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Abstract: This paper combines matrix game theory with negotiating theory and uses U-solution
to study the framework of the consulting air combat of UAV cluster. The processes to determine
the optimal strategy in this paper follow three points: first, the UAV cluster are grouped into fleets;
second, the best paring for the joint operations of the fleet member with the enemy fleet members are
calculated; thirdly, consultations within the fleet are conducted to discuss the problems of optimal
tactic, roles of main/assistance, and situational assessment within the fleet. In order to improve
the computing efficiency of the framework, this article explores the use of the NVIDIA graphics
processor programmed through MATLAB mixed C++/CUDA toolkit to accelerate the calculations of
equations of motion of unmanned aerial vehicles, the prediction of superiority values and U values,
computations of consultation, the evaluation of situational assessment and the optimal strategies.
The effectiveness evaluation of GPGPU and CPU can be observed by the simulation results. When
the number of team air combat is small, the CPU alone has better efficiency; however, when the
number of air combat clusters exceeds 6 to 6, the architecture presented in this article can provide
higher performance improvements and run faster than optimized CPU-only code.

Keywords: GPGPU; MATLAB/CUDA; matrix game; consulting air combat; UAV cluster; maneuver
decision-making

1. Introduction

In the 2017 Super Bowl midfielder show, Intel used 300 Intel drones to create a volleyball light
show, and issued colorful lights, changed formations, and produced various patterns to employ drones
besides aerial shooting or investigation, but also ‘performance’. It can be seen that the drone cluster
technology will be the next development focus. Therefore, unmanned combat aircraft are expected to
assist human pilots or perform autonomous air operations. Therefore, intelligent decision-making air
combat maneuvering has always been a research hotspot. The matrix game [1] is the first proposed
approach to solve the pursuer–evader game. Although the game-matrix approach is feasible as a
maneuvering decision method, the solution of this method is only a suboptimal strategy sequence
that satisfies the segmentation. In addition, the method is computationally intensive, especially when
the maneuvering sets are complicated, the prediction time is long and makes the task difficult for
the onboard computer to complete. The expert system [2] is also one of the traditional methods of
intelligent air combat maneuver decision-making, but it can only be used to solve known problems.
When encountering unknown problems, it still needs personnel participation rather than completely
independent decision-making. Based on the influence diagram (ID), the research on the one-on-one air
combat model can be referred to [3,4]. The literature [5,6] further proposes the ID improvement model
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of multi-aircraft cooperative air combat maneuver decisions. The combination auction theory is used
to control the decision of multiple fighters to cooperate in close air combat, which can be seen in [7].

At present, air combat research mainly uses traditional artificial intelligence optimization
theories and algorithms to calculate air combat decision sequences in a relatively fixed environment.
For example, Ref. [8] proposed a genetic algorithm for interval grey simulated annealing to improve
global search capabilities. A novel particle swarm optimization algorithm based on an adaptive
stochastic learning method was proposed [9] to find an optimization function with fewer parameters.
In [10], a predictive fuzzy inference system is proposed as a smart maneuvering decision system,
which simulates the human thinking ability and the maximum energy of the virtual aircraft as the air
combat decision. In recent years, the successful application of machine learning technology in many
fields has provided new ideas for the study of intelligent air combat decision-making. It is an effective
method of applying reinforcement learning (RL) in the field of air combat, because it can interact with
the environment through repeated experiments and obtain optimal strategies through iteration [11].
However, due to the computational overload caused by the curse of dimensionality, the traditional RL
method is not suitable for solving large-scale Markov decision processes (MDP) such as air combat.
In [12,13], an approximate learning method combining approximation techniques with reinforcement
learning is used to approximate a value function or a state space by a function approximator. Avoiding
accurate solutions can alleviate the problems caused by the dimensional curse to a certain extent.
Ref. [14] refers to some typical studies using Atari games and AlphaGo [15,16] using deep learning and
reinforcement learning, and conceived the application of this method to air combat decision-making
by using a multi-layer stacking deep neural network (DNN) as a function approximator. Because of
its robust and accurate capacity, it can accurately represent complex state spaces and use the lessons
learned as the highest reward option to get the system into a better state. In order to avoid relying on
prior knowledge and good local optimality of exits, Ref. [17] uses Q learning in reinforcement learning
algorithms for air combat target assignment. In [18], it is proposed to use neural networks in heuristic
reinforcement learning to learn the process of the reinforcement learning to accumulate knowledge
and stimulate the search process.

In the cluster confrontation, it is not only as simple as the dual air battle is considered to be
a zero-sum game, in fact there is a cooperative and coordinated team-mate relationship between
individuals in their own cluster. For example, the air combat between the two pursuers and a fugitive
was established as a nonzero-sum differential game. Ref. [19] proposes the variation and Legendre
pseudo-spectral methods to solve the nonzero-sum multi-player Nash differential game. Ref. [20]
considered the mixed strategy Nash equilibrium (MSNE) with n-person and n-strategies. In air combat,
the target-defender team strives to maximize the terminal separation of the target from the attacker,
while the attacker sought to minimize the separation. Ref. [21] proposed a differential game approach
to derive the optimal strategies for the three agent. As the team-mates’ survivability increases and the
overall threat to the enemy intensifies, there should be cooperation and coordination among individual
clusters in the drone cluster confrontation. Therefore, Ref. [22] introduces the fusion mechanism of
differential game and negotiating theory. Ref. [23] addressed a zero-sum matrix game problem of
evasion from multiple pursuers by reducing it to a multi-act, two player zero-sum game.

In the confrontation game, both offensive and defensive players need to consider the impact of
threat assessment, economic strategic value assessment, and overall system task payment. Therefore,
a multi-objective optimization corresponding performance evaluation model is proposed, and the
decision-making problem of multi-target cooperative attack is transformed into missile attack-matching
optimization problem. Therefore, the issue of weapons target assignment (WTA) is crucial to the
strategic planning of military decision-making operations. It defines the best way to allocate defensive
resources for defense threats in combat scenarios. However, the process of air combat is dynamic and
therefore contains many uncertainties. It is thus difficult to obtain a decision sequence that conforms
to the actual situation of air combat using traditional theoretical methods. The self-optimization
and self-organization of tactical re-planning in real time must overcome the dynamic changes in the
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number and location of nodes in the combat process in order to maximize the expected return and
effectively solve the multi-fighter cooperation strategy. However, in the uncertain case, multi-objective
optimization is difficult to solve the WTA problem. Ref. [24] proposed a hybrid fuzzy multi-objective
programming and multi-objective quantum behavior particle swarm optimization algorithm to
overcome this problem. Ref. [25] proposed an interval-intuitive fuzzy Petri net to define the degree of
membership in air combat.

