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Abstract: In this paper, a general event-triggered framework is constructed to investigate the problem
of remote fault detection for stochastic cyber-physical systems subject to the additive disturbances,
sensor nonlinearities and deception attacks. Both fault-detection residual generation and evaluation
module are fully described. Two energy norm indices are presented so that the fault-detection
residual has the best sensitivity to faults and the best robustness to unwanted factors including
additive disturbances and false information injected by attacker. Moreover, the filter gain and
residual weighting matrix are formulated in terms of stochastic Lyapunov function, which can be
conveniently solved via standard numerical software. Finally, an application example is presented to
verify the performance of fault detection by comparative simulations. The prolonged battery life is
experimentally evaluated and analyzed via a wireless node platform.

Keywords: fault detection; cyber-physical systems; event-triggered protocol; sensor nonlinearities;
deception attacks

1. Introduction

Cyber-Physical Systems (CPSs) refer to the integration of sensing, control, communication,
computation and physical processes [1]. These tightly integrated systems extend existing networked
systems (such as networked control systems (NCSs) [2] and wireless sensor networks (WSNs) [3])
in both size and complexity. Applications of CPSs are promising in areas including smart grid [4],
autonomous automobile systems [5], medical monitoring and process control systems [6]. Their reliability
and stability, however, are very susceptible to operational and environmental conditions [7]. This is
why a health management unit for CPSs should be established for health monitoring and diagnosis.
The reliability problems are not new in the NCSs field, in particular in the areas of model-based fault
diagnosis approach [8–10]. In the model-based fault-detection approach, state observers or filters are
usually used to generate residual signals, which are smaller than pre-designated thresholds when no
faults exist [11].

In WSNs, information transmission from sensor to a remote estimator/actuator consumes energy that
is often a significant fraction of the system’s overall energy balance. Similar to the WSNs, communication
resources for CPSs are also limited. Recently, an event-triggered transmission scheme has received a lot
of attention to overcome the limitations of traditional design methodologies for resource-constrained
problems [12–15]. Summarizing the existing works, we can easily find that data are transmitted or
processed only when certain events indicate that an update is required. Hence, resources can be used only
when require and saved otherwise. Another issue which should be considered is related to deception
attacks in data transmission. This kind of attack may be imposed because of the pervasive utilization of
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shared yet unprotected communication channels. In addition, it is well known that wireless sensors are
often placed in harsh environment; thus, various environmental cases can influence various aspects of
sensor performance, which may lead to a nonlinear characteristic of sensor [16]. Before addressing the
main contribution of this paper, we briefly review some related literature.

1.1. Related Work

Event-triggered transmission scheme, which can reduce the network utilization, has been widely
used for a variety of systems (e.g., [17–21]). An output estimation error-based scheme with a switching
Kalman filter is proposed in [22] as a new framework for event-triggered state estimation. Two different
event conditions for fault-tolerant control are studied in [23] in terms of the system state and the system
state error, respectively. A great deal of research progress has been made (see [24–30] and the references
therein). It was shown in [31] that the deception attacks are viewed as the most dangerous attack
behaviors and, therefore, some solutions against deception attacks have been proposed. For example,
a security-guaranteed filtering problem in [31] is studied, where a new security criterion is introduced
including the noise intensity, the energy bound of the false signals, the energy of the initial system
state, and the desired security degree. In [32], a coordinate transformation approach is exploited for
a synthesized design of fault-detection filter and fault estimator against false data injection attacks.
A jamming attack issue is considered in [33] for remote state estimation of CPSs, where the sensor and
the attacker with constrained resources are regarded as the two players of a zero-sum game. It follows
from the existing literature that the problem of event-triggered fault detection for CPSs subject to
deception attacks is of significant importance. If the sensor nonlinearities are ignored during the system
design process, undesirable performance may occur and even deteriorate the system stability. Some
representative results have been proposed to address this problem involving Lipschitz conditions,
sector-bounded conditions and immersion conditions (see [34–36] and the references therein).

1.2. Main Contribution

However, most existing results only take the secure estimation/control problem into account,
and secure fault-detection filter design for CPSs still remains open and challenging. Especially, the main
motivation of this paper is how to defend the effects of the deception attacks, sensor nonlinearities and
additive disturbances under the event-triggered decision rule. Moreover, while most of the previous
results are proposed for deterministic systems, providing an effective method for stochastic systems
also motivates the present study. The main contribution of this paper includes three aspects:

(1) A new event-triggered fault-detection filter for CPSs is proposed against the phenomena of sensor
nonlinearities, deception attacks and additive disturbances, where the sensor nonlinearities is
assumed to occur randomly according to a random variable satisfying the Bernoulli distribution.

(2) A fault-detection filter problem is formulated by maximizing the sensitivity of faults and
minimizing the influences of additive disturbances and false information injected by attackers.
The filter gain and residual weighting matrix are derived by stochastic Lyapunov function, which
can be easily solved via standard numerical software.

(3) At the end of this paper, an application example to event-triggered fault detection of one-dimensional
target tracking is presented. The estimation accuracy and fault-detection capacity are demonstrated
by comparative simulations. The prolonged battery life is experimentally evaluated and analyzed
via a wireless node platform.

