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Abstract: Energy optimization for periodic applications running on safety/time-critical time-triggered
multiprocessor systems has been studied recently. An interesting feature of the applications on the
systems is that some tasks are strictly periodic while others are non-strictly periodic, i.e., the start
time interval between any two successive instances of the same task is not fixed as long as task
deadlines can be met. Energy-efficient scheduling of such applications on the systems has, however,
been rarely investigated. In this paper, we focus on the problem of static scheduling multiple
periodic applications consisting of both strictly and non-strictly periodic tasks on safety/time-critical
time-triggered multiprocessor systems for energy minimization. The challenge of the problem is
that both strictly and non-strictly periodic tasks must be intelligently addressed in scheduling to
optimize energy consumption. We introduce a new practical task model to characterize the unique
feature of specific tasks, and formulate the energy-efficient scheduling problem based on the model.
Then, an improved Mixed Integer Linear Programming (MILP) method is proposed to obtain the
optimal scheduling solution by considering strict and non-strict periodicity of the specific tasks.
To decrease the high complexity of MILP, we also develop a heuristic algorithm to efficiently find
a high-quality solution in reasonable time. Extensive evaluation results demonstrate the proposed
MILP and heuristic methods can on average achieve about 14.21% and 13.76% energy-savings
respectively compared with existing work.

Keywords: energy; scheduling; multiprocessor systems; satety/time-critical; time-triggered; MILP; heuristic

1. Introduction

Multiprocessor architecture such as Multi-Processor System-on-Chip (MPSoC) are increasingly
believed to be the major solution for an embedded cloud computing system due to high computing
power and parallelism. The multiprocessor architecture of an MPSoC incorporates multiprocessors and
other functional units in a single case on a single die. Meanwhile, there is an ongoing trend that diverse
emerging safety-critical real-time applications, such as automotive, computer vision, data collection
and control applications are running simultaneously on the MPSoCs [1]. For these safety-related
applications, it is imperative that deadlines should be strongly guaranteed. Due to the strong timing
requirements and needed predictability guarantees, real-time cloud computing is a complex problem [2].
To satisfy the timing requirement, task scheduling typically relies on an offline schedule based on the
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architectures such as TTA (Time Triggered Architecture) such that full predictability is guaranteed [3].
In the computing systems, time-triggered scheduling, where tasks have to be executed at particular
points in real time, is often utilized to form a deterministic schedule. To effectively schedule the
applications, the safety-critical systems require more elaborated scheduling strategies to meet timing
constraints and the precedence relationships between tasks.

Reducing energy consumption or conducting green computing is a critical issue in deploying
and operating cloud platforms. When the safety-related applications are executed on MPSoCs,
reducing energy consumption is another concern since high energy consumption translates to shorter
lifetime, higher maintenance costs, more heat dissipation, lower reliability, and, in turn, has a
negative impact on real-time performance. Therefore, this growing demand to accommodate multiple
applications running periodically on the safety/time-critical multiprocessor systems necessitates
to develop an efficient scheduling approach to fully exploit the energy-saving potential. The high
energy consumption mainly comes from the energy consumption at the processor level. To reduce
power dissipation of processors, Dynamic Voltage and Frequency Scaling (DVFS) and Power Mode
Management (PMM (Note that PMM is also referred to as ‘Dynamic Power Management (DPM)’ [4].
This paper uses the more specific term ‘Power Mode Management’ to avoid any confusion.)) are two
well established system-level energy management techniques. DVFS reduces the dynamic power
consumption by dynamically adjusting voltage or frequency while PMM explores idle intervals of a
processor and switches the processor to a sleep mode to reduce the static power.

Lots of research has been done on scheduling for energy optimization in real-time multiprocessor
embedded systems [5–11]. An application can usually be modeled as a Directed Acyclic Graph (DAG)
where nodes denote tasks, and edges represent precedence constraints among tasks. Among these
studies, a DAG-based application must be released periodically, whereas tasks in the application can be
started aperiodically. In other words, the start time interval between any two consecutive task instances
does not need to be fixed to the value of period as long as precedence and deadline constraints can
be met. However, such an assumption in these studies is not suitable for the problem of scheduling
periodic DAGs on safety/time-critical time-triggered systems. Their solutions in the studies cannot
fully guarantee timing predictability and meet the timeliness requirements if the schedulings are not
appropriate. Moreover, their methods are merely for single DAG and cannot be directly applied to
multiple DAGs.

On the other hand, for a periodic application in time-triggered systems, the scheduling should
follow a strictly regular pattern, where besides release time and deadline, the start time of different
invocations of a task must be also periodic [12–20]. In this case, most research efforts in energy-efficient
scheduling on time-triggered multiprocessor systems, which applied mathematical programming
techniques such as Integer Linear Programming (ILP), simply and consistently assume that all tasks in
the application are strictly periodic [12–18]. Their time-triggered scheduling approaches are suitable
for the tasks that are designed for periodic samplings and actuations.

Nevertheless, tasks within an application are unnecessarily strictly periodic in reality. Today, newly
emerging periodic applications may also consist of tasks that do not generate jobs strictly periodically [21].
A typical case can be easily found in the real-world automotive application in engine management
system, where most tasks in the application are strictly periodic, and the non-strict periodic tasks are
the angle synchronous tasks. Here, for the angle synchronous tasks, the inter-arrival time depend on
the revolutions per minute and the number of cylinders of the engine [22,23]. The non-strict periodic
tasks are started with relative deadlines corresponding to around an additional 30 degrees of the
crankshaft position, after passing a specific rotation of crankshaft position. Therefore, the oversimplified
assumption in previous approaches developed for energy-efficient scheduling may impose excessive
constraints and degrades scheduling flexibility of the whole system. Furthermore, from the perspective
of energy-saving, the excessive constraints result in unnecessary energy consumption. To make readers
easy to follow, a motivating example presented in Section 4 will illustrate the problem.
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In this paper, we study the energy-efficient scheduling problem arising from the requirements
of safety-related real-time applications when deployed in the context of cloud computing
embedded platforms. We focus on the problem of static scheduling multiple periodic applications
consisting of both strictly and non-strictly periodic tasks on safety/time-critical time-triggered MPSoCs
for energy optimization by employing the two powerful techniques: DVFS and PMM. To reduce
energy consumption more effectively, both strictly and non-strictly periodic tasks in time-triggered
applications should be correctly addressed. This requires an intelligent scheduling that can capture
the strict periodicity of specific tasks. Moreover, the problem becomes more challenging when
scheduling for energy minimization by combining DVFS with PMM has to consider periodicity of
specific tasks in time-triggered systems. In addition, the energy-efficient scheduling problem becomes
more complicated as the number of applications running extends from single to multiple. Our main
contributions are summarized as the following:

• We consider the unique feature of periodic applications that not all tasks within the applications are
strictly periodic in time-triggered systems. A practical task model that can accurately characterize
the periodic applications is presented and an energy-efficient scheduling problem based on the
model is formulated.

• To solve the problem, we present an improved Mixed Integer Linear Programming (MILP)
formulation utilizing the flexibility of non-strictly periodic tasks to reduce unnecessary energy
overhead. The MILP method can generate the optimal scheduling solutions.

• To overcome disadvantage of the MILP method when the size of the problem expands, we further
develop a heuristic method, named Hybrid List Tabu-Simulated Annealing with Fine-Tune
(HLTSA-FT), which integrates the list-based energy-efficient scheduling and tabu-simulated
annealing with a fine-tune algorithm. The heuristic can obtain high-quality solutions in a
reasonable time.

• We conduct experiments on both synthetic and realistic benchmarks. The experimental results
demonstrate the effectiveness of our approach.

It is worth mentioning that, based on the static energy-efficient deterministic schedule (defined in
a static configuration file) generated by our proposed methods, the operating system kernel applies
it to schedule the partition at its assigned time slot for designing of a practical safety/time-critical
partitioned system, where the middleware is integrated to ease interoperability and portability of
components to satisfy requirement regarding cost, timeliness, power consumption and so on [24,25].