Due to oversimplified assumptions, heavy computational load and limited scalability, previous
studies on air combat often have limitations. As the number of control points and the number of
drones increase, so does the complexity of the problem. Therefore, the biggest bottleneck encountered
in the research of cluster cooperative air combat simulation is that the calculation speed cannot reach
real-time. The advent of more unmanned aerial vehicles for team air combat simulations demands a
commensurate growth in computational power. In addition, if there is external warfare in the line of
sight, it needs to combine radar and missile theory. Complex and huge calculations will cause delays
in simulation, and it is impossible to immediately make the best strategy to counter enemy attacks.
Therefore, how to accelerate computational efficiency has become a key technology, and computational
parallelism seems to be the most successful method at present. In recent years, parallel computing on
the general-purpose computing on graphics processing unit (GPGPU) using the CUDA architecture
has been widely used. GPGPU provides a vast number of simple, data-parallel, deeply multithreaded
cores and high memory bandwidths at very low cost, which has recently attracted the attention of many
application developers as commodity data parallel coprocessors. For example, Ref. [26] introduced
Hough transform, Kalman filter, and clustering with GPUs for fast multi-line tracking for vision based
intelligent vehicle. A genetic algorithm working in concert with a clustering algorithm is used by [27]
to quickly compute the desired routes and GPU is used in this work to enhance the computational
execution rate. Ref. [28] applied the K-means and parallel genetic algorithm on CUDA architecture
to search a solution to the problem of minimum time coverage of ground areas using a number of
UAVs. The GPU also exhibits excellent properties in computational fluid dynamics—e.g., Ref. [29]
described the most advanced results of fluid dynamic simulations of high-enthalpy flows and used
MPI-CUDA approach to overcome the huge computational cost. Ref. [30] present an implementation
of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully
heterogeneous media performed on a GPU cluster. In the biophysical model field, Ref. [31] explored
the application of GPU to simulate of cardiac bioelectric phenomena. Ref. [32] demonstrates the
outstanding performance of CUDA in image processing research by several classical image processing
algorithms. The results of the literature show that the GPGPU processing data volume and calculation
speed are far greater than the CPU.

2. Related Work

This article is different from [19–22] using differential game as the decision core but combines the
matrix game with the negotiation theory and uses the U-solution to study the theoretical framework
of the cooperative air combat. The advantage of using matrix game is that when we calculate the
best strategy, only Runge-Kutta method to integral the motion equations is necessary, avoiding the
differential game demand solving the double side extreme value problem. Similarly, Ref. [23] also
uses matrix games to consider the problem of multi-vehicle chase single vehicle, but its strategy of
pursuit/evasion is based on the existing MATLAB package ‘cvx’ [33], and no specific recommendations
are made on how to accelerate the calculation of the strategy as proposed in this paper.

In determining the optimal strategy of a cluster of UAVs, this paper follows these points: first,
the UAV cluster are grouped into fleets, and second, the best paring for the joint operations of the
fleet member with the enemy fleet members are calculated. Thirdly, consultations within the fleet
are conducted to discuss the problems of optimal tactic, roles of main/assistance, and situational
assessment within the fleet. Ref. [34] also mentioned the concept of grouping multi-fighter cooperative
air combat into small teams similar to this paper, but [34] adopting multi-stage influence diagrams to
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calculate the best strategy, which is not the same as using matrix game in this article. There is also no
mention of how to speed up the calculation load. In addition, the target of chasing after locking is not
related to missile attack-matching optimization problem in this paper. For the missile attack matching
optimization (WTA) problem, please refer to [24,25]; for further exploration of effective range, please
refer to [35,36].

On the other hand, to speed up the computational speed of UAV cluster negotiating air combat
and expect to overcome the problem of huge computational delays as the number of clusters increases,
C++ should be a good candidate because it can run on different CPUs or cores by allowing code to run
in parallel and allowing code to run asynchronously instead of serially to improve performance. On the
other hand, MATLAB’s advanced programming syntax and user-friendly environment make it ideal
for writing technical code. However, MATLAB does not allow code to be executed on different CPUs or
cores but uses the interpreter enabling of running code asynchronously, which slows down processing,
especially when executing loops extensively. However, using NVIDIA’s CUDA-enabled GPUs to
execute multiple threads is currently the hottest technology. Using CUDA, all the pipeline stages can
be combined to execute a number of operations simultaneously. Ref. [37] discusses the principles and
methods of hybrid programming, where MATLAB integrates with other languages such as Visual
C++. The results show that mixed programming with different tasks can be achieved by compiling
different MATLAB programs, making the necessary settings and replacing the corresponding C++
code. However, if one wants to use multi-core processors, GPUs, and clusters of computers to solve
computational and data-intensive problems on MATLAB, one must use the Parallel Computing Toolbox
and the Distributed Computing Server. Hence, this paper wants to try to use C++ to call CUDA for
parallel computing and parallel for-loops without Parallel Computing Toolbox on MATLAB. This paper
uses a mixed program of C++/CUDA and MATLAB to combine the advantages of C++/CUDA and
MATLAB to form the multi-core and GPU parallel computing architecture of MATLAB/C++/CUDA,
trying take full advantage of MATLAB’s programming flexibility by enhancing its performance. Some
of how CUDA plays a potential role in accelerating MATLAB’s program execution is discussed
in [38–40]. For example, [38] explores the potential benefits of integrating MATLAB with CUDA and
describes a systematic approach to implementing vortex dynamics on CUDA. Another similar work
is described in [39], which describes the benefits of integrating CUDA into MATLAB to accelerate
its performance. The focus of this work is on the use of 2D wavelet transform for CUDA medical
image compression. It first implements 2D-DWT in CUDA C and wraps it into a MEX file. Ref. [40]
introduced a new method of achieving white balance using MATLAB and CUDA to achieve load
balancing between CPU and GPU in a dynamic environment. By connecting MATLAB to CUDA and
parallelizing the most time-consuming part of the MATLAB code white balance, the processing speed
can be significantly faster. The methods presented in [39,40] are very similar to the proposed approach
in this paper. In [39], CUDA function is only called on MATLAB, so it does not use MATLAB’s
flexible programming structure. Although Ref. [40] introduced MATLAB to connect with CUDA
and parallelize MATLAB code, the integration process is not as detailed in this article. As far as the
author knows, the proposed architecture applied to accelerate the computation of air combat maneuver
decision-making has not been proposed in any journals or conferences. Although the hardware device
is old in this paper, the concept is the latest and interested readers can refer to the architecture of this
article to test the effects on the latest GPUs.