Nomenclature: The terms filter and state estimator are used synonymously in this paper. N and R
denote the sets of natural and real numbers, respectively. Rm×n denotes the sets of m by n real-valued
matrices, whereas Rn is short for Rn×1. Rn×n

+ and Rn×n
++ are the sets of n× n positive semi-definite

and positive definite matrices, respectively. When X ∈ Rn×n
+ , it is simply denoted as X ≥ 0 or

X > 0 if X ∈ Rn×n
++ . For X ∈ Rm×n, XT denotes the transpose of X. A diagonal matrix is denoted

by diag [·]. In symmetric block matrices, “∗” is used as an ellipsis for terms induced by symmetry.
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I denotes a identity matrix with appropriate dimensions. λmin (X) and λmax (X) are minimum and
maximum eigenvalues of matrix X, respectively. Furthermore, a diagonal matrix is denoted by diag {·},
and `2 [0, ∞) is the space of square integrable vectors. E[·] and Prob {x} denote the mathematical
expectation and the occurrence probability of the event x, respectively.

2. Problem Statement

Consider the following discrete-time stochastic CPS defined on a probability space (Ω, F, P)

xk+1 = A1xk + (A2xk + D1dk)wk + F1 fk (1)

where the (unavailable) system state vectors , the unknown disturbances and fault signals represent
xk ∈ Rn, dk ∈ Rq and fk ∈ Rr, respectively. A scalar Wiener process wk is defined on a complete space
(Ω, F, P) with E (wk) = 0, E

(
w2

k
)
= 1 and E

(
wiwj

)
= 0 (i 6= j), where Ω is the sample space, F is the

σ-algebra of subsets of the sample space, and P is the probability measure on F. Fault and disturbance
signals are assumed to be `2 signals ( f , w ∈ `s

2).
The measurement model with randomly occurring sensor nonlinearities is described by

ȳk = (1− βk) s (C̄xk) + βkC̄xk + D2dk + F2 fk

yk = ȳk + Mya,k

ya,k = −ȳk + εk

(2)

In the above sensor model, ȳk are ideal measurement values, and ȳk ∈ Rs are measurement values
subject to randomly occurring sensor nonlinearities, which are satisfied with the following condition:

(s (η)− S1η)T (s (η)− S2η) ≤ 0 (3)

In Equation (3), S2 > S1 > 0 and η ∈ Rs are two diagonal matrices and a scalar, respectively. The
random constant variable is a Bernoulli-distributed white sequence which can be described as follows

Prob {βk = 1} = β and Prob {βk = 0} = 1− β (4)

for a given positive scalar β ∈ [0, 1]. Furthermore, the matrices A1, A2, Ad, D1, F1, C̄, D2 and F2 are
known constant matrices with appropriate dimensions. The random variable βk is uncorrelated with
noise process wk.

Remark 1. Many actual applications inevitably result in the sensor saturations which have the nonlinear
characteristic of sensors. This characteristic can severely restrict system performance or, even worse, lead to
undesirable oscillatory behaviors [37]. Recently, the design of reliable controller and estimator against sensor
saturations for various systems has received increasing attention [37–39]. Note that all the above works are
based on a common assumption that the sensor saturation occurs persistently. However, the sensor saturation
itself may be subject to randomly fluctuated condition changes because it can be considered in a network
environment. Hence, this assumption has been removed in this paper. In addition, since the randomly occurring
sensor saturation is taken into account in event-triggered fault-detection filter design, the result obtained is
less conservative.

As discussed in Section 1, the information sent by attackers during the network transmission is
modeled as follows

ya,k = −Mȳk + Mεk (5)
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where the information ya,k is used by the adversary for the deception attacks, and the non-zero εk ∈ `2,
is an unknown but energy-bounded information. The matrix M represents the physical constraints of
attack information, and is assumed to be of the following form

M ≤ M ≤ M̄ (6)

where the unknown but bounded matrix M has an upper bound M̄ > 0 and a lower bound M > 0.

Remark 2. It should be mentioned that, from the adversary’s perspective, the unknown but bounded matrix M
is regarded as physical constraints in the model of deception attacks (Equation (5)) which was introduced in [40].
Such physical constraints are unavoidable such as launching devices powered by limited capacity, networks with
limited bandwidth, and defender’s system equipped with protection software [41]. Hence, the established attack
model in Equation (5) under consideration is quite comprehensive that is closer to the practical engineering
case. On the other hand, the sensitivity problem of fault-detection becomes more complicated because the
false information εk sent by attacker is assumed to be energy-bounded, which has a similar form as additive
disturbances and system faults.

For technical convenience, the actual measurement can be decomposed into a linear and a
nonlinear part as

yk = ȳk + Mya,k + φ (ya,k) (7)

where
φT (ya,k)

(
φ (ya,k)− M̃ya,k

)
≤ 0 (8)

and a positive definite matrix M̃ ∆
= M̄−M.

The introduction of the stochastic variables wk and βk render the fault-detection filter to be
stochastic instead of a deterministic one. Thus, before proceeding further, it is necessary to introduce
the notion of stability in the mean-square sense.

Definition 1. A discrete stochastic process ξk is said to be mean-square stable, if there exist constants ρ̃1 ≥ 0,
ρ̃2 > 0 and 0 ≤ ρ̃3 < 1 such that

E
[
‖ξk‖2

]
≤ ρ̃1 + ρ̃2(1− ρ̃3)

k, k ∈ I+ (9)

where I+ is the set of positive integer.