The remainder of this paper is organized as follows: Section 2 reviews related work in the
literature. Section 3 describes models and defines the studied problem. In Section 4, we give a
motivating example to explain our idea. Our approach is presented in Section 5. Experimental results
are provided in Section 6. The conclusions are presented in Section 7.

2. Related Work

Scheduling for energy optimization is a crucial issue in real-time systems [2,4]. Energy-efficient
scheduling of the DAG-based application on the systems have been extensively studied. To name a
few, Baskiyar et al. combined DVFS and decisive path scheduling list scheduling algorithm to achieve
two objectives of minimizing finish time and energy consumption [6]. Liu et al. distributed the
slack time over tasks with the DVFS techniques on the critical path to achieve energy savings [8].
However, they are merely for single DAG-based application. Moreover, these approaches only consider
dynamic power consumption, and ignore static power consumption that becomes prominent in the
deep submicron domain. In energy-harvesting system, Qiu et al. were devoted to reducing power
failures and optimizing the computation and energy efficiency [26], and the authors in [27] addressed
the scheduling of implicit deadline periodic tasks on a uniprocessor based on the Earliest Deadline
First-As Soon As Possible (EDF-ASAP) algorithm. The works in [28,29] combined DVFS and PMM to
minimize energy consumption for scheduling frame-based tasks. However, their approaches can only
address independent tasks in a single-processor system. Kanoun et al. proposed a fully self-adaptive
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energy-efficient online scheduler for general DAG models for multicore DVFS- and PMM-enabled
platforms [9]. However, the proposed energy-efficient scheduling solution is designed for soft real-time
tasks, where missing deadlines is tolerable.

The aforementioned studies are not applicable for safety-critical applications that have the highest
level of safety. Furthermore, in these studies, an application is only periodic in terms of its release
time and each task within the application can start aperiodically. Obviously, such an assumption is
untenable for a time-triggered application in safety/time-critical systems. The scheduling of tasks
in time-triggered systems have also been reported in [13,14,18–20]. Lukasiewycz et al. obtained a
schedule for time-triggered distributed automotive systems by a modular framework which provided a
symbolic representation used by an ILP solver [13]. Sagstetter et al. studied the problem of synthesizing
schedules for the static time-triggered segment for asynchronous scheduling in current automotive
architectures, and proposed an ILP approach to obtain optimal solutions and a greedy heuristic to
obtain high quality solutions [18]. Freier and Chen presented the time-triggered scheduling policies for
real-time periodic task model [19]. Gendy introduced techniques to automate the process of searching
for a workable schedule and increase the system predictability [20]. Unfortunately, these works only
focus on enhancing system performance.

Research efforts devoted to task scheduling for energy optimization in time-triggered embedded
systems have received attention recently. Chen et al. presented ILP formulations and developed two
algorithms to address the energy-aware task partitioning and processing unit allocation for periodic
real-time tasks [15]. However, the work only addresses independent tasks, and it is not suitable for
the DAG-based applications. For periodic dependent tasks, Pop et al. proposed a constraint logic
programming-based approach for time-triggered scheduling and voltage scaling for low-power and
fault-tolerance [16]. Recently, the state-of-the-art work in [17] introduced a key technique to model the
idle interval of the cores by means of MILP. The study proposed a time-triggered scheduling approach
to minimize total system energy for a given set of applications represented as DAGs and a mapping
of the applications. However, the studies all assume that each task and its instances are started in a
strictly periodic pattern. In reality, besides the strictly periodic tasks within time-triggered applications,
there also exist non-strictly periodic tasks where each instance of a task does not need to be started
periodically [21–23]. To the best of our knowledge, Ref. [21] is the first study that tried to derive better
system performance with scheduling both strictly and non-strictly periodic tasks in the safety-critical
time-triggered systems. However, their work only focuses on enhancing schedulability, and energy
optimization is not involved. In this paper, we address the energy-efficient scheduling problem for
periodic time-triggered applications consisting of both strictly and non-strictly periodic tasks.

Methods for scheduling applications on time-triggered multiprocessor systems are mostly based
on mathematical programming techniques [12–18]. Since scheduling in multiprocessor systems
is NP-hard, many heuristics have been developed when the scale of the problem is increased.
To schedule multiple DAG-based applications on real-time multiprocessor systems, the studies
in [6,8,21,30–34] presented a collection of static greedy scheduling heuristics based on list-based
scheduling. The list-based scheduling heuristics are generally accepted and can provide effective
scheduling solutions and its performance is comparable with other algorithms at lower time complexity.
They efficiently reduce the search space by means of greedy strategies. However, due to the greedy
nature, they can only address certain cases efficiently and cannot ensure the solution quality for a
broad range of problems.

On the other hand, to explore the solution space for a high-quality solution, current practice in many
domains such as job shop scheduling [35], autonomous power systems [36], distributed scheduling [37]
and energy-efficient scheduling problems in embedded system [38–40], favors Tabu Search (TS)/Simulated
Annealing (SA) meta-heuristic algorithms. They have shown superiority to the one-shot list scheduling
heuristics, despite a higher computational cost. However, both TS and SA have advantages
and disadvantages. In general, the SA algorithm is problem-independent, which is analogous to
the physical process of annealing. However, it does not keep track of recently visited solutions and



Electronics 2018, 7, 98 5 of 23

needs more iterations to find the best solution. TS algorithm is more efficient in finding the best
solution in a given neighborhood, whereas it cannot guarantee convergence and avoid cycling [35].
Moreover, the algorithms cannot be directly used to solve our problem since the non-strictly periodic
tasks in time-triggered applications are ignored (whether a task starts strictly periodic or not has a
strong influence on scheduling and total energy consumption of the whole system).

To the best of our knowledge, the heuristic method for our problem is not yet reported. In this
paper, we consider to solve the problem by formulating the MILP model to obtain optimal solutions,
and further to develop an efficient heuristic algorithm since computation time of the MILP method is
intolerable when the problem size increases.

3. Problem Formulation

In this section, we first introduce related models and basic concepts that will be used in the
later sections, and then provide the problem formulation. The notations used in this paper and their
definitions are listed in Table 1.

Table 1. Notations.

Symbol Description

vm
i Task vi executed on core m (1 ≤ m ≤ M)

vm
i,p The p-th instance of task vi executed on core m

Cvi,j Communication task (vm
i transfer data to vn

j )
Ci,j Communication time between vm

i and vn
j

comm(vi, vj) Communication size between task vi and vj
Dk Deadline of application gk
Pk Period of application gk
di Deadline of task vi
pi Period of task vi
Ha Hyper-period of all tasks
B The bus bandwidth

Wm
i,l WCET of task vi on core m under v/f level l

χm Time overheads for DVFS and task switch on core m
Tbet break-even-time
Pal Total power when the core is active under v/f level l

Pidle Total power when the core is idle
Psleep Total power when the core is sleep
Pba Total Power of when the bus is active
Pbi Total power of when the bus is idle
tidle Idle time interval of the core
tsleep Sleep time interval of the core
Ecov Total energy overhead of the cores mode switching

Ecomm Total communication energy consumption in Ha
Ecomp Total computation energy consumption in Ha

Etotal_Ha Total system energy consumption in Ha
Ptotal_Ha Total power of the MPSoC

3.1. System Model

In this paper, we consider a typical MPSoC architecture [17,41,42] shown in Figure 1. The MPSoC
architecture consists of M processing cores {core 1, core 2, ..., core M}. Each core has its own local
memory, and all cores perform inter-core communication by a high bandwidth shared time-triggered
non-preemptive bus to access the main memory. The multi-core platform supports L different voltage
or frequency (v/f) levels and a set of total power value {Pa1, Pa2, . . ., PaL} (Pa1 > Pa2 > . . . > PaL)
corresponding to v/f levels. The bus controller implements a given bus protocol (e.g., time-division
multiple access protocol), and assigns bus access rights to individual cores. The communication
procedure among inter-core rely on message-passing [30]. The characteristics of the system model
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are as follows: (1) a DVFS- and PMM-enabled MPSoC; (2) non-preemptive; (3) shared time-triggered
bus based on a given protocol; (4) communications are supposed to perform at the same speed
without contentions; and (5) each core has independent I/O unit that allows for communication
and computation to be performed simultaneously. Note that the real communication cost occurs
only in inter-core communications where dependent tasks mapped on different cores. In addition,
when the tasks are allocated to the same core, the communication cost becomes zero as the intra-core
communication can be ignored.