3. Best Solution to Consulting Air Combat of Clusters

In one-on-one air combat, UAVs hope that they can grasp their advantages during the engagement
process, form a threat to the enemy planes, or prevent the enemy planes from attacking the opponent.
The competition between rivals is similar to the zero-sum game. Although, the basis of cluster air
warfare is air-to-air combat, however, unlike one-on-one air combat, there is cooperation within the
cluster group. Therefore, the team consulting air combat has two characteristics: (1) under the premise
of improving the overall advantages, each UAV may separately or collectively attack the enemy aircraft;
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(2) when a friendly aircraft deters the threat of an enemy UAV, another UAV can ignore the threat that
the enemy UAV poses to him and in turn launch a bold attack, making the strategies and maneuvers
that cannot be or are not daunting during one-on-one combat to increase the kill rate. Under these two
characteristics, the first step in determining the best strategy for cluster air warfare is to first divide the
cluster into multiple fleets so that the cluster air warfare can be converted into fleet operations, and the
advantages and weighting factors of air combat can be optimized by establishing fleets. It can improve
their survivability and increase the threat and killing of enemy aircraft.

After dividing the air combat in a cluster into several small aircraft teams, we must then solve two
problems: (1) how our team members are paired with the enemy fleet members; (2) the best strategy
for both the enemy and me after the pairing. Therefore, this article will discuss the following aspects:

1. The grouping principle of converting large-scale air combat into fleet operations;
2. Optimize the target of fleet attack using negotiation theory;
3. Optimize in-team marshalling by negotiation theory;
4. The role of individuals in the fleet;
5. Individual air combat within the fleet, using the game theory to find the best

chase/escape strategy.

This paper introduces a method to optimize the overall attack benefit, called the utilitarian solution
(abbreviated as U solution) algorithm, conducts the matching of rivals and friends, the calculation of
weight values, and the prediction of the best strategy of both parties to determine the target of attack
and the role played in the fleet, and the best strategy to increase overall attack effectiveness. Processes
are as shown in Figure 1.
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3.1. Cluster Air Combat Turned into Multiple Fleet Operations

The formation of the fleet is usually preceded by pre-operational mission cues that have been
identified and rarely change in air combat unless special circumstances prevail. Therefore, this paper
directly selects our k drones as a team, a total of m teams, denoted Bi, I = 1~m; enemy aircraft will be
divided into a team as the nearest each k, assuming there are n teams, denoted Rj, j = 1~n. The centroid
of each team represents the virtual aircraft of the team, so the problem is simplified to that of our m
drones against n hostile aircraft. The centroid of the ith team (xi, yi, zi) can be calculated by

xi =

[
k

∑
l=1

xl

]
/k, yi =

[
k

∑
l=1

yl

]
/k, zi =

[
k

∑
l=1

zl

]
/k (1)

This centroid is considered as a virtual UAV whose speed vi is obtained by vector addition.

vix = v1x + v2x + . . . + vkx (2)

viy = v1y + v2y + . . . + vky (3)

viz = v1z + v2z + . . . + vkz. (4)

|vi| =
(

v2
ix + v2

iy + v2
iz

)1/2
. (5)

The roll angle φi and the pitch angle θi of the virtual UAV are calculated by the following formula

φi = −arctan(viz/vix) (6)

θi = arctan
∣∣∣∣viy
/(

v2
ix + v2

iy

)1/2
∣∣∣∣ (7)

We have divided the cluster air warfare into a small aircraft team. However, in the air combat,
to solve the matching problem between our fleet and the enemy fleet, we must introduce negotiation
theory and weight value calculations to determine the target of attack and the assigned role of each
aircraft in the team. Take the air combat of two teams of two UAVs each as examples. The UAVs 1 and
2 score functions are S1 and S2, respectively. We can set the score function as the total superiority value.
The superiority values may include speed scoring, azimuth scoring, distance scoring, and altitude
scoring [1,41]. If we set our score to be low, our overall best (superiority) U solution is

λ1S∗1 + λ2S∗2 ≤ λ1S1 + λ2S2 (8)

Equation (8) indicates that in the case where two UAVs choose the best match for the enemy
fighter, the advantage score (the superscript “*”) sum is the lowest of all possible match combinations.
The choice of λ1 and λ2 can be adjusted in different combat situations. Determine the weight values
should be met: (1) is a function of the superiority value; (2) the emphasis on a certain fighter by
increasing the weight value within the fleet; (3) when the overall fleet is in an advantage, the greater
weight is assigned to the aircraft whose superiority value is better; otherwise, when the overall fleet is
at a disadvantage, the aircraft with a worse advantage value has a greater weight value. It should be
noted that the weights must be normalized so that the sum of all weights is 1. We adopt the weights
usually in this paper as

λi = Si/
2

∑
j=1

Sj (9)
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According to the formula (8), it can be extended to m virtual aircrafts to n virtual enemy aircrafts
(assuming m > n), and there are a total of m× n probability superiority values. The best negotiation
matchmaking team between the virtual aircraft fleets can be obtained to seek the best interests

m

∑
i=1

λiS∗i ≤
m

∑
j=1

λjSj (10)

where λi is determined as

λi = Si/
m

∑
j=1

Sj (11)

where Si is still set as the total superiority of our ith virtual aircraft. The Equation (10) indicates that in
the case where all aircraft fleets choose the best match for the enemy fighter fleets, the advantage score
(the superscript “*”) sum is the lowest of all possible match combinations. Under the premise of the
best overall advantage, multiple teams may attack the same team and each time interval determines
whether it is necessary to re-determine the target.

3.2. Fleet Negotiation

As shown in Figure 1, the fleet air combat will be further divided into one-on-one air combat,
using the negotiated theory and weight values again to determine the strategy of the two sides of
aircrafts. If it is assumed that the decision within the team will affect each other, and each aircraft has
seven strategies shown in Figure 2a. Define the seven strategies of our fighters as set Du and the seven
strategies for enemy fighters as set Dv.
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Figure 2. (a) Fighter flight strategies; (b) representation of the fighter in the local reference frame XYZ.

Under each combination, the strategy combination of the two parties for m UAVs and n enemy
UAVs can be expressed as following 7m × 7n matrix

D =


D11 D12 · · · D17n

D21 D22 · · · D27n

...
...

. . .
...

D7m1 D7m2 · · · D7m7n

 (12)

where Dpq represents the strategic pairing of the p-th row and the q-th column of the D matrix.
Referring to Figure 3, the current positions, attitudes and speeds of k our fighters (Bi, i = 1~k) and k
enemy fighters (Rj, j = 1~k) are given. Figure 2b illustrates the fighter body axes with respect to the
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Earth and/or inertial reference axes. Referring to Figure 2b, under each strategy pairing, the equations
of motion for solving an UAV is [42]

.
x = V cos γ sin Ψ (13)

.
y = V cos γ cos Ψ (14)

.
z = V sin γ (15)

.
V = g(nx − sin γ) (16)

.
γ =

g
V
(nz cos φ− cos γ) (17)

.
Ψ =

gnz sin φ

V cos γ
(18)

Symbols are described as follows: γ is flight path angle, the angle between UAV’s speed vector
and horizontal plane; Ψ is azimuth angle, the angle between UAV’s speed vector project on horizontal
plane and the X-axis; x, y, z are the inertial coordinates; nx is UAV’s load factor along V direction;
nz is UAV’s load factor along z-axis direction; φ is the rotational bank angle, which rotates around
the heading direction. The acceleration commands (nxcom , nzcom , φcom) due to actuator dynamics are
given by

nx

nxcom

=
1

1 + τxs
(19)

nz

nzcom

=
1

1 + τzs
(20)

φ

φcom
=

ω2
n

s2 + 2ωnξs + ω2
n

(21)

where τx and τz are time constants of nx and nz, respectively; ωn is natural frequency and ξ is damping
ratio, determined by the performance of UAV. The equations of motion (13) to (21) combine with
transformation of coordinate will be able to predict UAV’s dynamics and position accurately, and the
prediction superiority values including speed scoring, azimuth scoring, distance scoring, and altitude
scoring can be evaluated. Let the superiority value of Bk on enemy aircraft R1 to Rk is denoted by Spq

k1
to Spq

kk under the strategy pairing Dpq, and the following mathematical symbols are defined.