Traditionally, the system stability is studied by using the Lyapunov’s methodology. The following
lemma presents sufficient conditions for the mean-square stability of a stochastic system in terms of a
stochastic Lyapunov functional.

Lemma 1. [10] Let V (ρk) be a Lyapunov functional. If there exist real scalars ρ1 ≥ 0, ρ2 > 0, ρ3 > 0 and
0 < ρ4 ≤ 1 such that

ρ2‖ρk‖2 ≤ V (ρk) ≤ ρ3‖ρk‖2 (10)

and
E [V (ρk+1 |ρk )]−V (ρk) ≤ ρ1 − ρ4V (ρk) (11)

then the sequence ρk satisfies
E
[
‖ρk‖2

]
≤ ρ3

ρ2
‖ρ0‖2(1− ρ4)

k +
ρ1

ρ2ρ4
(12)

Remark 3. It can be noted that if the conditions in Equations (10) and (11) hold, it follows easily from ρ̃1 = ρ1
ρ2ρ4

,

ρ̃2 = ρ3
ρ2
‖ρ0‖2 and Definition 1 that the stochastic process ρk is mean-square stable.
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3. Event-Triggered Fault-Detection Filter Analysis and Design

Generally speaking, fault detection mainly contains a residual generator and a residual evaluator
as in [11]. The event-triggered fault-detection filter is presented and its mean-square stability is proved.

3.1. Residual Generator

For the purpose of residual generation, the following fault-detection filter is constructed:{
x̂k+1 = A1 x̂k + L

(
yik − ŷk

)
ŷk = βCx̂k

(13)

where x̂k is the estimated system state, L is a filter gain with appropriate dimensions to be
determined, ŷk denotes output estimation information and C = (I −M) C̄. To save computation
and communication resources, an event-triggered sensor data transmission scheme is introduced to
determine whether the measurement information should be transmitted. The variables ik and yik denote
the last released instant and the released measurement information, respectively, with k ∈ [ik, ik+1),
and ik+1 is the next released instant of the event generator.

The error state ek, the output estimation error ey,k and the residual signal rk are defined as the
following form 

ek = xk − x̂k

ey,k = yik − ŷk

rk = V
(
yik − ŷk

) (14)

where V is a residual weighting matrix to be designed. Subtracting estimator Equation (13) from
system Equation (1) results in the following estimation error dynamics

ek+1 = xk+1 − x̂k+1

= A1ek + (A2xk + D1dk)wk

+ F1 fk − L (yk − ŷk)

= (A1 − βLC) ek +
(

F1 − LM̂F2
)

fk

− M̂1d̃k − Lφ (ya,k)− LΞk

− β1LM̂s (C̄xk)− (βk − β) LCxk

+ (βk − β) LM̂s (C̄xk) + (A2xk + D1dk)wk

(15)

where ŷk = βCx̂k, d̃k =
[
dT

k , εT
k
]T , M̂1 =

[
LM̂D2, LM

]
, β1 = 1− β, M̂ = I −M and Ξk = yik − yk.

The purpose of this section is that the designed fault-detection filter (Equation (13)) should be
robust against randomly occurring sensor nonlinearities and deception attacks. More specifically,
we are interested in looking for the filter gain L and the residual weighting matrix V such that the
following requirements are met simultaneously:

(1) The dynamic error system in Equation (15) is mean-square stable when d̃k = 0 or fk = 0.
(2) Under the zero initial condition, the fault-detection filter satisfies

E
[
rT

k rk

]
< γ2

1E
[
d̃T

k d̃k

]
(16)

E
[
rT

k rk

]
> γ2

2E
[

f T
k fk

]
(17)

for all admissible dk, εk and fk.

Remark 4. Requirement (1) ensures mean-square stability of estimation error ek. Requirement (2) on the high
sensitivity to the faults and simultaneously the strong robustness to the additive disturbances dk and false
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information εk sent by attacker is, in fact, a multiple-objective optimization problem that can be formulated as
finding a fault-detection filter (Equation (13)) to minimize γ1 and maximize γ2.

In the following, robustness against additive disturbances dk and malicious data εk is studied.
To achieve this objective, a fault-detection filter with the fault-free case ( fk = 0) is designed such that
E
[
rT

k rk
]
< γ2

1E
[
d̃T

k d̃k
]
, where γ1 measures the disturbances robustness in the fault-free case.

Theorem 1. Consider the system in Equation (1) in the fault-free case ( fk = 0) with the sensor measurements
in Equation (7) subject to randomly occurring sensor nonlinearities and deception attacks. For given γ1 > 0,
if there exists positive definite symmetric matrices Pj (j = 1 and 2), two real scalars λ1 and λ2 as well as matrix
R with appropriate dimensions such that the following LMI is satisfied

Λ =

[
Λ̃11 Λ̃12

Λ̃T
12 Λ̃22

]
− Λ̃2Λ̃−1

3 Λ̃T
2 < 0 (18)

where

Λ̃11 =


−P1 0 0 0
∗ −λ2

1 I 0 0
∗ ∗ −γ2

1 I 0.5M̃T

∗ ∗ ∗ −I

 (19)

Λ̃12 =


0 0 0
0 0 0
0 0 0

−0.5β1M̃ −0.5βM̃C̄ −0.5M̃D2

 (20)