System Bus

...
Bus

Controller

core 1 core 2 core M
Local memoryLocal memory Local memory

System Bus

On-chip 
Memory

Figure 1. System model.

3.2. Task Model

An application can be modeled by a DAG (or called task graph) comprising a set of
dependent nodes connected by edges. This article assumes a periodic real-time task model in which
G = {g1, g2, . . . , gK} is a set of K applications to be executed on the MPSoC. Application gk ∈ G
is denoted as gk = {Vk, Ek, Dk, Pk}, where Vk and Ek are set of nodes and edges in gk, respectively,
and Dk and Pk are deadline and period of gk, respectively. The deadline Dk is assumed to be a
constrained deadline, i.e., it is less than or equal to the period Pk. Tasks in gk share the same period and
deadline of gk. We use Ha to describe the least common multiple of the periods of all tasks, which is
called the hyper-period. It is well known that scheduling in a hyper-period gives a valid schedule [43].

In a task graph, each node vi ∈ Vk denotes a computation task and each edge ej ∈ Ek represents
a communication task. The computation tasks complete data computation on the processing cores,
and the communication tasks assigned to the bus complete data transmission between the cores.
Computation and communication tasks can be performed in parallel since the communication
operation is non-blocked. The weighted value on the edge indicates the amount of data transferred
between connected computation tasks. The worst case execution time (WCET) of a task vi on a core m
under v/f level l is denoted by Wm

i,l . These profiling information of tasks can be obtained in advance.
On the MPSoC platform, we consider multiple time-triggered applications which are released

periodically. As not all tasks within the applications started strictly periodically, we analyze
characteristics of the tasks and make a classification of tasks in an application as follows:

1. Strictly periodic task: the task in an application should strictly start its instances periodically,
which means that the start time interval between two successive task instances is fixed. As a
strictly periodic task v1 shows in Figure 2a, in addition to release time and deadline for the
application, the start time of different invocations of the task need to also be periodic.

2. Non-strictly periodic task: the task in an application need not start its instances periodically,
i.e., the start time interval between two successive task instances is not fixed. As a non-strictly
periodic task v2 shows in Figure 2b, the start time of different invocations of the task can be
aperiodic as long as the deadline of the task can be guaranteed.
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v1(b) (a) v1 v1

v2v2

Period Period

t

t

...

...0 Period

v2

Figure 2. Strictly and non-strictly periodic tasks.

In this paper, according to the existence of the non-strictly periodic task, an application is regarded
as exactly periodic if all tasks within the application are strictly periodic; otherwise, it is regarded as a
loose periodic application.

3.3. Energy Model

Assuming that the MPSoC supports both DVFS and PMM. In this paper, we adopt the same
energy model due to its generality and practicality [17,42,44,45]. The total system energy consumption
is composed of energy overhead of communication and computation. We assume each processing
core has three modes, active, idle and sleep mode, and the shared bus has two modes, active and idle
mode. Various practical issues including time and energy overhead of the core mode switching and
inter-core communications are also considered in the energy model. We apply inter-task DVFS [5,17,41]
technique, where the supply v/f of the core cannot be changed within single task. The dynamic power
consumption of a processing core and operation frequency f are given by:

Pd =Ce f×Vdd× f , (1)

f = k×(Vdd−Vt)
2/Vdd, (2)

where Ce f is the effective switching capacitance, Vdd is the supply voltage, k is a circuit dependent
constant and Vt is the threshold voltage. The static power consumption, Ps, is given by:

Ps =Vdd× Ileak, (3)

where Ileak denotes leakage current. Therefore, total power consumption when the core is active under
v/f level l can be computed as:

Pal =Pd+Ps+Pon, (4)

where Pon is the intrinsic power that is needed to keep the core on. Thus, the energy consumption of
task vm

i executed on core m at v/f level l can be represented as:

Eal =Wm
i,l×Pal . (5)

When a core does not execute any task (idle mode), its power consumption is primarily determined
by the idle power. We assume that Pidle and Psleep respectively represent the idle power and sleep power.
Normally, we have Pidle > Psleep. Considering the overhead of switching the processing core between
active mode and sleep mode, the definition of break-even time Tbet is defined as the minimum time
interval for which entering the sleep mode is more effective (energy-wise) when compared to the
idle mode, despite of an extra time and energy overhead associated to the mode switch between active
mode and sleep mode. In other words, the core should keep in idle mode if the idle interval tidle < Tbet;
otherwise, the core should enter into sleep with power consumption Psleep. Similar to [17], Tbet can be
calculated as:

Tbet =max{tms, (Ems−Psleep×tms)/(Pidle−Psleep)}, (6)



Electronics 2018, 7, 98 8 of 23

where tms and Ems are time and energy overhead of the core mode switching, respectively. The energy
consumed in idle mode (Eidle) and sleep mode (Esleep), are calculated respectively as follows:

Eidle =Pidle×tidle, (7)

Esleep =Psleep×tsleep. (8)

Therefore, given a static time-triggered schedule S, the total energy consumption of the processing
core is:

Ecomp(S)=Eal(S)+Eidle(S)+Esleep(S)+Ecov(S). (9)

The processing core, the bus, and the shared on-chip memory in the architecture complete the data
transfer between the two dependent tasks. Specifically, an inter-core communication is issued when two
tasks with data dependence are mapped to different processing cores. In addition, the shared on-chip
memory stores the intermediate communication. The processing core can initiate a write operation to
the shared on-chip memory by providing an address with control information that typically requires
one bus clock cycle. The communication time overhead (or latency) refers to the length of time that a
message containing multiple words delivered from a source processing core to a target processing core.
In the architecture, only one component (e.g., processing core) is allowed to use the bus actively at any
one time according to the characteristics of the shared bus. The communication procedure on the shared
bus is non-interruptible, thus multiple communications should be serialized. The communication time
overhead is proportional to the data transfer size, i.e., Ci,j = comm(vi, vj)/B, where comm(vi, vj) is the
amount of data transferred between task vi and task vj, and B is the communication bandwidth [41].
On chip memory will allocate memory space to store intermediate data. The required memory space
will be released until the target processing core sends back to the bus controller the successful data
transfer. For a task graph, there is no inter-core communication if both the source and the target node
of an edge are mapped on the same core. The inter-core communication energy overhead between task
vi and vj is calculated as Ecomm(vi, vj) = Ci,j × Pba, where Pba is the power of active bus.

3.4. Problem Statement

Mapping and scheduling in multiprocessor systems have each been proven to be NP-hard. In this
paper, we decouple the problem into mapping and scheduling. It is worth mentioning that we assume
the task mapping can be performed by using any algorithms in previous excellent works [10,30,31].
The energy-efficient scheduling problem is defined as illustrated in Figure 3.core 1 coreM

Scheduling & V/F Assignment

Multi-applications
Profile

Info Pool

core 1core 2Energy-efficient Time-
triggered Scheduler

...

...

……
core 2

…

…
…coreM …

…

Task Mapping
v/f

…exact loose looseexact
Figure 3. Energy-efficient time-triggered scheduling problem for strict and non-strict periodic tasks.

