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Abstract: The massive penetration of wind generators in existing electrical grids is causing several
critical issues, which are pushing system operators to enhance their operation functions in order
to mitigate the effects produced by the intermittent and non-programmable generation profiles.
In this context, the integration of wind forecasting and reliability models based on experimental
data represents a strategic tool for assessing the impact of generators and grid operation state on
the available power profiles. Unfortunately, field data acquired by Supervisory Control and Data
Acquisition systems can be characterized by outliers and incoherent data, which need to be properly
detected and filtered in order to avoid large modeling errors. To deal with this challenging issue, in
this paper a novel methodology fusing Fuzzy clustering techniques, and probabilistic-based anomaly
detection algorithms are proposed for wind data filtering and data-driven generator modeling

Keywords: wind generator modeling; data analysis; fuzzy clustering techniques; bad data
detection algorithms

1. Introduction

Wind energy is recognized as one of the most promising technology for the effective
implementation of modern sustainable energy policies. Unfortunately, the massive penetration of
wind generators in existing electric grids caused several side-effects, which determines the need for
improving the robustness of system control and protection functions, mitigating the impacts of the large
uncertainties induced by the intermittent and not-programmable nature of the wind power profiles [1].
To address this issue, the combination of effective wind forecasting tools and reliable generator models,
implemented by knowledge discovering from experimental data streaming, represents one of the most
promising enabling methodology, especially in assessing the impacts of wind power profiles on power
system security and spinning reserve optimization [2,3], and in enhancing asset maintenance [3] and
optimal bidding in electrical markets [4,5].

The simplest solution methodology that could be adopted to solve these problems is based on
the deployment of average models, which can be identified by curve-fitting of experimental data
according to the procedure described in the IEC-61400-12 standard [6]. These first-order models allow
the assessment of wind power production as a function of a limited number of observable variables,
mainly the wind speed, and are characterized by a low level of accuracy, since they are not able to
take into account several important features characterizing the real generator operation. Hence, their
application is typically restricted to a limited number of applications, which only require rough wind
estimations, such as optimal sizing of wind farms and long-term wind energy assessment analysis [7].

To improve the estimation accuracy, more sophisticated data-driven techniques, including
deterministic, parametric, and probabilistic models, could be employed. Deterministic models
subdivide the power curve of a wind generator in a proper number of wind speed classes, identifying,
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for each of them, a regressive model relating the measured power output and the corresponding
wind speed. In particular, cubic regressive models parametrized on four wind speed classes, are
typically employed for the analysis of large wind generators [8]. Although these modeling approaches
allows improving the modeling accuracy, they lack in describing the influence of several variables
on the wind power profiles, such as air density and wind direction. These second-order effects
can be taken into account by using parametric models, which are aimed at describing the impacts
of a finite set of environmental variables on the generated power profiles by means of empirical
equations, whose parameters are calibrated on the basis of measured data [9]. Despite this adaptive
feature, parametric models are not able to manage the intrinsic uncertainties affecting the measured
variables, which can sensibly compromise the model performances, especially in the presence of severe
environmental conditions.

To address this issue, probabilistic models, which aim at characterizing the stochastic nature of
the measured data, can be adopted [10,11]. These modeling techniques, if integrated with multivariate
regression algorithms relating the generated power to the wind turbine parameters [9], could effectively
support several important operation functions, such as on-line condition monitoring which allows
monitoring the wind generators performances by detecting under-performance or faults [12] and
identifying the corresponding driving factors [13].

Anyway, it is worth nothing that the modeling accuracy of data-driven techniques strictly depends
by the consistency of the experimental data adopted to tune the models, which are collected by
Supervisory Control And Data Acquisition systems, and could be affected by strong uncertainties,
especially in harsh environmental condition [7]. These uncertainties could sensibly compromise the
model performances by generating incoherent or anomalous data, which mainly derive from sensor
faults, measurement errors and electronic noise. In particular, the latter needs dedicates procedures
for reducing the transmission error, such as done by authors of [14] where intelligent segmentation
techniques for reducing big data and reexamination of transmission protocols have been proposed.