Λ̃22 =
[

Λ̂T
1 Λ̂T

2

]T

Λ̂1 =

[
−I 0.5 (S2C̄ + S1C̄) 0
∗ Λ̂11 AT

2 (P1 + P2) D1

]
Λ̂11 = AT

2 (P1) A2 − C̄TST
1 S2C̄

Λ̂2 =

[
∗ ∗ 0
∗ ∗ DT

1 (P1 + P2) D1 − γ2
1 I

]

Λ̃2 =
[

Λ̄T
2 Λ̄T

3 Λ̄T
4 Λ̄T

5

]T

Λ̄2 =

[
AT

1 PT
1 − βCT RT 0 0 βCTVT 0 0 0
−RT 0 0 VT 0 0 0

]

Λ̄3 =

[
−MT RT 0 0 MTVT 0 MT 0
−RT 0 0 VT 0 I 0

]

Λ̄4 =

[
−β1M̂T RT M̂T RT 0 β1M̂TVT

0 −CT RT AT
1 P 0

M̂TVT β1M̂T M̂T

CTVT 0 CT

]
Λ̄5 =

[
−DT

2 M̂T RT 0 0 DT
2 M̂TVT 0 DT

2 M̂T 0
]

(21)

and
Λ̃3 = diag

[
−P1, −β−1

2 P1, −P2, −I,

−β−1
2 I, −λ−1

2 I, −λ−1
2 β−1

2 I
] (22)
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with β1 = 1− β, M̂ = I −M, C = (I −M) C̄ and β2 = E
[
(βk − β)2

]
= β− β2, then the estimation error

in Equation (15) is mean-square stable when d̃k = 0 under the event condition

λ1ΞT
k Ξk ≤ λ2(yk − βCx̂k)

T (yk − βCx̂k) (23)

In addition, the residual rk satisfies E
[
‖rk‖2

]
< γ2

1E
[∥∥d̃k

∥∥2
]
, where d̃k =

[
dT

k , εT
k
]T . The filter gain can be

computed by L = P−1
1 R.

Proof. The proof is given in Appendix A.

Remark 5. If Ξk = 0, then it is easily checked that yik = yk. This means that the presented event-triggered
fault-detection filter will reduce to a traditional time-driven H∞ filter [42]. Therefore, according to Theorem 1,
the following corollary can extend to the case of time-driven fault-detection filter.

Corollary 1. Assume that Ξk = 0. Consider that Theorem 1 holds. For given γ1 > 0, if there exists positive
definite symmetric matrices Pj (j = 1 and 2) and matrix R with appropriate dimensions such that the condition
in Equation (18) is satisfied, then the filter in Equation (13) is reduced to time-driven H∞ filter and the
estimation error in Equation (15) is mean-square stable when d̃k = 0. In addition, the residual rk satisfies
E
[
‖rk‖2

]
< γ2

1E
[∥∥d̃k

∥∥2
]
, where d̃k =

[
dT

k , εT
k
]T . The filter gain can be computed by L = P−1

1 R.

Proof. The derivation of Corollary 1 is similar to that of Theorem 1; it is therefore omitted.

In the following, the sensitivity problem of the residual rk to fault fk is considered. To achieve
this goal, a fault-detection filter with the disturbance-free case

(
d̃k = 0

)
will be designed such that

E
[
‖rk‖2

]
> γ2

2E
[
‖ fk‖2

]
, where γ2 measures the fault sensitivity in the disturbance-free case.

Theorem 2. Consider stochastic system described by Equation (1) in the presence of disturbance-free case
(d̃k = 0) and the measurements in Equation (2) suffering from randomly occurring sensor nonlinearities
and deception attacks. For a given positive scalar γ2, if there exist positive definite symmetric matrices
Pj (j = 5 and 6), two real scalars λ1 and λ2 as well as matrix R̄ with appropriate dimensions, such that the
following LMI is satisfied

Θ =

[
Θ̃11 Θ̃12

Θ̃T
12 Θ̃22

]
− Θ̃2Θ̃−1

3 Θ̃T
2 < 0 (24)

where

Θ̃11 =

 −P5 0 0
0 −λ2

1 I 0
0 0 −I

 (25)

Θ̃12 =

 0 0 0
0 0 0

−0.5β1M̃ −0.5βM̃C̄ −0.5M̃F2

 (26)

Θ̃22 =

 −I 0.5 (S2C̄ + S1C̄) 0
∗ Θ̂22 0
∗ ∗ −γ2

2 I


Θ̂22 = AT

2 (P5 + P6) A2 − P6 − C̄TST
1 S2C̄

(27)
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Θ̃2 =
[

Θ̄T
1 Θ̄T

2 Θ̄T
3

]T

Θ̄1 =

[
Θ̄11 0 0 βCTVT 0 βCT 0
−R̄T 0 0 0 0 0 0

]
Θ̄11 = AT

1 PT
5 − βCT R̄T

Θ̄2 =

[
−R̄T 0 0 VT 0 I 0
Θ̄22 Θ̄66 0 Θ̄33 Θ̄44 Θ̄55 M̂T

]
Θ̄22 = −β1M̂T R̄T , Θ̄33 = β1M̂TVT , Θ̄44 = M̂TVT

Θ̄55 = β1M̂T , Θ̄66 = M̂T RT

Θ̄3 =

[
0 −CT RT AT

1 P6 0 CTVT 0 CT

Θ̄77 0 FT
1 P6 Θ̄88 0 Θ̄99 0

]
Θ̄77 = FT

1 PT
5 − FT

2 M̂T R̄T , Θ̄88 = FT
2 M̂TVT , Θ̄99 = FT

2 M̂T

(28)

and
Θ̃3 = diag

[
−P5, −β−1

2 P5, −P6, −I,

−β−1
2 I, −λ−1

2 I, −λ−1
2 β−1

2 I
] (29)

with β1 = 1− β, M̂ = I − M, C = (I −M) C̄ and β2 = E
[
(βk − β)2

]
= β− β2, then the estimation

error in Equation (15) is exponentially mean-square stable when fk = 0, and guarantees that E
[
‖rk‖2