Jpq
k =

k
∑

i=1
Spq

ki
2

k
∑

i=1
Spq

ki

, λ
pq
k = Jpq

k /
m

∑
i=1

Jpq
i (22)

The U value can be obtained under the strategy pairing Dpq as

Upq =
k

∑
i=1

λ
pq
i Jpq

i (23)

Under all strategies pairing 7m × 7n, a total of the matrix U shown in Figure 3 needs to be
completed. The best negotiation strategy between the aircraft team can be obtained to seek the
best interests

k

∑
i=1

λ
pq
i Jpq

i (u∗i , v∗∗) ≤
k

∑
i=1

λ
pq
i Jpq

i (ui, v∗∗) (24)
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where u is our UAV strategy, v is the enemy UAV strategy, the superscript “*” represents the best
strategy, the subscript “*” indicates the most favorable of our attacking strategy, and no subscripts
indicate other our attacking strategy. It is equivalent to finding the saddle point in the group
combination to solve (25):

min
i=1∼7k

max
j=1∼7k

U (25)

With the number of aircraft increasing, the strategy combination will form a huge matrix. At this
time, the sequence calculation will not be able to make the reaction decisions of the team in real time.
Therefore, as shown in Figure 3, this paper considers CUDA parallel computation to speed up the
optimal solution of the strategy combination matrix.

 

Strategy combinations 
( )1, , mu u ,  

( )1, , nv v  

The position, attitude and velocity 
of UAV Bi, i=1~m 

m ni=1~7 j=1~7
min maxU  

11 12 17

21 22 2

27 1 7 7

n

m m n

n

m

U U U
U U U

U

U U U




   


 
 
 =  
 
  

 

The position, attitude and velocity 
of UAV Rj, j=1~n 

Equations of motion  

The prediction superiority values 

Evaluate U values 

The optimal strategy of UAV Bi, 
i=1~m and UAV Rj, j=1~n 

CUDA 

Figure 3. Flowchart of team negotiation decision.

The biggest difference between the matching with the fleet is the identification of the role of each
fighter within its own fleet, including determining the dominant role and the main or assist attack role:

(1) Offensive and assist roles in air combat: if the joint strikes, each UAV will play a different role in
the combat group, and the better superiority value is (relatively dominant) the offensive UAV,
and the rest will be an assistant. As the main attacker has a better value, the enemy has less
chance of winning. In contrast, the enemy has a greater chance of winning again the assisting
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UAV which has a lower advantage. To make the superiority better, the enemy should compete
against the assisting UAV to increase the advantage value with the best strategy. From our point
of view, the assisting UAV at this time has deterred the threat of the enemy UAV. Therefore,
the main attacker can ignore the threat which poses to him and use a single-player tactic to attack
the enemy aircraft boldly. This is a dare to or impossible tactic during one-on-one air combat,
which has increased the kill rate as a whole. The main attack and assist role are determined by
λ

pq
k in (22), the biggest one is the main attack, and the rest are assists. The strategy of the assisting

machine uses (25) to find the best decision; while the remaining one is the main attacker, at this
time, look for the strategy to minimize the U value in (23). The flow chart for the role of the main
attacker and assistant determined is shown in Figure 4.

(2) Situational assessment: this is mainly determined by the superiority value of the UAV. If the
superiority value is superior, then the role is the attacker, otherwise it is the evasion side. If the
sum of the advantage values is required to be the largest, the UAVs will only focus on the attack.
When the UAV is at a disadvantage and is possible shot down, the advantage value will be very
small, and the unmanned aerial vehicle will not focus on the most threatening UAV but it will
attack another UAV to increase its advantage value. This kind of unreasonable phenomenon
needs to be corrected by judging the superiority value. The flow chart for situational assessment
is shown in Figure 4. Assuming that now the superiority value J1 for B1 is at a disadvantage, B1

should escape directly. If J1 is on a very disadvantageous position, the other aircraft will help B1

escape and pin down the enemy to increase B1’s chances of escape.
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4. Using MATLAB/CUDA to Accelerate the Best Solution

In the multiple air combat simulation, we mainly calculated the tactics of our military fleet (Blue
Army) and enemy fleet (Red Army) and the trajectory between the two sides. The strategy and the
trajectory are calculated based on the results obtained from the previous point in time. In this case,
parallel computation cannot be used. Therefore, we use the decentralized operation for the Blue
Army and the Red Army. The OpenMP is introduced to perform multi-core decentralized operation.
Referring to Figure 5, we assign the calculations of the strategy and movement trajectory of the Blue
Army and the Red Army to multiple CPU cores for calculation individually. The collaborative analysis
and calculation of air combat between the Blue and Red Army can be performed at the same time.

However, the tactical judgments are more complex as the number of aircraft increases. Fortunately,
CUDA technology provides computationally intensive applications with the processing power of the
GPUs through a CUDA C programming interface. However, in fact, writing CUDA programs is not
easy, and testing and modification is time consuming, so it is difficult to write a CUDA program for
the entire multi-fighter air combat simulation. At present, even if there are APIs like CUBLAS and
CUBLASXT to help linear algebra operations—such as vector multiplication, matrix multiplication
vectors, matrix multiplication matrices, etc.—to help the simplicity and convenience of the entire
program, writing CUDA programs is still not easy. Therefore, although the ideal multi-fighter air
combat simulation is written in CUDA and the simulation efficiency should be greatly improved, but
MATLAB is still a time-saving exercise if one wants to validate the design in a convenient and simple
working environment. Although MATLAB is an easy to program development environment, the use
of interpreter and memory latency issues can have a huge negative impact on performance. Many
solutions to the MATLAB performance bottleneck have been proven in the relevant literature, one
of which is the hybrid programming concept. By combining MATLAB with other languages such as
C++, MATLAB’s programming flexibility is preserved, and the fast processing capabilities of other
languages such as C++ are also utilized. The concept is to use CUDA parallelization and invoke it in
the MATLAB environment by using the MEX function. In this way, different time-consuming parts of
the MATLAB algorithm can be parallelized with CUDA and called in MATLAB. Therefore, for the
goal of accelerating our approach by interfacing with CUDA and GPU, we must modify the script to
MEX and CUDA cu files. By the way, there is another advantage to using the MEX function. The MEX
function can not only transfer data between MEX files and MATLAB, but also call MATLAB functions
in functions written in C, so MATLAB’s rich libraries are available in C.