Hence, in these operation scenarios, the probability of acquiring incorrect or anomalous data is
notable and the development of advanced tools for removing these data from the ‘valid’ training set is
strictly required.

To address this problem, the authors of [15] propose an iterative technique for validity check,
data scaling, missing data processing and lag removal steps of experimental wind data, which are
then adopted to train an artificial neural network for on-line condition monitoring. Anyway, the
application of this deterministic approach has been applied only to specific generator components
data, i.e., relating to shaft and bearing, and its effectiveness in filtering other kinds of data, i.e., wind
speed and power output, needs to be comprehensively assessed. This issue has been addressed in [16],
which proposes a deterministic filter technique for outliers detection in wind speed data, employing
the obtained data for designing a wind power forecasting module based on a probabilistic neural
network. Similarly, the detection of outliers can be addressed by using the ontology approach for
managing information in big data as proposed by [17], where this method allows management of the
off shore wind farm data by building a hierarchical classification, from which it is possible to compute
several derived quantities in order to make a comparison with the measured outliers by starting from
the others available measured data through applying known mathematical relations.

Starting from these results, in [18] an empirical methodology aimed at detecting anomalies
in aggregate wind speed data has been proposed. Although this technique allows the detection
and classification of local outlier factors, showing interesting results in several case studies [19], its
application is typically restricted to wind power forecasting since it does not allow to model the
operation states of both the electrical grid (i.e., network congestions) and the wind turbine (i.e.,
derated/fault), which are required in on-line condition monitoring applications.

In trying to address this issue, the most promising enabling methodologies recently explored in the
literature are based on probabilistic-based techniques, which aim at effectively detecting bad-data [20],
and data clustering analysis, which allows the exploration of data correlations by defining proper
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similarity measures [21], confirm the well proved effectiveness of the applications clustering-based in
wide and complex systems, such as the smart grids for acting policies of dynamic energy management
as well summarized in [22].

Although the application of these methodologies has been tested on several case studies, their
large-scale deployment in real operation scenarios is still at its infancy, and more works should be
done in order to improve their integration, and extensively validate their performance on real and
complex case studies.

This paper intends to fill this gap by proposing a novel processing paradigm based on the
integration of bad-data detection techniques and unsupervised clustering analysis for on-line detection
of incoherent and anomalous data from a large database of wind data, and identification of a set of
multivariate regression models relating the generated power to the measured variables. The main idea
is to combine the robustness of adaptive filtering algorithms, which have proved their effectiveness in
power system state estimation, with the data classification capability of fuzzy data clustering, which
has been extensively applied in the task of solving complex multivariate modeling problems.

Detailed experimental results obtained on a real case study is presented and discussed in order to
demonstrate the effectiveness of the proposed technique for on-line wind generators modeling.

2. Proposed Methodology

This paper proposes a processing technique for filtering experimental data by combining bad-data
detection techniques with fuzzy cluster analysis, according to the processing architecture schematically
depicted in Figure 1.

Figure 1. Proposed Methodology Scheme.

By analyzing this figure it is worth nothing that the first module aims at identifying the set of
data that are coherent with the properties of the rated power curve, described by the matrix X, with
dimensions [R, 2], where I is the number of recorded measurements. Then, a polynomial regressive
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model is identified by fitting the rated wind generator data. This benchmark model is formalized in
Equation (1), where w1, w2, w3 are the cut-in, rated and cut-off speeds, respectively

P̂ =


0 if w < w1

a + bw + cw2 "" w1 < w ≤ w2

PR "" w2 < w ≤ w3

0 "" w > w3

(1)

This regressive model allows filtering the elements of the matrix X, which are shown in figure 2,
by detecting the measured data exceeding a fixed confidence interval. This interval has been identified
by estimating, for each wind speed value included in the X matrix, the power computed by the model 1,
considering the corresponding ratio between the rated and the estimated power, as shown in Equation
(2), where α is a heuristic coefficient identified by sensitivity analysis. After this process, the X matrix
can be filtered as shown in Algorithm 1, hence obtaining the matrices XV , whose dimensions are [j, 2]
with j 6 R, and XU , whose dimensions are [k, 2] with k = R− j, which represent the matrices of the
valid and invalid data, respectively, as shown in Figure 3.