]
>

γ2
2E
[
‖ fk‖2

]
. Moreover, the event condition in Equation (23) is satisfied and the filter gain can be computed by

L = P−1
5 R̄.

Proof. The proof is presented in Appendix B.

Similar to Corollary 1, The results proposed in Theorem 2 are extended to the case of time-driven
fault-detection filter, as claimed by the following corollary.

Corollary 2. Assume that Ξk = 0. Consider that Theorem 2 holds. For given γ2 > 0, if there exists positive
definite symmetric matrices Pj (j = 5 and 6) and matrix R̄ with appropriate dimensions such that the condition
in Equation (24) is satisfied, then the filter in Equation (13) is reduced to time-driven H− filter and the
estimation error in Equation (15) is mean-square stable when fk = 0. In addition, the residual rk satisfies
E
[
‖rk‖2

]
> γ2

2E
[
‖ fk‖2

]
. The filter gain can be computed by L = P−1

5 R̄.

Proof. The derivation of Corollary 2 is similar to that of Theorem 2; it is therefore omitted.

Remark 6. Theorem 1 provides the worst-case criterion for the effects of additive disturbances and false
information sent by attacker on the residual. Satisfaction of the performance index in Equation (16) ensures that
the filter gain from d̃k to ek is less than γ2

1. On the other hand, Theorem 2 obtains the sensitivity of the residual
to system faults. Satisfaction of the performance index in Equation (17) ensures that the filter gain from fk to ek
is more than γ2

2. Both give a directly quantitative indicator for robustness and sensitivity of event-triggered
fault-detection filter.

Inspired by [42], the following algorithm 1 is utilized to compute the filter parameters so as to
achieve the optimal trade-off between robustness against d̃k and sensitivity to fk.



Electronics 2018, 7, 168 9 of 19

Algorithm 1 Computation of event-triggered fault-detection filter parameters
Step 1: Calculate the minimum of γ1 and the maximum of γ2 using Equations (18) and (24) in Theorem
1 and Theorem 2, respectively.
Step 2: Replace the minimum of γ1 in Equation (18) and the maximum of γ2 in Equation (24) with γ1
and γ2, respectively.
Step 3: If the obtained γ1 and γ2 can make Equations (18) and (24) feasible simultaneously, then the
optimal filter gain L and the residual weighting matrix V can be determined. Otherwise, go to Step 3.
Step 4: Choose a sufficient positive constant ∆γ. Assign γ1 = γ1 + ∆γ and γ2 = γ2 − ∆γ. Solve
Equations (18) and (24) with the updated γ1 and γ2.
Step 5: Repeat Steps 2–4 until the conditions in Equations (18) and (24) are feasible.
Step 6: Construct the residual generator rk in Equation (14), and the filter in Equation (13).
End

3.2. Residual Evaluator

As mentioned in Section 3.1, the responsibility of the residual evaluation is to produce appropriate
fault alarms. The prescribed evaluation function is compared with the predefined threshold Jth. If the
value of the evaluation function exceeds Jth, an alarm of fault is triggered. We choose

‖r‖T =
1
T

(
t0+T−1

∑
k=t0

rT
k rk

)
(30)

as the residual evaluation function, where t0 denotes the initial evaluation time instant and T stands
for the evaluation time. It should be noted that the evaluation time T is limited because the evaluation
of residual signal over the whole time horizon is impractical. Let Jth

∆
= sup

d̃k∈`2, fk=0
‖r‖T be the threshold.

For a given threshold Jth, the generation of the alarms can be outlined in Algorithm 2.

Algorithm 2 Fault-alarming strategy
Step 1: Design an event-triggered fault-detection filter of the form in Equation (13) based on the design
procedure of Algorithm 1.
Step 2: Calculate fault-detection residual generator rk in Equation (14).
Step 3: Determine the residual evaluation function ‖r‖T and the threshold Jth.
Step 4: If ‖r‖T is above the threshold Jth, then a fault is detected and the corresponding fault alarm
can be turned on. Otherwise, the system is healthy.
End

Remark 7. In [22], an event-triggered reduced-order fault-detection filter is derived where a copy of remote
fault-detection filter is employed at the sensor side to avoid the delay issue of fault-alarming. Comparatively,
the fault-alarming strategy described in Algorithm 2 of this paper is less additional computing burden than that
in [22] because the local fault-detection filter is not required in this paper. Furthermore, the proposed strategy
also could be an excellent fault-alarm, which is verified via an experimental example in the next section.