Our work is done in two steps: the first step is to write a CUDA code of calculating the optimal
strategy that performs the solutions of the equations of motion, the prediction of superiority values,
U values evaluation and solves the matrix game in (25) that will be ported to CUDA, as mentioned the
processes in Figure 3. The CUDA code is compiled via the NVCC compiler (NVCC is used to compile
the CUDA code). After compilation, we can generate the .obj file. The second step is to write a C++ file
to call the .obj file to package the CUDA architecture in the C++ language into MATLAB executable file.
The MATLAB’s built-in instruction “mex” can be applied to wrap a C++ file including .obj files, CUDA
header files, and function libraries to generate binary MEXw32 or MEXw64 file, which can be called in
MATLAB as in any other MATLAB function. The mixed parallel computing framework of graphics
processing unit is shown in Figure 5. In particular, the MATLAB code then runs in double precision
mode and the data is converted to single precision before being transferred to the GPU. Therefore, the
calculations on the GPU are executed as single precision arithmetic and the results are converted back
to double precision before returning the results to MATLAB.
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With reference to Figure 3, the position, attitude and speed data matrix of all the fighters of
the Blue Army and the Red Army are transmitted to the GPU via the functions written in C++ to
communicate MATLAB and CUDA. The strategy combination of the two armies for k Blue UAVs
and k Red UAVs can be expressed as 7k × 7k matrix according to (12). Each strategy combination
uses a GPU’s thread to solve the motion equations of (13) to (21) in a time interval, and predicts the
position, attitude, and velocity data of all the fighters of both fleets at the next time interval. This data
is still calculated in the GPU’s thread for all fighters’ dominant values described in (22), and then all U
values from (23) are calculated in parallel. Using the function written in CUDA to get the minimum or
maximum value from the 7k × 7k array satisfied (25) to find the best strategy for both side’s fighters.
This strategy is passed back from the GPU back to MATLAB to continue the subsequent air combat
simulation. After parallel calculations, when UAVs are locked by the radar, missiles are launched,
and the missile guidance law is calculated by a CPU. For related missile guidance papers, please refer
to [43].

In the above-mentioned best strategy of satisfying (25), it is necessary to first find the maximum
value of each row in 7k × 7k array (assuming the higher the enemy’s score is the better), and then find
the minimum value in the maximum vector, and generate the corresponding strategy pairing. It is the
best strategy for both our aircraft and the enemy. In the process, the CUDA parallelization method
is used to find the maximum/minimum value of the vector. The concept is: first compare each two
elements of the vector with each other, select a larger value, and then compare each of the two elements
with the selected value. After comparison according to the above procedure, the maximum value of the
vector can be selected. Because the comparison process is calculated in parallel, it can be much faster
than the non-parallelization method. Because CUDA has more computational cores, a block can cover
up to 512 threads, so we can perform large-value selection operations for each column at the same time.
Taking 2 × 2 air combat as an example, first calculate the maximum value of each row in the 72 × 72

U value matrix to obtain a 72 × 1 column vector matrix; then compare the 72 × 1 column vector with
each other according to the above principle, and place the smaller one element on the first element
of the column. After repeated comparisons, a minimum value can be obtained, which represents the
minimum value of the Red Army’s maximum superiority value, and the maximum value of the Blue
Army’s smallest superiority value. This is the saddle point of 72 × 72 matrix. The program cumax.cu
for finding the minimum value of CUDA is listed below. It is noted that the optimized library, such as
CUBLAS, have not been used for the parallel implementation in our search.

In the below C++ program, the function g_kel is called mainly. Because many CUDA syntaxes are
used, it is necessary to wrap it with extern “c”.
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cumax.cu

extern “C” void g_kel(float* input, float &output, int &ind, int num );

#include <iostream>

using namespace std;
__device__ void cuMAX(float& a, float& b, int &c, int &d) {

if (b>a) {

a=b;

c=d; }}
__global__ void cuscanmax1(float* indata, float* outdata, int* index, int n) {

int t=threadIdx.x;

int b=blockIdx.x;

int bdim=blockDim.x;

int gdim=gridDim.x;

int m=bdim*gdim;

float stand = -99999999.0f;
__shared__ float w[512];

__shared__ int s[512];

w[t] = stand;

s[t] = 0;
__syncthreads();

for (int k=bdim*b+t; k<n; k+=m)

cuMAX(w[t], indata[k], s[t], k);
__syncthreads();

if (t<256) cuMAX(w[t], w[t+256], s[t], s[t+256]);
__syncthreads();

if (t<128) cuMAX(w[t], w[t+128], s[t], s[t+128]);
__syncthreads();

if (t<64) cuMAX(w[t], w[t+64], s[t], s[t+64]);
__syncthreads();

if (t<32) cuMAX(w[t], w[t+32], s[t], s[t+32]);

if (t<16) cuMAX(w[t], w[t+16], s[t], s[t+16]);

if (t<8) cuMAX(w[t], w[t+8], s[t], s[t+8]);

if (t<4) cuMAX(w[t], w[t+4], s[t], s[t+4]);

if (t<2) cuMAX(w[t], w[t+2], s[t], s[t+2]);

if (t<1) cuMAX(w[t], w[t+1], s[t], s[t+1]);
__syncthreads();

if (t==0) {

outdata[b] = w[0];

index[b] = s[0]; }}
__global__ void cuscanmax2(float* indata, float* outdata, int* index, int n) {

int t=threadIdx.x;
__syncthreads();

if (t<256) cuMAX(indata[t], indata[t+256], index[t], index[t+256]);
__syncthreads();

if (t<128) cuMAX(indata[t], indata[t+128], index[t], index[t+128]);
__syncthreads();

if (t<64) cuMAX(indata[t], indata[t+64], index[t], index[t+64]);
__syncthreads();

if (t<32) cuMAX(indata[t], indata[t+32], index[t], index[t+32]);
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if (t<16) cuMAX(indata[t], indata[t+16], index[t], index[t+16]);

if (t<8) cuMAX(indata[t], indata[t+8], index[t], index[t+8]);

if (t<4) cuMAX(indata[t], indata[t+4], index[t], index[t+4]);

if (t<2) cuMAX(indata[t], indata[t+2], index[t], index[t+2]);

if (t<1) cuMAX(indata[t], indata[t+1], index[t], index[t+1]);
__syncthreads();

outdata[0] = indata[0];