Γ(r) = α ∗ PR

P̂(r)
(2)
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Figure 2. Raw Data contained in X

Algorithm 1 Adding xUr valid objects to XV

1: for r ← 1, R do
2: if P̂(r)(1− Γ(r)) < P(r) < P̂(r)(1 + Γ(r) then
3: XV ← [XV , xr] . xr is joined to XV

4: else
5: XU ← [XU , xr] . xr is joined to XU
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Figure 3. Partitioning of data between Valid and Invalid classes.

After this filtering process, the invalid data set is analyzed in order to detect operation data
potentially referring to power derating states. This is obtained by deploying a fuzzy clustering
technique [23], which aims at classifying the data on the basis of their level of similarity. To this aim the

More specifically, in order to identify the operation points corresponding to partial load operation,
a Fuzzy C-Means (FCM) method-based has been employed to classify the matrix XU , with dimensions
[k, C] and a function of the measured wind speed and generated power. The main feature of FCM,
which is particularly useful in solving this problem, is that it does not uniquely assign a member to a
group, but a membership degree to each member for every groups between 0 and 1, which represents
the corresponding probability to belong to each cluster.

Unfortunately, the technique does not compute the number of clusters, but this has been fixed by
the Analyst. In this study the optimal number of partitions, whom number will be defined as OptNC ,
has been calculated by applying the Calinski-Harabasz Criterion [24] to the XU matrix. According to
this method, the optimal cluster numbers is identified by iteratively partitioning the elements of 5XU
minimizing the following objective function:

Jm(U, V)
k

∑
r=1

OptNC

∑
s=1

(Usr)
md(xUr , vs) (3)

s.t. m ∈ [1, ∞[

Usr =

OptNC

∑
t=1

(
d(xUr , vs)

d(xUr , vt)

) 2
m−1

−1

(4)

∀s ∈ [1, k] & ∀r ∈ [1, OptNC ]

vs =
∑k

r=1 (Usr)
m ∗ xs

∑k
r=1 (Usr)

m (5)

where Jm(U, V) is the sum of squared error, U and V are the membership and cluster centers
matrices, respectively, and d(xUr , vs) is the norm between the point xUr , which has components
(wind speed Ur

, active power Ur
) and the center vs of sth cluster and Usr is the generic element of matrix

U. Hence, the results of the application of the Fuzzy C-means method are the matrices Xs
CL, where s is

the a sth cluster of the OptNC assigned as shown in Figure 4 .
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Figure 4. The Invalid Data Partitioning where the optimal number of classes computed is 25.

By observing the partitioning of the matrix XU , and the distribution of the clustered points, several
hidden properties can be identified as shown in Figure 4, where an ensemble of a non-negligible
number of points characterized by constant power output is observable in several regions of the
identified classes. It is clear that these points can be classified as working points in derating operation
conditions, which occur when the power output of the wind turbine is deliberately reduced by the
system operator. Hence, to automatically detect these points an adaptive statistical algorithm has been
designed. This algorithm allows the update of the set of the valid point XV , and to identify a family of
regressive models describing the generator power curve for different derating levels.

To address this issue, the first step is to identify, for each cluster, the set of operation points that
are characterized by a constant power at different wind speed. This can be done by employing the
following iteratuve algorithm:

Pdmax(s) = mode(Xs
CL), ∀ s ∈ [1, OptNC ] (6)

where Pdmax(s) is the power limit for the sth cluster represented by the matrix Xs
CL, whose dimensions

depend on the number of elements of XU which have been added to each cluster. The obtained OptNC

represents the limit of the derated power curve, and it allows to find the maximum power value at
a certain derating level. This value can be used to select the elements of the valid data matrix XV to
adopt in identifying the corresponding regressive model, as described in Algorithm 2.