Given a DVFS- and PMM-enabled MPSoC shown in Figure 1, multiple periodic applications
consisting of both strictly and non-strictly periodic tasks, task mapping and profiling information
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as inputs, the energy-efficient time-triggered scheduler is to find a static non-preemptive scheduling
and a v/f assignment for each task in a hyper-period Ha such that total system energy consumption
Etotal_Ha is minimized while timing constraints are guaranteed.

4. Motivating Example

For easy understanding, in this section, we first present a motivating example to show that
state-of-the-art energy-efficient scheduling on time-triggered systems may not work well on the
problem. Assuming that an MPSoC has CORE1 and CORE2, each with a high frequency level fH and
a low frequency level fL. The total active power of the core under fH and fL is denoted by PaH and PaL.
Assuming a set of applications (denoted as g1, g2 and g3) and their task mappings on the MPSoC have
been given as illustrated in Figure 4. g1 is an exact periodic application in which task v1, v2, v3 and
v4 are responsible for collecting data from sensors periodically and g2 is a loose periodic application
in which task v5, v6, v7 and v8 are responsible for performing processing data. The edges e1, e4, e6

and e7 indicate their connected tasks are mapped to different cores and the dashed edges e2, e3 and e5

indicate the corresponding tasks are mapped to the same core. Thus, comm(v1, v3), comm(v2, v4) and
comm(v5, v8) are equal to 0. The periods for g1, g2 and g3 are 60, 30 and 60, respectively. Task WCETs
and power profiles are shown in Table 2. For simplicity, time unit is 1 ms, power unit is 1 W, and the
energy unit is 1 mJ.

CORE2CORE1

v1

v3

v2

v4

v5

v8

v6

v7

v9

e1

e2 e3

e4

e5
e6

e7

D1=P1=60; D2=P2=30; D3=50,P3=60;

g1

g2

g3

Figure 4. Task graphs and given mapping.

Table 2. Task WCETs and power profiles.

vi WCET( fH ) WCET( fL) ei Ci,j

v1 8 16 e1 8
v2 5 10 e2 4
v3 7 14 e3 5
v4 3 6 e4 5
v5 2 4 e5 6
v6 6 12 e6 3
v7 7 14 e7 9
v8 4 8 - -
v9 13 26 - -

PaH = 0.68 PaL = 0.41 Pidle = 0.19 Pba = 0.1
Psleep = 0 Pbi = 0 Tbet = 18 Ecov = 0.6

The hyper-period Ha is 60 if we schedule g1 and g2. In one hyper-period, g1 and g2 are released 1
and 2 times, respectively, as well as each task within its application. Based on the assumptions that the
start time interval of any two successive instances of a task must be fixed in previous works [15–17],
the scheduling for energy minimization is shown in Figure 5a. In the schedule, the horizontal axis
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represents the time, and the heights of task blocks represent the frequency level. The start time interval
between two consecutive task instances (v2

5,2, v2
5,1), (v1

6,2, v1
6,1), (v1

7,2, v1
7,1) and (v2

8,2, v2
8,1) in g2 are equal

to 30. The average power consumption in Ha can be calculated as 0.854 W.
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(a)The schedule generated by [17] with power management.
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(b)A better energy-efficient schedule generated by our method.
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(c)Fail to schedule the three task graphs based on [15-17].
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(d)A feasible schedule of the three graphs based on our method.

Scheduling Failed !!!

Figure 5. A motivating example.

In contrast to the scheduling from Figure 5a, the schedule generated by our method in Figure 5b
shows a better scheduling for energy-efficiency that the average power consumption in Ha is 0.784 W.
In the schedule, the start time interval between task pair (v2

5,2, v2
5,1), (v1

6,2, v1
6,1), (v1

7,2, v1
7,1) and (v2

8,2, v2
8,1)

in g2 do not have such the strict constraint of periodicity, as g2 is a loose periodic application. Due to
the flexibility of those non-strictly periodic tasks in the scheduling, increase of total core sleep time
and decrease of energy overhead from mode switching can achieve about 8.2% total energy savings
compared with Figure 5a.

Assuming that g3 is a exact periodic application in which v9 is responsible for data transformation,
we then consider to schedule the three task graphs, g1, g2 and g3. The hyper-period is still 60. We find
that scheduling the task graphs based on the simplistic assumptions in [15–17] would fail as shown in
Figure 5c, as their methods impose overly strict constraints on the task instances within g2. For example,
the start time of the two task instances v1

6,1 and v1
6,2 are 12 and 42, respectively, such that the start time

interval between these two task instances is fixed as 30. Thus, v9 cannot be scheduled in a hyper period
since the size of v6 is 6 and the size of v9 is 13. However, there actually exists a feasible schedule as
shown in Figure 5d. For the non-strictly periodic task v6 in g2, the constraint regarding the periodic
interval between the start time of v1

6,1 and its next instance v1
6,2 is unnecessary. In the schedule, the two

task instances, v1
6,1 and v1

6,2 start at 7 and 42, respectively, and thus v9 can be scheduled at 17.
From the above results, one can observe that the previous studies which do not consider

characteristics of non-strictly periodic tasks may result in more energy consumption and even
degradation of the schedulability of the whole system. For our problem in this paper, to reduce
energy consumption more effectively, a scheduling approach which is aware of the periodicity of
specific tasks and utilizes the flexibility of non-strictly periodic tasks is desired.

5. The Proposed Methods

This section presents the energy-efficient scheduling approach jointly with DVFS and PMM
techniques for multiple periodic applications consisting of strictly and non-strictly periodic tasks.
With consideration of strictness of tasks’ periodicity, we formulate a MILP model to solve the problem
and to obtain an optimal scheduling in which the system total energy consumption is the minimum.
Then, we develop a heuristic algorithm when the MILP formulation cannot be used to efficiently solve
large scale instances.
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5.1. MILP Method

ILP-based methods have the advantages of reachable optimality and easy access to various solving
tools. We aim to find an energy-efficient time-triggered scheduling and a v/f assignment of all tasks in
given an MPSoC, multiple DAGs and task mapping, such that the total system energy consumption
is minimized under timing constraints. To obtain optimal energy-efficient scheduling solutions for
pre-mapped tasks with consideration of strictness of tasks’ periodicity, we now develop our MILP
formulation for the problem based on the practical models defined in Section 3. We build up our
MILP formulation step by step, including v/f selection constraints, deadline constraints, periodicity
constraints for the strictly periodic tasks, precedence constraints, non-preemption constraints, and an
objective function. Firstly, we define the following variables:

xm
i,p,l : binary variable, xm

i,p,l = 1 if v/f level of task vm
i,p is l and xm

i,p,l = 0 otherwise,
tsm

i,p: Start time of computation task vm
i,p,

ctsm;n
i,p;j,q: Start time of communication task Cvm;n

i,p;j,q (vm
i,p transfer data to vn

j,q),
Om

s,p;t,q: binary variable, Om
s,p;t,q = 1 if task vm

s,p executes before task vm
t,q and Om

s,p;t,q = 0, otherwise.

Then, given task graphs and task mappings, we formulate the MILP model as follows:
Minimize:

Etotal_Ha = Ecomp + Ecomm, (10)

Subject to

1. Voltage or frequency selection constraints for each task as we use inter-task DVFS:

ΣL
l=1xm

i,p,l = 1. (11)

2. Deadline constraints (χm denotes time overheads for DVFS and task switch on core m):

tsm
i,p + ΣL

l=1(xm
i,p,l ×Wm

i,l ) + χm ≤ di. (12)

3. According to strictness of the tasks’s periodicity, we separately determine the start time of
these tasks and their instances in Ha. Therefore, for the strictly periodic tasks belonging to
the time-triggered applications within one hyper-period Ha, the periodic constraints can be
represented as follows:

tsm
i,p+1 − tsm

i,p = pi. (13)

For any non-strictly periodic task and its instances in Ha, the periodic constraint is unnecessary,
that is, the interval between the start time of two consecutive instances of the task is no longer
fixed as pi.