4. Application to Event-Triggered Fault Detection of a One-Dimensional Target Tracking

4.1. Target Tracking Description and Modeling

In this subsection, a one-dimensional target tracking [43] is simulated to demonstrate the
effectiveness of the proposed event-triggered fault-detection approach. The dynamic model of the
considered one-dimensional target tracking is described by

xk+1 =

[
1 τ

0 1

]
xk +

[
τ2/2

τ

]
dk

yk = xk + dk

(31)
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where τ and dk are the sampling period and the unknown acceleration, respectively. Target state xk =[
pT

k , ṗT
k
]T and yk is the sensor information at time k. The variables pk and ṗk denote the target position

and velocity, respectively. In this example, the sampling period τ = 0.1. Sensor nonlinearity is assumed
that s (η) = 1.7 (S1 + S2) η + 0.3 (S1 − S2) sin (η) where S1 = 0.3 and S2 = 0.15. The probability of
sensor nonlinearity is chosen as 6%. Furthermore, the physical constraints imposed on the attack
signal are characterized by M = 0.6 and M̄ = 1.6. The disturbances is selected as dk = εk = 0.4e−0.8k.

Other Parameters are chosen as A2 =

[
0.15 0
0.1 0.2

]
, D1 = D2 = 0.3 and F1 = F2 = 1. With the

aforementioned parameters, the fault-detection filter gains and event conditions can be derived by
solving linear matrix inequalities in Theorem 1 and 2: γ1 = 0.35, γ2 = 0.02, λ1 = 9.761, λ2 = 0.02928,

V = diag[1, 1] and L ≈ 10−2 ×
[

7.51 0.139
0.2043 6.91

]
.

4.2. Assessment of Effectiveness of the Designed Fault-Detection Filter

In this subsection, we test the efficiency of the proposed event-triggered fault-detection filter by
the following experiments.

Experiment 1: Robustness on Event-Triggered Filter

To compare the estimation performance, the state estimation trajectories without fault fk are shown
in Figure 1a,b which reveal comparison between our filter using event-triggered data-transmission
(ED) and the proposed filter using periodical data-transmission (PD). The event-triggered transmission
behaviors are also illustrated in Figure 1c. As shown in Figure 1, two lines are almost coincident
as time increases. Obviously, the estimation accuracy is not affected by the event-triggered data
transmission scheme.

Figure 1. State estimation trajectories without fault fk and the corresponding event-triggered
transmission behaviors.

Further, to verify the estimation performance clearly, the effect on event-triggered filter is examined
subject to the different probabilities of sensor nonlinearity. Table 1 shows the root mean-square estimation
error (RMEE) of system state 1 corresponding to increased probabilities. One can see that the estimation
performance degrades slightly as β increases.
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Table 1. Root mean-square estimation error (RMEE) of system state 1 with the increased probabilities.

Sensor Nonlinearity Probabilities β = 0.1 β = 0.15 β = 0.2 β = 0.25 β = 0.3 β = 0.35

RMEE 0.092 0.197 0.2176 0.2363 0.2501 0.2901

Experiment 2: Security on Event-Triggered Filter.

As illustrated in Figure 1, predefined deception attacks cannot affect the filter estimation accuracy.
However, different deception attacks may lead to the different estimation performance. In this
experiment, the estimation performance is evaluated subject to different false information εk sent by
attackers. Constant false information, time-varying false information and unbounded false information
are respectively created as εk = 0.1, εk = 0.1 sin (0.15k) and εk = 0.1e0.2k.

The root mean-square estimation error curves are shown in Figure 2 for the CPS subject to different
deception attacks. One can see that the estimation error convergence is guaranteed under the constant
false information and time-varying false information. However, as shown in Figure 2, it is a pity that
the proposed filter is infeasible for the unbounded deception attacks.

Figure 2. The root mean-square estimation error curves under different deception attacks.

Experiment 3: Sensitivity, robustness and real-time capability of fault detection

Here, two fault scenarios are considered as follow:

an incipient fault:

fk =

{
0 k ≤ 30

0.02e0.08k otherwise
(32)

a sudden-changing fault:

fk =

{
0 k ≤ 30

k otherwise
(33)
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For d̃k = 0, the residual evaluation function responses for an incipient fault (Equation (32)) and a
sudden-changing fault (Equation (33)) are demonstrated in Figures 3 and 4, respectively. The same
responses with the above given d̃k are demonstrated in Figures 5 and 6. It can be noted that the
proposed residual can not only detect the fault in time, but also identifies the system fault from the
influence of disturbance dk and false information εk.

Figure 3. The residual evaluation function responses of the system with zero d̃k for an incipient
fault (Equation (32)).

Figure 4. The residual evaluation function responses of the system with zero d̃k for a sudden-changing
fault (Equation (33)).
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Figure 5. The residual evaluation function responses of the system with d̃k for an incipient fault
(Equation (32)).

Figure 6. The residual evaluation function responses of the system with d̃k for a sudden-changing
fault (Equation (33)).

Experiment 4: Energy Conservation Effect on a Wireless Node.

In the final experiment, an experimental node is applied to test its lifetime to verify whether
the proposed event-triggered scheme is energy-saving. As shown in Figure 7, the node includes the
following components: (i) a STM32F103 micro-controller (computation module) with ARM cortex-M3
CPU determines when to transmit data packets via our event-triggered scheme; (ii) an ESP8266
wireless transceiver (wireless communication module) transmits data packets from sensor to remote
fault-detection filter; (iii) a 75 mAh lithium-polymer battery system (power management module)
ensures a constant voltage output received from the Lithium-ion battery; and (iv) a digital voltmeter
is regarded as a battery lifetime monitoring system. Please refer to the user manuals [44,45] for
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more information about this node. The relationship between time and voltage for periodical and
event-triggered scheme is illustrated in Figure 8. It is not difficult to find that the final battery lifetime
for periodical and event-triggered data-transmission are 30 min and 34 min, respectively. In other
words, the battery life is extended by 11.7%, and thus the wireless node can be used for a longer time
to become more energy-efficient.