Algorithm 2

1: for s← 1, OptNC do

2: for r ← 1, k do

3: if PU(r) ≤ Pdmax(s) then

4: Xs
CL ← [Xs

CL, xUr ] . xUr is joined to Xs
CL matrix.

5: Xs
CL1
← Xs

CL

In this algorithm the element of XV, whose power output is lower than Pdmax(s), are added to sth
cluster. Then, for each Xs

CL1
cluster, a derated power curve is identified by applying a 3th order least

square regression method, as shown in Figure 7, where wdmax(s) is the lowest wind speed value for
each sth cluster, corresponding to the Pdmax(s) value.
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P̂ =


0 w < w1

as + bsw + csw2 w1 < w ≤ wdmax(s)

Pdmax(s) wdmax(s) < w ≤ w3

0 w > w3

(7)

Finally, after identifying the power curves for each derating condition, proper acceptability
bounds have been computed, and the elements of the matrix XU have been processed in order to
verify if they are coherent with these bounds, according to Algorithm 3. During this process not all
derating power curves have been considered, but only those corresponding to statistically relevant sets,
according to the number of elements of each s-th cluster included in X before and after the algorithm
application. The overall process is described in the following:

Algorithm 3 Adding xU f valid objects to XV

1: for s← 1, OptNC do

2: if NClobj(s)/j > η AND Pdmax(s) < τ ∗ PR then

3: for f ← 1, XU do

4: if P̂s( f )(1− Γs( f )) < Ps( f ) < P̂s
( f )(1 + Γs( f ) then

5: xs
U 7→ XV = [XV , xs

U ]

6: XVf in ← XV

Hence, the elements of WU that respect these conditions are added to WV , adjourning the matrix
XVf in , where xs

U is the rth object of XU and Γs( f ) is:

Γs( f ) = β ∗ Pdmax(s)
P̂(i)

(8)

and where β, η, tau are coefficients that have been determined on the base of sensitive analysis, and
NClobj contains the number of elements for each cluster that has been obtained by the application of
Fuzzy C-Means technique.

In particular, the optimal values of α, β and γ have been here identified in order to improve
the expected classification accuracy of the proposed model. This is a complex issue, which is still
an open problem in applying data clustering techniques because, if the filtering level is too high, a
lack of information could be obtained, while, with lower filtering, the filtered data will contain too
much invalid data, canceling out the effects of the proposed filtering data method. Then, the chosen of
extreme parameters can in both cases reduce the accuracy of the developed model, causing the need to
find the optimal compromise between these extreme cases.

3. Case Study

The described methodology has been applied to a real case study, which is based on a 38 MVA
Wind Farm, composed by 19 generators characterized by the features shown in Table 1 and in Figure 5,
where the corresponding power curve is reported. This wind farm is located in the South of Italy
in an area characterized by a high penetration of wind generators, which is frequently congested in
the transmission network. Consequently, the transmission system operator frequently imposes wind
power curtailments, which result in derating power conditions for the analyzed generators.
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Table 1. Manufacturer Data of the Wind Generator model employed in the analyzed wind farm.

Technical Characteristic
Rated Power 2010 kW
Cut-in wind speed 3 m/s
Rated wind speed 11.5 m/s
Cut-out wind speed 24.0 m/s
Diameter 92.5 m
Area 6.7201 × 103 m2

Rotor Speed 7.5–15 1/min
Power Control Electrical Pitch

Figure 5. Manufacturer Curve.

The real data adopted in the experiments have been acquired from the SCADA system; they
covered a time period of two years, include the wind speed, power output and pitch angle averaged
on 10 min.