4. Dependency constraints for computation tasks (e.g., source task vm
i,p and target task vm

k,r mapped
to the same core:

tsm
i,p + ΣL

l=1(xm
i,p,l ×Wm

i,l ) + χm ≤ tsm
k,r. (14)

5. Dependency constraints for tasks (e.g., source task vm
i,p and target task vn

j,q mapped to different cores.

(a) Cvm;n
i,p;j,q can be started only after vm

i,p completes:

tsm
i,p + ΣL

l=1(x
m
i,p,l ×Wm

i,l ) + χm ≤ ctsm;n
i,p;j,q, (15)

(b) vn
j,q can be started only after Cvm;n

i,p;j,q completes:

ctsm;n
i,p;j,q + Ci,j + χm ≤ tsn

j,q. (16)

6. Any two computation task instances mapped to the same core must not overlap in time, as well
as the communication tasks in the bus. They can only be executed sequentially. Assume task vm

s,p



Electronics 2018, 7, 98 12 of 23

and task vm
t,q are two task instances, and MAX is a constant far greater than Ha. To guarantee

either task vm
t,q can run after task vm

s,p finishes, or vice versa, the non-preemption constraint can be
expressed as follows:

tsm
s,p+ΣL

l=1(x
m
s,p,l×Wm

s,l)+χm≤ tsm
t,q+MAX×(1−Om

s,p;t,q), (17)

tsm
t,q+ΣL

l=1(x
m
t,p,l×Wm

t,l)+χm≤ tsm
s,p+MAX×Om

s,p;t,q. (18)

The two formulas are also applicable to communication tasks mapped to the bus. The differences
between computation and communication tasks are that execution time of computation tasks
are variable, while communication time of communication tasks are constant. We can get real
computational time of the task on the specified core and real communication cost between the
dependent tasks, as task mapping has been given. In addition, communication tasks can be
overlapped with the computation tasks independent on them.

To formulate the time interval (inti) of any two adjacent tasks on each core m in one hyper-period
Ha, we use the interval modelling technique in [17]. The readers interested in the detailed steps of
modeling can refer to [17]. Then, according to the definition of Tbet, for each time interval inti on the
core, we have

di =

{
1, i f inti ≥ Tbet,
0, i f inti < Tbet,

(19)

where di refers to a binary variable in the decision array darray[N], representing whether the core
should remain idle mode (di = 0) or enter into sleep mode (di = 1). Assuming there are N tasks on
the core in Ha, the total idle and sleep interval (tidle and tsleep) can be represented as follows:

tidle = Σ1≤i≤N((1− di)× inti), (20)

tsleep = Σ1≤i≤N(di × inti). (21)

The total energy overheads of mode switch for the core can be calculated as follows:

Ecov = Σ1≤i≤N(di × Ems). (22)

Note that the step function introduced by di in Equation (19) and the multiplication of inti and
binary variable di in Equations (20) and (21) are nonlinear equations. Such problems can be solved by
commercial or open-source ILP solvers after linearization. Solutions to similar problems have been
presented in [46]. We now present the linearization process for our problem.

To linearize the multiplication of di × inti, we define a new variable ri, such that ri = di × inti. It is
obvious that inti ≤ Ha. The multiplication can be linearized as the following constraints:

ri − inti ≤ 0, (23)

ri − di × Ha ≤ 0, (24)

inti − ri + di × Ha ≤ Ha. (25)

The step function introduced by di in Equation (19) can be transformed to the following constraint:

di × (inti − Tbet) + (1− di)× (Tbet − inti) ≥ 0. (26)

In Equation (26), the multiplication of di × inti are linearized by using Equations (23)–(25).
Based on these formulations, lastly, we can obtain an optimal scheduling and minimum overall

energy consumption Etotal_Ha by solving the MILP model with ILP solver.
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Limitation of the MILP-based method: Though we can obtain an optimal solution by solving the
MILP formulation with modern ILP solvers, it is time-consuming to search the optimal solution for our
problem. Specifically, to construct time interval for each task instance in one hyper-period, the time
interval modeling in the previously discussed MILP-based method particularly yields a large number
of variables, and results in dramatically increased exploration space. The problem may even not be
solved because of memory overflow when input size of tasks to be scheduled is large. To address this,
we propose an efficient heuristic algorithm to reduce the exponentially increasing scale in Section 5.2.

5.2. Heuristic Algorithm

In this section, we develop a heuristic algorithm, named Hybrid List Tabu-Simulated Annealing
with Fine-Tune (HLTSA-FT). Different from the TS/SA algorithm mentioned in Section 2, the proposed
algorithm has the following innovations: (1) the HLTSA-FT integrates list scheduling with TS/SA to
take advantage of both algorithms and to mitigate their adverse effects. Based on our problem, the
decomposition and solution process is iteratively guided by the HLTSA-FT algorithm that employs
the proper intensification and diversification mechanism. In HLTSA-FT, the SA supplemented with
a tabu list can reduce the number of revisiting old solutions and cover a broader range of solutions;
(2) list-based scheduling performed in the List-based and Periodicity-aware Energy-efficient Scheduling
(LPES) function can efficiently obtain feasible solutions for our problem; (3) in addition, solutions can
be further improved by applying problem specific and heuristic information to guide the process of
optimization. Specifically, a fine-tune phase performed in the FT function is presented to make minor
adjustments of the accepted solution to find a better solution more rapidly. Therefore, the total number
of iterations can be reduced and solution quality can be improved. The details of HLTSA-FT are given
in Algorithm 1. Three main steps in the algorithm are:

Initialization. The step (in Lines 1–3) first sets appropriate parameters including the initial
temperature T0, the maximum number of iterations LPMAX, the maximum number of consecutive
rejections RMAX, the cooling factor δ and the maximum length of the tabu list TL. Then, the algorithm
builds TL with length of TLIST_LEN, and sets aspiration criterion A. The initial_solution_gen()
function generates an initial solution λ0 (v/f assignment for each task instance in Ha) as the starting
point of optimization process. Since a good initial solution can accelerate the convergence process, the
function integrates the MILP model of a relaxed formulation (e.g., by neglecting the idle and sleep
interval formulations). λ0 is evaluated and the current optimal energy consumption is denoted as Ecur.
The aspiration criterion accepts the move provided that its total energy is lower than that of the best
solution found so far. It helps with restricting the search from being trapped at a solution surrounded
by tabu neighbors. The tabu list stores recently visited solutions and helps saving considerable
computation time by avoiding revisits.

Iteration. In each iteration (in Lines 5–26), the solution_neighbor() function (Line 5) generates
neighborhood λnew by applying a small perturbation (swap move) to current solution λcur. In our
context, v/f assignments for the tasks are in a neighbourhood. λnew is generated in two steps: (i) select
two tasks; and (ii) swap their v/f levels. Then, λnew is checked for feasibility (i.e., if constraints
mentioned above are met) by solution_ f easible function. If the solution is not in the tabu list or satisfies
the aspiration criterion, it is selected. Otherwise, a new solution is regenerated. Then, the solution
is translated to an energy-efficient schedule by using the LPES function (Line 6). The solution λnew

which consumes less energy will always be accepted, and when λnew is an inferior solution, it may
still be accepted with a probability Pro(∆E, T) = exp(−∆/T) where T is the annealing temperature
at current iteration. This transition probability can help the algorithm to escape from local optima.
Once accepted, λnew is put in the tabu list TL and the current solution is updated by replacing λcur

with λnew for next iteration. Then, the FT phase (Line 16) will performed to fine-tune the accepted λnew.
Otherwise, the solution λnew is discarded with rjnum plus 1. The algorithm then decreases the
temperature and continues to the next iteration.
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Algorithm 1: The HLTSA-FT Heuristic Algorithm
Input: DAGs, task mappings and profiles, power profiles
Output: An energy-efficient task schedule S, v/f assignments