Figure 7. A photograph of the wireless node.

Figure 8. The relationship between time and voltage for periodical and event-triggered scheme.

Remark 8. It is observed from Figure 8 that the voltage of the battery is 3.9 V completely charged. The voltage
of the battery using the periodical data-transmission has dropped to 3 V after 28 min. This indicates that the
presented wireless node cannot work normally since its working voltage must exceed 3 V [44,45].

5. Conclusions and Future Work

The problem of event-triggered fault detection for stochastic CPSs was investigated in this work.
The addressed system was subject to randomly occurring sensor nonlinearities, additive disturbances
and deception attacks. Using the stochastic stability analysis, the closed-loop estimation error
dynamics were mean-square stable under the proposed event condition. On the other hand,
two performance criteria were utilized for the design of fault-detection residual to achieve the
robustness of unwanted factors d̃k and the sensitivity of faults fk, respectively. Finally, an application
example of one-dimensional target tracking was illustrated to obtain the benefits of the proposed
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event-triggered fault-detection approach by comparative simulations. The wireless node platform
clearly verified conservative consumption of the battery energy. Even though the event-triggered
transmission scheme is always used to improve the battery lifetime of sensor networks of CPSs,
the threshold monitoring significantly affects the power consumption in practice [46]. Hence, the
self-triggered scheme may be an interesting direction for prevent such monitoring [47,48] in CPSs.
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Appendix A. Proof of Theorem 1

Proof. The Lyapunov function is constructed as follows

Vk = eT
k P1ek + xT

k P2xk (A1)

where Pj (j = 1 and 2) are symmetric positive definite matrices. It follows from Equations (1) and (15)
that

∆Vk = E [Vk+1 |ek, . . . , e0, xk, . . . , x0 ]−Vk

=
[(
(A1 − βLC) ek + Adek−d − LM̂D2dk − LMεk − Lφ (ya,k)− β1LM̂s (C̄xk)

+ (A2xk + D1dk)wk)
T P1 ((A1 − βLC) ek + Adek−d −LM̂D2dk − LMεk − Lφ (ya,k)

)
− LM̂D2dk − LMεk − Lφ (ya,k) −β1LM̂s (C̄xk) + (A2xk + D1dk)wk

)
+ (A1xk + Adxk−d + (A2xk + D1dk)wk)

T P2 (A1xk + Adxk−d + (A2xk + D1dk)wk)
]

+E
[
(βk − β)2

] [(
−LCxk + LM̂s (C̄xk)

)T P1
(
−LCxk + LM̂s (C̄xk)

)]
+ eT

k (P3 − P1) ek + xT
k (P4 − P2) xk − eT

k−dP3ek−d − xT
k−dP4xk−d

(A2)

where β1 = 1− β, M̂ = I −M and C = (I −M) C̄. Because β2
∆
= E

[
(βk − β)2

]
= β− β2 and the

conditions in Equations (3) and (8) are satisfied, the above equation can be formulated that

∆Vk ≤ eT
k

(
(A1 − βLC)T P1 (A1 − βLC) + P3 − P1

)
ek + eT

k−d

(
AT

d P1 Ad − P3

)
ek−d

+ φT (ya,k) LT P1Lφ (ya,k) + β2
1sT (C̄xk) M̂T LT P1LM̂s (C̄xk) + xT

k AT
2 (P1 + P2) A2xk

+ 2eT
k (A1 − βLC)T P1 Adek−d − 2eT

k (A1 − βLC)T P1Lφ (ya,k)

− 2β1eT
k (A1 − βLC)T P1LM̂s (C̄xk)− 2eT

k−d AT
d P1Lφ (ya,k)− 2β1eT

k−d AT
d P1LM̂s (C̄xk)

+ 2β1φT (ya,k) LT P1LM̂s (C̄xk) + xT
k

(
AT

1 P2 A1 + P4 − P2

)
xk

+ xT
k−d

(
AT

d P2 Ad − P4

)
xk−d + 2xT

k AT
1 P2 Adxk−d + β2xT

k CT LT P1LCxk

− sT (C̄xk) s (C̄xk) + 2β2xT
k CT LT P1LM̂s (C̄xk)− βφT (ya,k) M̃C̄xk

− xT
k C̄TST

1 S2C̄xk + 2xT
k

(
S2C̄ + S1C̄

2

)T

s (C̄xk)− φT (ya,k) φ (ya,k)

− β1φT (ya,k) M̃s (C̄xk) + β2sT (C̄xk) M̂T LT P1LM̂s (C̄xk)

= ηT
k Ληk

(A3)
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where ηk =
[

eT
k eT

k−d φT (ya,k) sT (C̄xk) xT
k xT

k−d

]T
. Without considering the disturbance d̃k

and using the inequality in Equation (18), one can obtain that

∆Vk = E [Vk+1 |ek, . . . , e0, xk, . . . , x0 ]−Vk

= ηT
k Ληk ≤ −λmin (−Λ) ηT

k ηk ≤ −α1ηT
k ηk

(A4)

where 0 < α1 < min {λmin (−Λ) , α2} and α2 = max {λmax (P1) , λmax (P2)}. From Equation (A4),
the following inequality can be deduced that