The input data are organized in the matrix X, which has dimensions [52560, 2], where the first
value is the number of measurements of wind speed and corresponding power output available, see
Figure 2. Assigning at α the values shown in Table 2, the X has been partitioned in two matrices XV
and XU by employing the Algorithm 1. The obtained matrices, which are depicted in Figure 3, have
dimensions of [32926, 2] and [19634, 2], respectively.

After this preliminary phase, XU has been processed by the Fuzzy C-means method, obtaining
the results shown in Figure 4, where the optimal number of partitions OptNC has been calculated using
the Calinski-Harabasz criteria.

Hence, the effected consideration are obviously mathematically defined as follows by using
Algorithm 2, which is able to catch the constant part of the derated power curves also without a so
evident shape of as shown in Figure 6.

As it is shown in this figure, the application of CFM allows to define several groups of points,
which are characterized by a horizontal stripe shape, where for the most part of the defined clusters the
constant part of the derating power curves has been very clear highlighted, in particular for clusters 23,
18, 7, 8, 21, 10 and 20.

It is important remarking how the selection of the optimal number of clusters is a critical issue
in applying data clustering techniques. In this study, FCM is applied in the task of subdividing the
invalid data in many groups, triggering the identification procedure of the derating working points.
Hence, the number of clusters is expected to influence the number of derating curves, requiring the
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adoption of a suitable tool for optimal selecting the class number. Moreover, other than searching the
optimal number of clusters, there is the need of highlighting the desired features of data classified.

To address this complex issue, in this paper, after a comparative analysis of the most used solution
techniques, the Calinsky-Harabasz criterion has been adopted. The application of this technique allows
definition of groups of points characterized by a large span of wind speed while the corresponding
power span is lower, hence obtaining a dense and well separated group, which are the best conditions
for applying this method.

Furthermore, by considering the iterative nature of how this kind of criteria works, the
Calinsky-Harabasz criterion allows the fast supply of the score, which is supplied for each trial
in the searching of optimal number of clusters. Despite these benefits, a rigorous method for solving
this problem is still an open problem, which needs more research efforts.

The obtained data classification is the prerequisite to detect the elements in XU that correspond to
derating operation points of the wind generators. To this aim, the clustering method first classifies
the points of XU in OptNC power bands, then a subgroup of points characterized by constant power
value for different wind speeds is identified for the defined clusters. This class of points represents
the constant part of the derated power curves, where the corresponding values has been calculated
using Equation (6). Hence, by processing these data by the Algorithm 2, it is possible to obtain the
derated power curves in Figure 7, which have been employed to filter the points of XU according to
the procedure 3.

Hence, by observing this figure, the generated number of derated power curves is lower than
the total number of defined clusters—this is caused by how the Algorithm 2 works. Indeed, the latter
considers both the weight of each cluster population compared with the total number of points by
statistical way and the percentage level of derated power to the rated one as filtering procedure.

In particular, assuming the values reported in Table 2 for the coefficients β, η and τ, the fitted
curves shown in Figure 6 have been obtained. In this figure, the elements of the matrix XU classified
as ’valid’ are represented by black dots. The described filtering algorithms rule their distribution as
well shown, indeed the great part is distributed on the power curve at rate power, where points with
too a large power deflection have been removed both for over and underestimation. In addition, the
points that have been considered as derated power working points are distributed around the derated
power curves, which have been used for filtering them. Furthermore, the proposed method allows
the complete removal of the outliers that are characterized by too large uncorrelation between wind
speed and the corresponding measured power value, such as in the bound included between x axis
and power curve 19 and at the right of the straight line that is parallel to y axis passing for the cut-in
speed value.

Table 2. Tables of the employed coefficients for setting the level of filtering in the proposed model.

Coefficient Value

α 0.08
β 0.05
η 0.01
τ 0.10
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Figure 6. Final Extracted Points from raw data by applying the proposed methodology.