1 Set appropriate value of T0, LPMAX, RMAX, δ, TLIST_LEN;
2 T ← T0, rjnum, loop← 0, build tabu_list TL← Θ, λ0 ← initial_solution_gen(), λopt ← λ0

λcur ← λ0;
3 E0 ← LPES(λ0), Eopt ← E0, Ecur ← E0;
4 while loop < LPMAX and rjnum < RMAX do
5 λnew = solution_neighbor(λcur);
6 Enew = LPES(λnew);
7 if solution_ f easible and (λnew /∈ TL or (λnew ∈ TL and Enew > A)) then
8 goto line 13;
9 end

10 else
11 goto line 5;
12 end
13 ∆E← (Enew − Ecur);
14 if ∆E < 0 then
15 λcur ← λnew, Ecur ← Enew, λnew ∈ TL, A← Enew;
16 λ f ine = FT(λnew), rjunm← 0;
17 end
18 else
19 if Pro(∆E, T) > random() and Pro(∆E, T) < 1 then
20 λcur ← λnew, Ecur ← Enew, λnew ∈ TL, A← Enew;
21 end
22 else
23 rjnum← rjnum + 1;
24 end
25 end
26 loop← loop + 1, T ← T× δ;
27 end
28 return λopt, Eopt;

Stopping Criteria. The search procedure will be stopped if the number of iterations or the variable
rjnum reaches the predefined value. The variable rjnum stores the current number of continuous
rejections, and it represents that no superior solution exists in the neighborhood and the search has
reached a near optimal solution once rjnum reaches RMAX.

In the next two subsections, we give a detailed description of the LPES and FT.

5.2.1. LPES

To obtain a feasible scheduling for energy reduction efficiently, the scheduling for our problem
needs to addresses two aspects. First, a priority assignment (i.e., execution order of tasks) must satisfy
the corresponding constraints (including deadline and precedence constraints for each task graph,
and periodicity constraints for the strictly periodic tasks) in the schedule, and maximize the total
interval available for energy management. Second, the intervals need to be allocated efficiently
to reduce energy consumption. In this paper, we apply the List-based and Periodicity-aware
Energy-efficient Scheduling (LPES) method. The first aspect is addressed through bottom level (b-level)
based priority assignment. The second aspect is addressed through a modified simple MILP model
whose number of variables is only linear with the number of tasks.
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List scheduling is a type of scheduling heuristics in which ready tasks are assigned priorities and
ordered in a descending order of priority. A ready task is a task whose predecessors have finished
executing. Each time, the task with the highest priority is selected for scheduling. If more than one
task has the same priority, ties are broken using the strategy such as the random selection method.
Priority assignment based on the b-level has been adopted in energy-aware multiprocessor scheduling.
The b-level of a task is defined as the length of the longest path from the beginning of the task to the
bottom of the task graph. As we focus on multi-DAGs in our problem, we define the b-level of task vm

i,p
and its next instance vm

i,p+1 within Ha as:

BL(vm
i,p) = BL(vm

i,p+1) + pi. (27)

We calculate b-level values of all tasks and their instances, and sort them in a list which is ordered
in descending order. The higher the value of b-level, the higher the priority of the task. An example is
shown as below:

Example 1. Consider the case given in the form of two task graphs g1 and g2 in Figure 4. The b-level of
tasks in Ha are shown in Table 3. Thus, execution order of tasks on CORE1 and CORE2 are denoted as
{v1

7,1 → v1
6,1 → v1

7,2 → v1
2,1 → v1

6,2 → v1
4,1} and {v2

5,1 → v2
8,1 → v2

1,1 → v2
3,1 → v2

5,2 → v2
8,2}, respectively.

Table 3. The b-level of each task in one hyper-period.

Tasks v2
1,1 v1

2,1 v2
3,1 v1

4,1 v2
5,1 v1

6,1 v1
7,1 v2

8,1 v2
5,2 v1

6,2 v1
7,2 v2

8,2

b-level 29 13 15 3 42 43 50 34 12 13 20 4

Based on the given priority and v/f assignment for each task, a scheduling with PMM should
be generated to reduce total energy consumption. The time interval can be directly modeled as the
following:

Assuming that there are N task instances on a core m in a hyper-period Ha, all these tasks
are stored in a task list represented as T1, T2, . . . , Ti, . . . , TN(1 ≤ i ≤ N) where tasks are ordered in
descending order of their priorities. As the tasks in the first hyper-period shown in Figure 6, the time
interval between any two adjacent tasks, Ti and Ti+1(1 ≤ i ≤ N − 1), can be directly calculated as:

inti = st(Ti+1)− f t(Ti), (28)

where st(Ti) and f t(Ti) denote start time and finish time of task Ti, respectively. As we focus
on task scheduling in one hyper-period and task execution are repeated in each hyper-period,
there are N time intervals. The last time interval intN between task T1 and task TN is calculated
as intN = [Ha − f t(TN)] + [st(T1)− 0].

TNT1 T2 Ti
t

...

0 Ha
Ti+1... ...

int1 inti

Figure 6. Tasks in a hyper-period.

In the time interval modeling in Section 5.1, a large number of intermediate integer variables are
used to check timing information of every task instance to determine the closest task instance for a
task instance. While compared with the time interval modeling in [17], the number of constraints and
many decision variables (e.g., xm

i,p,l and Om
s,p;t,q,) and the intermediate variables (e.g., Am

s,p;t,q, Bm
s,p;t,q,

and Om
s,p;t,q − Bm

s,p;t,q in [17]) have been greatly reduced. After obtaining each idle time inti, we use the
ILP solver to obtain an energy-efficient scheduling.
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5.2.2. FT

To find solutions that can further reduce energy consumption, a fine-grained adjustment of the
neighborhood range is performed for the accepted solution (line 16 in Algorithm 1). We now present
the details of FT phase. The core idea of FT is to increase the potential energy savings by tuning
priorities that still satisfy corresponding constraints of task graphs (not blindly or randomly adjusting
priorities). In this study, for the strictly periodic tasks, their priorities remain unchanged since the
strictness of periodicity of task start time limits the possibility of adjustment within a hyper-period.
The non-strictly periodic task instances in Ha do not have to follow the strict condition that all tasks
need to be started periodically; thus, they have space for execution-order adjustment. On the other
hand, the tasks that have the same b-level value (tie-breaking tasks) also have chances to adjust their
priorities. We focus on these tasks that may have better schedule flexibility and, correspondingly, make
full use of it to achieve more energy savings. The pseudo-code of the FT is listed in Algorithm 2.

Algorithm 2: The FT Algorithm
Input: DAGs, task mappings, task and power profiles, priority assignments
Output: An improved energy-efficient task schedule S′

1 Generate possible priority assignment array pos_priority[] by priority_adj(λnew);
2 while pos_priority[] is not empty do
3 λ f ine ← pos_priority[i];
4 LPES(λ f ine);
5 if solution_ f easible and (E f ine < Eopt) then
6 λopt ← λ f ine, Eopt ← E f ine;
7 end
8 end

In Algorithm 2, firstly, the priority assignments of tasks on each core are recorded according to
the accepted solution λnew. Then, the FT keeps strictly periodic tasks unchanged. For tie-breaking and
non-strictly periodic tasks, it adjusts and records their priorities in possible priority assignment array
pos_priority[] by using priority_adj() function. Next, for each element in pos_priority[], the algorithm
performs LPES. In each iteration, the feasible solution λ f ine (checked for feasibility by solution_ f easible
function) that can reduce the energy consumption is stored. Finally, the tasks are adjusted iteratively
until no improvement can be achieved. Note that FT can be used directly in the optimization process
to find an optimal solution quickly if the initial solution is good. The FT scheme is illustrated through
the following example.