}

void g_kel(float* input, float &output, int &ind, int num ) {

float *cudainput, *cudaoutput;

int *cudaindex;

int sizedata = 4 * num;

cudaMalloc((void**)&cudainput, sizedata);

cudaMalloc((void**)&cudaoutput, 2048);

cudaMalloc((void**)&cudaindex, 2048);

cudaMemcpy(cudainput, input, sizedata, cudaMemcpyHostToDevice);

cuscanmax1<<< 512, 512 >>>( cudainput, cudaoutput, cudaindex, num);

cuscanmax2<<< 1, 512 >>>( cudaoutput, cudaoutput, cudaindex, 512);

cudaMemcpy(&output, cudaoutput, 4, cudaMemcpyDeviceToHost);

cudaMemcpy(&ind, cudaindex, 4, cudaMemcpyDeviceToHost);

cudaFree(cudainput);

cudaFree(cudaoutput);

cudaFree(cudaindex);

}

In addition, the procedure for calling CUDA to find the best strategy in Figure 3 is also solved by
the equations of motion (13) to (21). CUDA can also provide a fast computing platform for the solution
of UAV motion equations, providing systems for parallel operations, and effective method of solving
ODE. There are many numerical methods for CUDA to solve ODE. This article uses the most common
Runge-Kutta-Merson method, interested can refer to [44–47].

To continue the example of cumax.cu, according to the flow of Figure 5, first we compile cumax.cu
into cumax.obj with NVCC. Second, C++ programs must call the previously packaged CUDA function
g_kel(), then MATLAB can contact g_kel() via this C++ program. The method is through the call
header file: extern “C” void g_kel(float* input, float &output, int &ind, int num). The C++ programs
cumax.cpp that communicate CUDA with MATLAB are listed below:

cumax.cpp

#include “mex.h”

#include <omp.h>

extern “C” void g_kel(float* input, float &output, int &ind, int num );

void FloatToDouble(double *data_D, float *data_F, int size_N) {

#pragma omp parallel for

for (int k = 0; k < size_N; k++)

data_D[k] = (double) data_F[k];

}
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void DoubleToFloat(float *data_F, double *data_D, int size_N) {

#pragma omp parallel for

for (int k = 0; k < size_N; k++)

data_F[k] = (float) data_D[k];

}

void mexFunction( int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

int n1, datasize, index;

double *mA_D, *mB_D, *mC_D;

float *mA_F, oub;

if (nlhs > 2) mexErrMsgTxt(“Only two return values.”);

if (nrhs != 1) mexErrMsgTxt(“Require 1 input vectors.”);

if (mxIsComplex(prhs[0])) mexErrMsgTxt(“Not for complex value.”);

if (mxGetM(prhs[0]) != 1) mexErrMsgTxt(“Only for row vector.”);

n1 = mxGetN(prhs[0]);

datasize = sizeof(float) * n1;

plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);

mA_D = mxGetPr(prhs[0]);

mB_D = mxGetPr(plhs[0]);

mC_D = mxGetPr(plhs[1]);

mA_F = (float *) mxMalloc(datasize);

DoubleToFloat(mA_F, mA_D, n1);

g_kel(mA_F, oub, index, n1);

mB_D[0] = (float)oub;

mC_D[0] = (int)index + 1;

mxFree(mA_F);

}

It is noted that even the matrix representation format for MATLAB is column-major and for C++
is row-major, the fuction mxGetPr (*) just produce a 1D array that is linearized according to MATLAB
convention (column order), and so the fact that C is row order is irrelevant. Furthermore, mxGetPr
(*) does not ‘produce’ anything—it simply returns a pointer to the beginning of the first element of
the data array no matter its apparent dimension in MATLAB. Finally, we will use “mux mumax.cpp”
instruction in MATLAB to convert mumax.cpp into a MATLAB executable function.

5. Simulation Results

5.1. Consulting Air Combat Simulation of 2 × 2

Figure 6 shows the two vs. two target aircraft air combat simulation, showing the trajectory
and attitude changes of the four fighters. The strategies used by R1 (red) and R2 (pink) drones are



Electronics 2018, 7, 160 16 of 24

steady flight and B1 (blue) and B2 (black) use the strategies and command values shown in Table 1.
The flight strategy is optimized by (25) and the equations of motion of each fighter are (13) to (18).
The performance parameters in (19) to (21) are τx = τz = 0.1, ωn = 10 and ξ = 0.7.

Table 1. Strategy and command value.

Command Values

Strategy Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7

Max Load
Factor Left

Turn

Max Long
Acceleration

Steady
Flight

Max Long
Deceleration

Max Load
Factor Right

Turn

Max Load
Factor Pull

Up

Max Load
Factor Push

Over

nxcom (g) 0 1.5 0 −1.5 0 0 0
nzcom (g) 3 0 0 0 3 3 −3

φcom (rad) −π
2 0 0 0 π

2 0 0

From the simulation results in Figure 6, it can be observed that B1 and B2 each chase the closest
target. First, B1 shoots down R1 after 23.2 s, and B2 is still chasing R2. After B1 wins, it begins to turn
to chase R2 as an assist for B2, showing the negotiation characteristics. B2 finally shot down R2 after
36.8 s.Electronics 2018, 7, x FOR PEER REVIEW  17 of 24 

 

 
Figure 6. 2 × 2 drone aircraft air combat simulation. 

Figure 7 shows a two vs. two unequal air combat simulation. The strategy used is as shown in 
Table 1, but the command value 

comx
n  is set to be 1.5 g and zcom

n  is 3 g, which means poor flight 

performance. The B1 and B2 strategy command values are also as shown in Table 1, but no matter 
what flight strategy is used, we will fix it to 0.1 g, which means the flight strategy is stupid. It can be 
observed from the simulation results that because R1 has a higher position, the height is first 
lowered, and the potential energy is exchanged for kinetic energy to speed up the speed; while B1 
and B2 are faster, the strategy adopted is the best for straight-line escape. After R1 lowered the 
height, it originally chased B2 with its R2 partner, but later changed to R2 to chase B2, and R2 chased 
B1. B2 has been locked by R1 at 40.8 s and is about to be shot down at 52.8 s, so B2 crashes at 58.8 s 
without any effort and height is too low. B1 fled the R2 chase by virtue of the speed of the height 
drop. From this simulation, we can understand that the advantages and disadvantages of the flight 
strategy can directly affect the air combat result. Even if the performance of the fighter is better, it 
may be shot down by the fighter with poor performance. B2 crashed but B1 escaped by performance 
advantage, indicating that performance has a greater impact on long-distance escape and chase, 
while flight strategy is a decisive factor in melee combat. 

 
Figure 7. 2 × 2 unequal air combat simulation. 

Figure 6. 2 × 2 drone aircraft air combat simulation.