The valid data sets obtained have been adopted to identify a family of regressive models relating
the wind speed, power output and the pitch angle for each derating condition. This is obtained by
identifying the parameters of the following bi-variate polynomial function:

P̂ =


0 if w < w1

f (w, θ) "" w1 ≤ w ≤ w3

0 "" w > w3

(9)

where w is the wind speed, and θ is the pitch angle.
In order to rigorously validate the accuracy of the obtained regressive models, the results obtained

by applying different modeling techniques, including those based on the manufacturer data and those
identified by applying local outliers factors, have been compared. The performances of the analyzed
models have been evaluated over a one-year time horizon, which is characterized by the wind profile
shown in Figure 7.

Starting from this data, the estimated generated power has been calculated for each of the analyzed
method, obtaining the power profiles shown in Figure 8.

By applying the described methodology and fitting the proposed models on both filtered and raw
data the most relevant results are here discussed in order to prove the effectiveness of the proposal
of the authors to increase the accuracy of the wind generators models addressed on-line monitoring
or electric network control. Furthermore, in order to complete the analysis, the other model has
been compared with the proposed ones, in particular the models have been compared with a model
developed on the manufacturer data and applying the local outliner factor.

The performances of the models have been evaluated on a period of one year, whom wind profile
is shown in Figure 7, where is also possible appreciating the highlighted two central bounds that
correspond to the areas where is possible producing wind power.

Then, by defining the following figure of merit:

e(n) = Pm(n)− P̂(n) ∀n ∈ [1, N] (10)

where Pm is the measured power value, the corresponding error profiles have been computed, obtaining
the profiles shown in Figure 9.
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By analyzing this figure, it appears clearly the benefits deriving by the application of the proposed
filtering and classification algorithm, which is able to accurately assess the actual power profile, also in
the presence of extremely changing operation scenario.

In particular, in Figure 8 is shown the filtered data-based model that well characterize the behavior
of the wind generator in the case of high wind speeds, which is included between the rate and cut-off
values where the different values of pitch angles greatly influence the curtail of power, with respect to
the other compared method.

Indeed, the power profile obtained by the raw data-based model has shown the worst accuracy for
high power generation, which is caused by the huge number of miscorrelation between wind and the
corresponding power values. This is evident when the raw data-based model estimates power for high
speed values, observable with reference to the time window for the interval defined by [0, 2.5] × 104

units of time.
In addition, by observing power generation profiles of both manufacturer and LOF-based models

it is evident their reduced ability to describe critical operation scenarios, which are characterized by
derating operations where is clear the influence of pitch angle. All this finds evidence in Figure 9,
where for the considered time window is highlighted and this difference is expressed in per unit terms,
and where the base value is the nominal active power of the wind generator.

All this is underlined in Figure 9, which shows the worst accuracy of the latter two models for
the large part of operation scenarios in characterizing wind generator behavior. Obviously, all these
graphical considerations are mathematically summarized by using Equations (11) and (12).

Furthermore, these features are confirmed by the distribution of the Root Mean Square Error
depicted in Figure 10, and the Normalized Root Mean Square error and the Normalized Mean Absolute
error reported in Table 3. The latter parameters have been computed as follows:

NRMSE =

√
∑N

n=1[Pm(n)− P̂(n))]2

N
1

max(Pm)−min(Pm)
(11)

NMAE =
∑N

n=1 |Pm(n)− P̂(n))|
N

1
max(Pm)−min(Pm)

(12)

The model performances can be summarized in Figure 10, where the higher stability of the filtered
data-based model appears clear, while the raw data-based model shows a wider width of the error.
As natural consequence of all this and as the manufacturer and LOF-based model shows, there is a
clear lower accuracy as proved by their corresponding error distributions, where their widths is much
greater than the first twice.

Table 3. Performance Index of Accuracy, WTG 1.