E [∆Vk] ≤ −α1ηT
k ηk < −

α1

α2
Vk (A5)

which satisfies conditions of Lemma 1. Therefore, the dynamic error system in Equation (15) is
mean-square stable for d̃k according to Definition 1. Now, we consider the influence of unknown
disturbance d̃k and introduce the following criterion

J1 =
∞

∑
k=0

E
[
rT

k rk

]
− γ2

1

∞

∑
k=0

E
[
d̃T

k d̃k

]
(A6)

where d̃k =
[

dT
k εT

k

]T
. For any nonzero d̃k ∈ `2 [0, ∞) and zero initial condition, one has

J1 =
∞

∑
k=0

(
E
[
rT

k rk

]
− γ2

1E
[
d̃T

k d̃k

]
+ ∆Vk

)
−Vk (A7)

which further results in

E
[
rT

k rk

]
− γ2

1E
[
d̃T

k d̃k

]
+ ∆Vk

= β2eT
k CTVTVCek + β2

1sT (C̄xk) M̂TVTVM̂s (C̄xk) + dT
k DT

2 M̂TVTVM̂D2dk + εT
k MTVTVMεk

+ φT (ya,k)VTVφ (ya,k) + β2sT (C̄xk) M̂TVTVM̂s (C̄xk) + β2xT
k CTVTVCxk

+ 2ββ1eT
k CTVTVM̂s (C̄xk) + 2βeT

k CTVTVM̂D2dk + 2βeT
k CTVTVMεk

+ 2βeT
k CTVTVφ (ya,k) + 2β1sT (C̄xk) M̂TVTVM̂D2dk + 2β1sT (C̄xk) M̂TVTVMεk

+ 2β1sT (C̄xk) M̂TVTVφ (ya,k) + 2dT
k DT

2 M̂TVTVεk + 2dT
k DT

2 M̂TVTVφ (ya,k)

+ 2εT
k MTVTVφ (ya,k)− 2β2sT (C̄xk) M̂TVTVCxk − γ2

1 d̃T
k d̃k + ∆Vk

= ηT
d,kΛηd,k

(A8)

where ηd,k =
[

eT
k eT

k−d εT
k φT (ya,k) sT (C̄xk) xT

k xT
k−d dT

k

]T
. By using the Schur lemma and

the notation R = P1L, we deduce that the inequality in Equation (A8) is equivalent to Equation (15),
i.e., ηT

d,kΛηd,k < 0. Consequently, the condition in Equation (15) guarantees J1 < 0 for any k, which

implies that E
[
‖rk‖2

]
< γ2

1E
[∥∥d̃k

∥∥2
]
.

Appendix B. Proof of Theorem 2

Proof. It is obvious that Equation (24) implies Equation (18), hence it follows from Theorem 1
that the estimator in Equation (13) in the presence of the disturbance-free case is exponentially
mean-square stable. Next, for any nonzero fk and zero initial condition, a performance index function
is introduced as

J2 =
∞

∑
k=0

(
E
[
rT

k rk

]
− γ2

2E
[

f T
k fk

]
− ∆Vk

)
+ Vk (A9)
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where ∆Vk = E [Vk+1 |ek, . . . , e0, xk, . . . , x0 ] − Vk, and define the increment of Vk along the
trajectories of Equation (15) in the disturbance-free case. It turns out

∆Vk −E
[
rT

k rk

]
+ γ2

2E
[

f T
k fk

]
= β2eT

k CTVTVCek + β2
1sT (C̄xk) M̂TVTVM̂s (C̄xk) + f T

k FT
2 M̂TVTVM̂F2 fk + φT (ya,k)VTVφ (ya,k)

+ β2sT (C̄xk) M̂TVTVM̂s (C̄xk) + β2xT
k CTVTVCxk + 2ββ1eT

k CTVTVM̂s (C̄xk)

+ 2βeT
k CTVTVM̂F2 fk + 2βeT

k CTVTVφ (ya,k) + 2β1sT (C̄xk) M̂TVTVM̂F2 fk

+ 2β1sT (C̄xk) M̂TVTVφ (ya,k) + γ2
2 f T

k fk + ∆Vk

+ 2 f T
k FT

2 M̂TVTVφ (ya,k)− 2β2sT (C̄xk) M̂TVTVCxk

= ηT
f ,kΛη f ,k

(A10)

where
η f ,k =

[
eT

k eT
k−d φT (ya,k) sT (C̄xk) xT

k xT
k−d f T

k

]T
(A11)

With the help of the inequality in Equation (24), we have

∆Vk −E
[
rT

k rk

]
+ γ2

2E
[

f T
k fk

]
< 0 (A12)

Now, summing up Equation (A12) from 0 to ∞ with respect to k yields

∞

∑
k=0

E
[
‖rk‖2

]
> γ2

2

∞

∑
k=0

E
[
‖ fk‖2

]
+E [V∞]−E [V0] (A13)

which is straightforward to see that

∞

∑
k=0

E
[
‖rk‖2

]
> γ2

2

∞

∑
k=0

E
[
‖ fk‖2

]
(A14)
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