Example 2. In Example 1, the initial execution order of tasks on CORE1 and CORE2 are {v1
7,1 → v1

6,1 →
v1

7,2 → v1
2,1 → v1

6,2 → v1
4,1} and {v2

5,1 → v2
8,1 → v2

1,1 → v2
3,1 → v2

5,2 → v2
8,2}, respectively. Among them, task

v1
2,1 and task v1

6,2 are tie breaking tasks, and tasks belonging to application g2 are non-strictly periodic. Thus,
they can be adjusted (swapped) as long as the precedence constraints are guaranteed. The corresponding schedule
after FT can be seen in Figure 5b, execution order of tasks on CORE1 and CORE2 are {v1

7,1 → v1
6,1 → v1

7,2 →
v1

6,2 → v1
2,1 → v1

4,1} and {v2
1,1 → v2

3,1 → v2
5,1 → v2

8,1 → v2
5,2 → v2

8,2}, respectively. The improvement of power
consumption on the system after FT is, therefore, 8.2%.

6. Experiment Evaluation

This section presents the experimental setup and case studies. To evaluate and demonstrate the
efficiency of our proposed approaches, the experiments are performed on a 3.60 GHz 4-core PC with
4 GB of memory under Windows 7. The same 70 nm technology power parameters of the processor are
used as in the studies [17,42,44,45]. Code is written in C language, and we use the IBM ILOG CPLEX
12.5.0.0 Solver to solve the MILP formulations. In each case, CPLEX is given a time limit of 10 h.
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6.1. Experiment Setup

Our experiments include 12 applications represented by task graph TG1–TG12. TG1–TG3 are
based on industrial, automotive, and consumer applications [47]. TG4–TG6 are three applications
from ‘Standard Task Graph’ [48], which are based on real applications, namely, a robotic control
application, the FPPPP SPEC benchmark and a sparse matrix solver. In addition, we use a general
randomized task-graph generator TGFF [49] to create six different periodic applications (TG7–TG12)
with typical industrial characteristics in our experiments. These task graphs are from the original
example input file (e.g., kbasic, kseries-paralle and robtst) that come from the software package. Then,
we consider nine combinations (i.e., five relatively small benchmarks, namely SG1–SG5, and four large
benchmarks, namely LG1–LG4) of these task graphs from TG1–TG12. Each benchmark has 2–5 task
graphs with features including different topologies (such as chain, in-tree, out-tree, and fork-join),
different lengths of critical paths and numbers of dependent tasks. The period of the task graphs are
distributed randomly in [10, 2000] ms. We define a parameter α varied from [0, 1] for the whole set of
tasks in each benchmark, which reflects the ratio between the strictly and non-strictly periodic tasks.
In other words, all tasks are strictly periodic if α is equal to 1, and non-strictly periodic if α is equal 0.

We consider a 4-core architecture for our experiment. The power model is based on a typical 70
nm technology processor, which has been applied in the works [17,41,42,44,45]. The accuracy of the
processor power model has been verified by SPICE simulation. For fairness of comparison, parameters
of cores power, voltage levels and energy overhead of processor mode switch are referred to [17].
As shown in Table 4, the processor can operate at five voltage levels within the range of 0.65 V to
0.85 V with 50 mV steps and the corresponding frequencies vary from 1.01 GHz to 2.10 GHz. The
corresponding dynamic power Pd and static power Ps under different v/f level are calculated according
to the energy model in Section 3.3 and the technology constants (e.g., Ce f , k, and Vt) from [42,44,45].
The time overhead of processor mode switch tms and voltage/frequency switch are 10 ms and 600 µs,
respectively, from [50]. For the mapping step, we use the task assignment algorithm in [31] to assign
each task to the MPSoC.

Table 4. Core power model parameters.

Level 1 2 3 4 5

Vdd (V) 0.85 0.8 0.75 0.7 0.65
f (GHz) 2.10 1.81 1.53 1.26 1.01

Pd (mW) 655.5 489.9 370.4 266.7 184.9
Ps (mW) 462.7 397.6 340.3 290.1 246

Pidle = 276 mW; Psleep = 0.08 mW; Ems = 0.385 mJ

6.2. Experiment Results

This section presents the evaluation of our improved MILP method in Section 5.1 and heuristic
algorithm in Section 5.2. The number of tasks and edges of each benchmark is shown in first column
of Table 5.

Table 5. Average power consumption under different methods.

Benchmarks (Tasks/Edges)

Power Consumption (W)

SMILP IMILP HLTSA-FT

∀α α = 3/4 α = 1/2 α = 1/4 α = 3/4 α = 1/2 α = 1/4

SG1 (13/15) 2.71 2.49 2.32 2.15 2.49 2.33 2.15
SG2 (19/16) 2.96 2.61 2.39 2.14 2.63 2.39 2.17
SG3 (22/12) 2.73 2.57 2.42 2.21 2.58 2.45 2.24
SG4 (25/31) 2.98 2.74 2.55 2.48 2.76 2.56 2.49
SG5 (34/23) 4.11 3.78 3.60 3.49 3.82 3.63 3.51
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Table 5. Cont.

Benchmarks (Tasks/Edges)

Power Consumption (W)

SMILP IMILP HLTSA-FT

∀α α = 3/4 α = 1/2 α = 1/4 α = 3/4 α = 1/2 α = 1/4

Average Reduction -
8.38% 14.38% 19.86% 7.92% 13.88% 19.48%

14.21% 13.76%

LG1 (108/72) TL TL TL TL 3.93 3.41 3.37
LG2 (230/241) TL TL TL TL 4.89 4.26 3.79
LG3 (355/329) TL TL TL TL 4.77 4.39 3.55
LG4 (416/263) TL TL TL TL 4.11 3.70 3.14

6.2.1. Evaluation of the Improved MILP

We evaluate and compare our improved MILP method (represented by IMILP) with existing
scheduling method (denoted as SMILP) in which the periodic constraint must be strictly followed in the
start of all tasks [17]. Table 5 shows average power consumptions in one hyper-period (i.e., the average
value of Etotal_Ha divided by Ha) under different MILP-based methods. The results are obtained in
three different cases with the factor α varying from 1/4 to 3/4 with step size 1/4.

From Table 5, one can see that SMILP fails to increase energy savings in contrast to our IMILP.
Compared with SMILP, the IMILP in case α = 3/4, 1/2 and 1/4 reduces power consumption for small
benchmarks SG1-SG5 by, 8.38%, 14.38% and 19.86%, respectively. The average power consumption
can be reduced by 14.21%. The results demonstrate that the simplistic assumption in previous SMILP
methods where each task and its task instances must strictly start periodically can lead to an increase in
energy consumption. On the other hand, column “SMILP” under “Power Consumption (W)” illustrates
the power consumption under SMILP in any cases of α remain unchanged. However, the results under
IMILP (from column 3–5 and 6–8) show that the smaller value of α, the more power consumption can
be reduced. This is because our IMILP can capture the periodicity of specific tasks belonging to their
applications, and deals with strictly and non-strictly periodic tasks correctly. To exploit energy-savings,
the IMILP method effectively utilizes the flexibility of non-strictly periodic tasks in scheduling as the
tasks do not need to start periodically.