Figure 7 shows a two vs. two unequal air combat simulation. The strategy used is as shown
in Table 1, but the command value nxcom is set to be 1.5 g and nzcom is 3 g, which means poor flight
performance. The B1 and B2 strategy command values are also as shown in Table 1, but no matter
what flight strategy is used, we will fix it to 0.1 g, which means the flight strategy is stupid. It can be
observed from the simulation results that because R1 has a higher position, the height is first lowered,
and the potential energy is exchanged for kinetic energy to speed up the speed; while B1 and B2
are faster, the strategy adopted is the best for straight-line escape. After R1 lowered the height, it
originally chased B2 with its R2 partner, but later changed to R2 to chase B2, and R2 chased B1. B2
has been locked by R1 at 40.8 s and is about to be shot down at 52.8 s, so B2 crashes at 58.8 s without
any effort and height is too low. B1 fled the R2 chase by virtue of the speed of the height drop. From
this simulation, we can understand that the advantages and disadvantages of the flight strategy can
directly affect the air combat result. Even if the performance of the fighter is better, it may be shot
down by the fighter with poor performance. B2 crashed but B1 escaped by performance advantage,
indicating that performance has a greater impact on long-distance escape and chase, while flight
strategy is a decisive factor in melee combat.
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5.2. Performance Evaluation Using Decentralized Calculations

In this subsection, we test the benefits of the CPU-only decentralized calculations of the two
armed forces. The test hardware specifications are listed in Table 2.

Table 2. Test hardware specifications.

Component Type Component

CPU Intel Core 2 Quad Q9450@2.66GHz
Operating system Windows 7

GPU GTX285
GPU cuda cores 240
CPU memory 12.0 GB
GPU memory 1 GB
CPU compiler VC++ 2010
GPU compiler NVCC 4.0

The Red Army’s and Blue Army’s equations of motion and strategies are each processed by a
single CPU core. In the example of the battle of two to two, the calculations of equation of motion
and strategy, the Blues take 7 s, and the Reds take 5 s. Therefore, under the framework of distributed
processing the two militaries, it is necessary to wait until both the red and blue forces have completed
their calculations before proceeding next step, so in the process of decentralization, one of the CPU
cores is idle for two seconds waiting for the other CPU core to complete. Therefore, the decentralized
calculation is only 5 s faster than the single-core operation (7 + 5 s). On the other hand, the computing
time of the Red Army and Blue Army equations of motion accounted for 10% and 11% of the overall
time for the cluster combat simulation. Therefore, the overall computation only saves about 10% of the
computation time.

Secondly, we test the parallelism of guided missiles. In this simulation, we set the aircraft’s
payload to be two missiles. We set out to launch a second missile when the first missile did not hit
the target. In the case of two vs. twos, there will be up to four missiles on the battlefield. We use
OpenMP to assign a group of aircraft to a CPU core for computation. A two vs. two air combat
simulation will use two CPU cores on missile guidance computation. In a four vs. four air combat
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simulation, we will form a pair of two enemy forces and will have four teams on both sides and four
CPU cores are necessary. In the two vs. two air combat simulation, the time for single-core computing
and decentralized computing is 26 s and 25 s, respectively. The difference is not significant. In the case
of four vs. four, after decentralized calculation, the calculation time is faster than the original. About
14 s or so, the effect is very limited, probably because the measurement of the missile guide itself is not
large, so after parallelization, the effect is not obvious.

5.3. Performance Evaluation Using GPGPU

Next, we will test the use of the GPGPU to calculate the strategy of the aircraft during the fight.
In a two-aircraft combat team, the matrix of any decision strategy combination is 72 × 72 that we first
find out the maximum value in each row to form the maximum values column vector, and then take
the minimum value of the column vector. When two aircraft are a team, the decision matrix is only
a total of 2401 elements (49× 49). This matrix is not large and it does not have a heavy burden on
the CPU’s computation. However, if GPGPU computing is used, it must take time to transfer the
data from the CPU to the GPGPU’s memory, so in Table 3, it shows that the GPGPU operation time
is much longer than that of the CPU (about 335 times). When the cluster is a group of four aircraft,
the elements of its decision strategy matrix are as high as 5,764,801 (74 × 74). After 2401 (74) times of
accumulation, the overall computing time of the GPGPU is about 14 times that of the CPU. The result
shown in Table 4 is that the decision is made at one time. A complete simulation requires about 500 to
800 decision processes, therefore, the GPGPU will spend more time than the CPU.

Table 3. Comparison of calculation time after selecting CUDA.

Number of
Clusters

CPU Calculation Time (ms)
Q9450

GPGPU Calculation Time (ms)
GTX285

2 × 2 0.016168 5.41302
4 × 4 20.6626 282.696

Table 4. Performance ratio of CPU/GPGPU.

Row
Number

CPU Calculation Time
(ms) Q9450

GPGPU Calculation
Time (ms) GTX285

Performance Ratio (CPU
Time/GPGPU Time)

75 0.0967 0.1088 0.0888
76 0.6592 0.1087 6.064
77 4.6257 0.1515 30.53
78 33.3234 0.3058 108.97

We further look for a minimum number of elements in a row that can make the GPGPU’s
computation time less than the CPU’s computation time in the calculation of the strategy matrix.
The results are shown in Table 4. We can find that at least 25,000 (76) elements of a column (compared
with the GTX285 and Q9450) to meet the requirement. It is equivalent to six-to-six cluster battle
simulation. The calculation time of each row using a GPGPU is 0.1087 milliseconds, and the CPU’s
computing time is 0.6592 milliseconds. GPGPU computing speed is about six times that of CPU.
In addition, when there are more than six aircraft on both sides, the storage capacity of the entire
strategic matrix is too large (about 12 Gigabytes), which cannot be achieved on current equipment.
Therefore, we only perform one row of operations and multiply 76 to estimate the total calculation
time. It can be roughly equal to the time when the optimal strategy is calculated in 76 × 76 cluster.
When the two clusters reach eight-to-eight, the computing time of each column is about 108.97 times
that of the CPU. At this time, the advantage of GPGPU computing clearly shows up.



Electronics 2018, 7, 160 19 of 24

5.4. Ultimate Performance Ratio of CPU/GPGPU

Next, we will speculate on the ultimate Performance ratio. First, use Tables 3 and 4 to calculate
the two models of CPU calculation time and GPGPU calculation time. Assuming that both are linear
models, the data transfer time for GPGPU is assumed to be constant, and the data transfer time by the
CPU can be ignored. The CPU calculation time model can indicate

Tcpu = Scpu × 7n (26)

GPU calculation time model can represented as

Tgpu = Sgpu × 7n + Ttrans f er (27)

where n represents the number of our or enemy fleet in air combat. For the estimation of the coefficient
Sgpu and Ttrans f er, this paper uses the regression R2 statistic, the F statistic (hypothesis test for all
regression coefficients of zero), the p-value associated with the F statistic, and the estimated value of
the error variance. R2 was calculated to be 0.9922, indicating that the model (27) accounted for more
than 99% of the variability of the observations from Tables 3 and 4. The F statistic is about 510 and
its p-value is 0.00002, indicating that all regression coefficients Sgpu and Ttrans f er are unlikely to be
zero. An error variance of 0.0001 indicates a small random variability between the variable and the
regression function (27).

