [CrossRef]

20. Poovey, J.A.; Conte, T.M.; Levy, M.; Gal-On, S. A benchmark characterization of the EEMBC benchmark
suite. IEEE Micro 2009, 29, 1–29. [CrossRef]

21. Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 2008 International Conference on Parallel Architectures and Compilation
Techniques, Toronto, ON, Canada, 25–29 October 2008; pp. 72–81.

22. Qureshi, M.K.; Jaleel, A.; Patt, Y.N.; Steely, S.C.; Emer, J. Adaptive insertion policies for high performance
caching. ACM Sigarch Comput. Archit. News 2007, 35, 381–391. [CrossRef]

23. Yu, C.; Petrov, P. Off-chip memory bandwidth minimization through cache partitioning for multi-core
platforms. In Proceedings of the Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010;
pp. 132–137.

24. Sanchez, D.; Kozyrakis, C. Vantage: Scalable and efficient fine-grain cache partitioning. In Proceedings of
the 38th Annual International Symposium on Computer Architecture, San Jose, CA, USA, 4–8 June 2011;
pp. 57–68.

25. Zhou, M.; Du, Y.; Childers, B.; Melhem, R.; Mossé, D. Writeback-aware partitioning and replacement for
last-level caches in phase change main memory systems. ACM Trans. Archit. Code Optim. 2012, 8, 1–21.
[CrossRef]

26. Xie, Y.; Loh, G.H. PIPP: Promotion/insertion pseudo-partitioning of multi-core shared caches. In Proceedings
of the 36th Annual International Symposium on Computer Architecture, Austin, TX, USA, 20–24 June 2009;
pp. 174–183.

27. Kaseridis, D.; Iqbal, M.F.; John, L.K. Cache friendliness-aware management of shared last-level caches for
high performance multi-core systems. IEEE Trans. Comput. 2014, 63, 874–887. [CrossRef]

28. Mattson, R.L.; Gecsei, J.; Slutz, D.R.; Traiger, I.L. Evaluation techniques for storage hierarchies. IBM Syst. J.
1970, 9, 78–117. [CrossRef]

29. Kaseridis, D.; Stuecheli, J.; Chen, J.; John, L.K. A bandwidth-aware memory-subsystem resource management
using non-invasive resource profilers for large CMP systems. In Proceedings of the 16th International
Symposium on High-Performance Computer Architecture, Bangalore, India, 9–14 January 2010; pp. 1–11.
[CrossRef]

30. Cascaval, C.; Padua, D.A. Estimating cache misses and locality using stack distances. In Proceedings of
the 17th Annual International Conference on Supercomputing, San Francisco, CA, USA, 23–26 June 2003;
pp. 150–159. [CrossRef]

31. Wang, W.; Mishra, P. Leakage-aware energy minimization using dynamic voltage scaling and cache
reconfiguration in real-time systems. In Proceedings of the 23rd International Conference on VLSI Design,
Bangalore, India, 3–7 January 2010; pp. 357–362. [CrossRef]

32. CACTI. Available online: www.hpl.hp.com/research/cacti (accessed on 11 July 2018).

http://dx.doi.org/10.1002/cpe.3123
http://dx.doi.org/10.1145/2508148.2485949
http://dx.doi.org/10.1109/MM.2009.74
http://dx.doi.org/10.1145/1273440.1250709
http://dx.doi.org/10.1145/2086696.2086732
http://dx.doi.org/10.1109/TC.2013.18
http://dx.doi.org/10.1147/sj.92.0078
http://dx.doi.org/10.1109/HPCA.2010.5416654
http://dx.doi.org/10.1145/782814.782836
http://dx.doi.org/10.1109/VLSI.Design.2010.22
www.hpl.hp.com/research/cacti

Electronics 2018, 7, 172 26 of 26

33. Hardavellas, N.; Ferdman, M.; Falsafi, B.; Ailamaki, A. Reactive NUCA: Near-optimal block placement and
replication in distributed caches. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, Austin, TX, USA, 20–24 June 2009; pp. 184–195. [CrossRef]

34. Raikin, S.; Gueron, S.; Sheaffer, G. Protecting Private Data from Cache Attacks. U.S. Patent US8516201B2, 20
August 2013.

35. Linear Programming. Available online: https://en.wikipedia.org/wiki/Linear_programming (accessed on
11 July 2018).

36. MultiBench. Available online: https://www.eembc.org/multibench/index.php (accessed on 11 July 2018).
37. AMPL for Students. Available online: https://ampl.com/products/ampl/ampl-for-students/ (accessed on

11 July 2018).
38. Huang, K.; Wang, K.; Zheng, D.D.; Jiang, X.W.; Zhang, X.M.; Yan, R.J.; Yan, X.L. Expected energy optimization

for real-time multiprocessor SoCs running periodic tasks with uncertain execution time. IEEE Trans. Sustain.
Comput. 2018, 3. [CrossRef]

39. CK810 of C-SKY CPU. Available online: en.c-sky.com/solution/13415.htm (accessed on 11 July 2018).
40. Chen, C.; Joshi, A.; Salminen, E. Profiling EEMBC MultiBench Programs in 64-core Machine. EEMBC

MultiBench Profiling White Paper. 2013. Available online: https://www.vhdl.org/images/community/
ocp/white-papers/chen_eembc_profiling_2013.pdf (accessed on 27 August 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1555754.1555779
https://en.wikipedia.org/wiki/Linear_programming
https://www.eembc.org/multibench/index.php
https://ampl.com/products/ampl/ampl-for-students/
http://dx.doi.org/10.1109/TSUSC.2018.2853621
en.c-sky.com/solution/13415.htm
https://www.vhdl.org/images/community/ocp/white-papers/chen_eembc_profiling_2013.pdf
https://www.vhdl.org/images/community/ocp/white-papers/chen_eembc_profiling_2013.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Cache Partitioning
	Cache Monitor and LRU Policy Inclusion Property
	Cache Energy Model

	Motivation
	Multi-Threading
	Shareability Type Categorization

	Thread-Aware Partitioned Cache
	Way Access Permission Registers (WAPR)
	Thread-Aware Cache Monitor (TACM)
	Integration of WAPR and TACM

	Cache Partitioning Algorithm
	Stage-1: Task Level Optimization
	Stage-2: Task-Set Level Optimization
	Comparison with One-Stage Method

	Experiments and Evaluations
	Platform and Benchmarks
	Shareability Type Categorization Evaluation
	Energy Consumption of ATCP
	Weight Speedup Performance of ATCP
	Hardware Overhead

	Conclusions and Future Work
	
	
	
	References