6.2.2. Evaluation of the HLTSA-FT

We first compare HLTSA-FT heuristic method with MILP-based methods. The average power
consumptions under different α are listed in the last three columns in Table 5. Compared with SMILP,
the HLTSA-FT in case α = 3/4, 1/2 and 1/4 reduces power consumption for small benchmarks
SG1–SG5 by 7.92%, 13.88% and 19.48%, respectively. The power consumption can be reduced on
average, by 13.76%. For the five test cases, the average (minimum) deviation of the HLTSA-FT from
the IMILP is only 3.2% (1.9%). The result demonstrates our HLTSA-FT heuristic can find near optimal
solutions and its performance is close to that of IMILP for SG1–SG5. Although the MILP method
can obtain optimal results, the computation time of the method grows exponentially with increasing
size of benchmarks as shown in columns 2–4 in Table 6. The sign ‘TL’ in Tables 5 and 6 indicates
that the MILP methods for LG1–LG4 cannot generate any optimal solution in limited time (10 h in
our experiment). This verifies that the ILP solver fails to find the optimal solutions for models with
large instances. However, our HLTSA-FT heuristic algorithm can always generate feasible solutions
efficiently for the large benchmarks LG1–LG4. Thus, HLTSA-FT provides a good way for designers to
search for energy-efficient scheduling when computation time is intolerable.
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Table 6. Average computation time under different methods for various α.

Benchmarks
IMILP LSA HLTSA HLTSA-FT

α = 3/4 α = 1/2 α = 1/4 α = 3/4 α = 1/2 α = 1/4 α = 3/4 α = 1/2 α = 1/4 α = 3/4 α = 1/2 α = 1/4

SG1 8.115 8.856 12.838 4.634 4.851 5.193 0.983 1.137 1.602 1.204 1.252 2.37
SG2 12.306 18.974 21.244 4.315 9.183 15.589 4.902 5.926 10.39 4.991 6.878 9.649
SG3 22.928 32.730 96.795 20.059 28.308 31.443 7.998 10.341 30.464 8.656 9.908 32.004
SG4 65.983 97.253 112.581 39.229 50.943 112.556 15.831 16.955 28.77 18.534 18.775 27.639
SG5 624.600 1839.851 2603.3 178.315 205.233 255.689 27.041 27.541 51.837 27.426 28.53 55.51
LG1 TL TL TL 846.9 2899.5 5220.98 504.94 1022.7 2455.3 632.06 1349.56 1904.56
LG2 TL TL TL 594.88 4534.12 10,120.82 123.18 2611.54 2956.88 318.8 3286.26 4294.3
LG3 TL TL TL 3695.8 24,170.1 34,201.16 920.36 2329.4 3645.92 849.62 2361.98 3283.77
LG4 TL TL TL 9639.8 23,339.78 35,815.02 2858.25 2903.53 5439.96 3553.46 4513.72 6601.95

We then compare HLTSA-FT with existing heuristic algorithms [38–40]. As mentioned in Section 2,
the SA-based algorithms have been widely applied to achieve near-optimal solutions for low power
scheduling. For fair comparison, we modify and implement the energy-efficient scheduling methods
for our problem under three configurations: LSA, HLTSA, and HLTSA-FT. The LSA heuristic applies
the list-based SA algorithm but does not consider tabu list and fine-tune phase. The HLTSA heuristic
considers LSA integrating tabu list but no fine-tune phase. We evaluate and compare our HLTSA-FT
algorithm with these heuristics in terms of two performance metrics: (1) the solution quality and (2) the
computation time of searching process.

One can see that the HLTSA and HLTSA-FT outperform LSA in solution quality. The comparison
of average power consumption of HLTSA-FT with those of SA-based algorithms are presented in
Figures 7 and 8, respectively. In Figure 7, for small benchmarks SG1–SG5, the HLTSA and HLTSA-FT
reduce average power consumption by 4.41% and 13.31%, respectively, compared with LSA. In Figure 8,
for large benchmarks LG1–LG4, the HLTSA and HLTSA-FT reduce average power consumption by
6.09% and 19.27%, respectively, compared with LSA. This is due to the fact that HLTSA and HLTSA-FT
use short-term memory of recently visited solutions known as tabu list in SA to escape from local
optima. The search can be restricted from retiring to a previously visited solution and performance of
SA can be enhanced significantly with help of the tabu list.
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Moreover, our HLTSA-FT improves the solution quality in contrast to HLTSA. In Figure 7,
for small benchmarks SG1–SG5, the HLTSA-FT in case α = 3/4, 1/2 and 1/4 reduces average power
consumption by 8.79%, 8.91% and 10.11%, respectively, compared with HLTSA. In Figure 8, for large
benchmarks LG1-LG4, the HLTSA-FT in case α = 3/4, 1/2 and 1/4 reduces average power consumption
by 9.37%, 13.32% and 19.61%, respectively, compared with HLTSA. The reason lies in the fact that the
performance is significantly improved by introducing the FT phase. The HLTSA without FT phase
focuses on searching for better (concerning energy) solutions blindly and randomly, a lot of which
are however abandoned because of violation of corresponding precedence and deadline constraints.
The HLTSA-FT actively looks around for near solutions and leads the way to potential energy-efficient
schedules by adjusting execution order of tasks if the precedence and deadline constraints are satisfied.

The column 5–13 in Table 6 presents average computation time under different SA-based methods
for various α. The comparison results are obtained over 10 runs when solving our problem. As can be
seen from the table, an interesting observation is that the computation time increases as α decreases.
This is caused by the fact that, as α decreases, the number of constraints for specific strictly periodic
tasks decreases and the search space of the problem becomes larger. This just demonstrates that our
problem requires an effective heuristic algorithm to reduce complexity when the input size becomes
larger.

HLTSA and HLTSA-FT outperform LSA on the convergence speed. For example, compared with
LSA for different benchmarks (SG1–SG5, LG1–LG4), the HLTSA algorithm under α = 1/2 reduces
the average computation time by 76.6%, 35.5%, 63.5%, 66.7%, 86.6%, 64.7%, 42.4%, 90.4%, and 87.6%,
respectively, and the HLTSA-FT algorithm under α = 1/2 reduces the average computation time by
74.2%, 25.1%, 65.0%, 63.1%, 86.1%, 53.5%, 27.5%, 90.2% and 80.7%, respectively. This is because LSA
does not keep track of recently visited solutions and needs more iterations to find the best solution,
while HLTSA and HLTSA-FT exploit the beauty of tabu search and simulated annealing to ensure the
convergence at faster rate. Furthermore, one can observe that our HLTSA-FT algorithm can improve
the solution quality (in Figures 7 and 8), without increasing significantly the number of required
simulations compared with the HLTSA (in Table 6).

To summarize, the experimental results presented above show that the proposed HLTSA-FT
heuristic algorithm achieves a good trade-off between solution quality and solution generation
time compared with the IMILP, LSA and HLTSA methods as the problem scale becomes larger.
The algorithm is a scalable heuristic method that users can adjust the configuration parameters of the
algorithm according to the specific input. To achieve further performance improvement, the HLTSA-FT
algorithm can obtain high-quality solutions by increasing optimization iterations or executing multiple
times within an acceptable time.

7. Conclusions

This paper has investigated the problem of scheduling a set of periodic applications for energy
optimization on safety/time-critical time-triggered systems. In the applications, besides strictly
periodic tasks, there also exist non-strictly periodic tasks in which different invocations of a task
can start aperiodically. We present a practical task model to characterize the strictness of the
task’s periodicity, and formulate a novel scheduling problem for energy optimization based on the
model. To address the problem, we first propose an improved MILP model to obtain energy-efficient
scheduling. Although the MILP method can generate optimal solutions, its solution computation
time grows exponentially with the number of inputs. Therefore, we further develop an HLTSA-FT
algorithm to reduce complexity and efficiently obtain a high-quality solution within a reasonable time.
Extensive evaluations on both synthetic and realistic benchmarks have demonstrated the effectiveness
of our improved MILP method and the HLTSA-FT algorithm, compared with the existing studies.

Some issues are taken into account in our future work. In this paper, we assume that task mappings
are given as a fixed input. For a higher energy efficiency, mapping and scheduling on time-triggered
multiprocessor systems need to be integrated since they are inter-dependent. Currently, we are
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working on solving this problem. Furthermore, we intend to study how to integrate our approaches
with online scheduling methods on the realistic safety/time-critical multiprocessor systems to leverage
system-wide energy consumption.
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