The calculation of Scpu is relatively simple. The CPU calculation time in Table 3 is divided by
7n × 7n and the CPU calculation time in Table 4 is divided by 7n to obtain observations. The average of
the six data is Scpu = 5.4097× 10−6 ms, and the error values of 2 × 2 and 4 × 4 are too large (12% and
51%). This data is not credible. Therefore, take the four data in Table 4 and take the average value of
Scpu = 5.6885× 10−6 ms. Now let (26) and (27) do the performance ratio of n = 1 ∼ 13, drawing the
below Figure 8.

The left coordinate shows the performance ratio of n = 1 ∼ 6, and the right coordinate shows the
performance ratio of n = 6 ∼ 13. Observed by the solid line, it is true that when n is greater than or
equal to 6, the GPU computing time will be less than the CPU. The final value of performance ratio
falls to 168.5797 times as shown in dashed line. We should emphasize that the results in terms of
computational performance could be further improved by using a more powerful GPU in recent years.
This is because the GTX285 used in this article is based on the old Tesla architecture with a computing
capability of 1.3; while NVIDIA has introduced Kepler, Maxwell, Pascal, and Volta architectures
after Tesla and Fermi architecture, these architectures have significantly improved performance. For
example, the popular GTX750 microarchitecture is Maxwell with a computing capability of 5.2; the
recent TITAN V’s microarchitecture is Volta, and its compute capability reaches 7.
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5.5. Performance Comparison of Single Core with Integrated Parallelization

Finally, we tested the CPU decentralization calculations and join CUDA technology. The results
are shown in Table 5. It can be found that regardless of the two vs. two or four vs. four fleet simulation,
the advantages of decentralized operations are completely eliminated due to the impact of CUDA,
which in turn leads to an increase in overall computing time. The main reason may come from:

(1) The number of clusters is too small to really exert the computing power that the GPGPU
should have.

(2) In the process of simulation, each time the loop must transfer data from the memory on the
motherboard to the memory on the GPGPU, it will waste a lot of time;

(3) In the current hardware of GPGPU, the calculation core of single precision floating point operation
is more than the calculation core of double precision floating point operation. For GTX285, the
operation core of single precision floating point number is 240, but the operation core of double
precision floating point number is only 30, which is eight times worse, so in the MATLAB
environment, double precision must be converted to single precision, so it will increase a lot of
time to do this conversion;

(4) Parallel computing has its disadvantages to determine the maximum value. In a single core
algorithm, we use the zeroth element as a basis to compare with other elements. Therefore, we
only need to read other elements, and then write the result to the zeroth element, so only one
reading and one writing. However, in the framework of parallelism, the action of comparing
two data is double reading and one writing. Therefore, the algorithm of the parallel operation is
inherently more computationally intensive than the single-core operation.
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Table 5. Comparison of integrated parallelization simulation time.

Cluster Number Single Core Calculation (s) Decentralized Calculation and Join CUDA (s)

2 vs. 2 25.058792 30.456212
4 vs. 4 198.9946 398.4786

6. Conclusions

This paper studies cluster UAV cooperative air combat simulations. Negotiating theory is
combined with game theory in order to enhance group superiority. To speed-up computations,
this paper used a mixed MATLAB and CUDA C approach. This paper tests the parallel operation of
UAV cluster air combat simulation and tests respectively: parallelizes the CPUs of the equations of
motion of the two warring parties, the missiles of the warring parties guide using CPU parallelization,
and the CPU decentralization calculations joining CUDA technology. The results show that the
parallelization of the GPGPU is affected by the number of elements of the strategy matrix and
has different performance, when the number of UAVs on the battlefield is too small, the GPGPU’s
performance is worse than that of the CPU. However, when there are more than six-to-six combatants,
the performance of the GPGPU can be revealed. Therefore, we can regard the six vs. six air combat
simulation as a dividing line. When the cluster air combat simulation, the total number of UAVs
on both sides is less than 12, one can choose to use CPU parallelism to calculate the equations of
motion and strategic decisions for UAVs of the two armies; when there are more than six aircrafts
on each side, in addition to parallelizing the equations of motion of the two armies, the choice of
strategy in the calculation, we can join the CUDA parallelization acceleration, which can reduce more
calculation time.

This is the first way to build a GPU-based multi-UAV maneuver decision-making system for
MATLAB to improve its performance by leveraging the huge potential of CUDA. Another noteworthy
feature of this work is the use of off-the-shelf components, the Intel Core 2 Quad Q9450 processor
(released in 2008) and CUDA-enabled GPUs, GTX285 (240 cores, 648MHz, produced in 2009), as a
cost-effective solution to test the architecture of MATLAB mixed C++/CUDA for multi-UAV air
combat. Although the equipment is old, many interesting phenomena as described above are still
observed and the ultimate performance is forecasted 169 times under the architecture proposed in this
paper, which verified the feasibility of the architecture. The results of computational performance in
this paper can be further improved by using a more powerful GPU (or multiple GPUs). For example,
Intel i5 (eighth generation, manufactured in 2015) and NVIDIA GTX 750 (512 cores, 1020 MHz) is a
combination of devices that are now reasonably priced and new in GPU architecture.

Although this article has written CUDA functions and mixed into MATLAB to increase the
computational efficiency, but the memory delay problem of MATLAB has not been considered. How
to use CUDA different types of memory (such as global, texture, and constant) to get the maximum
performance of MATLAB is a feasible direction to avoid performance bottlenecks in the future. Parallel
Computing Toolbox on MATLAB makes it easy to solve computational and data-intensive problems
with multi-core processors, GPUs, and computer clusters. How the architecture of this article compares
performance with Parallel Computing Toolbox should be an interesting question. Apart from that,
the CUDA program written in this article has a large number of floating-point matrix multiplications
and additions, but has not yet called the CUBLAS library. In the future, CUDA code can be rewritten
to call the CUBLAS library to increase performance. On the other hand, MATLAB’s loop execution is
slower than other language compilers, if the architecture of this study has to be implemented in real
multi-UAV air combat, it is necessary to rewrite the code in other languages (such as C++).

The architecture proposed in this paper can be applied to the existing flight simulator to enhance
the intelligent target generation system, assist the pilot in the simulator against the crew, and evaluate
the tactics and forecast air combat results, which will help to develop a larger air combat training
and evaluation system. However, it can be seen from the research in this paper that although the



Electronics 2018, 7, 160 22 of 24

calculation of maneuvering decision based on matrix game is not difficult, as the number of air combat
parties increases, the decision matrix will explode. Even with GPU acceleration, the decision time will
be too long. The matrix game method is not suitable for complex real-time air combat environments.
Others, such as neural networks or deep learning, may be a better choice.
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