Normalized
Root Means

Square Error [%]

Normalized
Mean Absolute

Error [%]

Proposed Model Combined with cleaner data 5.285 2.675
Proposed Model fitted on raw data 6.360 3.572
Model fitted on manufacturer data 15.954 6.934
Model fitted on data filtered by using the LOF technique 15.935 6.756

Hence, in order to assess the robustness of the proposed method, the obtained power curves have
been applied in the task of modeling all the wind generators of the analyzed wind farm. The obtained
results, which have been reported in Table 4, confirmed the effectiveness of the proposed model in
improving the modeling performance for all the wind generators.



Electronics 2018, 7, 47 12 of 16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time ( 1 u = 10 min ) 104

0

1

2
[-

] 

Figure 7. Wind Speed annual profile of the validation period and bounds of theoretical generated power.
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Figure 8. Annual estimated generated power profiles for each method and related comparison to
measured one (green).
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Figure 9. Annual error profile of the estimated power for each discussed method.
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Figure 10. Frequency distribution of the forecasted power error.

Table 4. Synthesis results on the corresponding obtained improvements.

Proposed Method Combined
with Cleaner Data

Proposed Method Fitted
on Raw Data

Improvements Introduced by
the Adoption of the Cleaner Data

NRSME
[ %]

NMAE
[%]

NRSME
[%]

NMAE
[%]

NRSME
[%]

NMAE
[%]

WTG 1 5.29 2.68 6.36 3.57 16.90 25.11
WTG 2 4.24 2.22 6.05 3.18 29.86 30.26
WTG 3 4.76 2.46 5.99 3.20 20.47 23.17
WTG 4 3.74 1.99 5.27 2.57 29.05 22.62
WTG 5 4.53 2.41 5.67 3.09 20.12 21.86
WTG 6 5.17 2.48 6.08 3.11 14.94 20.22
WTG 7 4.62 2.52 6.23 3.29 25.86 23.29
WTG 8 2.35 1.01 3.69 1.21 36.17 16.28
WTG 9 1.00 0.35 2.63 0.69 62.00 49.49
WTG 10 1.74 0.61 3.04 0.89 42.98 31.61
WTG 11 5.16 2.31 5.61 2.99 7.95 22.69
WTG 12 3.80 1.96 5.53 2.78 31.24 29.34
WTG 13 3.70 1.85 5.21 2.53 28.89 26.70
WTG 14 3.45 1.70 5.01 2.40 31.16 28.99
WTG 15 4.52 1.82 5.40 2.45 16.33 25.78
WTG 16 3.29 1.61 4.26 2.20 22.58 26.93
WTG 17 2.70 1.32 3.71 1.75 27.12 24.42
WTG 18 3.82 1.95 4.93 2.54 22.60 23.25
WTG 19 4.11 2.19 6.27 3.17 34.39 30.88

Overall
Wind Farm 3.79 1.87 5.10 2.51 25.72 25.54

Finally, the computational times required by the proposed methodology are shown in Table 5,
where the SCADA data extraction routine has shown to be the most time consuming process in the
proposed methodology.

Table 5. Computational times required.

time (min)

data extraction 3–4
data filtering 2–3
fitting model 1–2
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4. Conclusions

The high penetration of wind generators in modern electrical grids is pushing transmission
system operators and energy producers to enhance critical operation functions with accurate and
reliable wind generators models, designed and updated by processing experimental data. To deal
with the anomalies and incoherence affecting measured data, this paper proposed a classification
method based on bad-data detection and unsupervised clustering analysis for wind data filtering and
data-driven generator modeling. The main idea was to combine the robustness of adaptive filtering
algorithms with the data classification capability of fuzzy data clustering for on-line detection of a
valid data-set, and identifying a set of multivariate regression models relating the generated power to
the measured variables.

The experimental results obtained on a complex case study demonstrated the effectiveness of
the proposed method in enhancing the generation modeling accuracy compared to other traditional
solution algorithms.

In particular, power system operators frequently integrate simple and reliable models of wind
generators in solving power system operation problems. Hence, the possibility of enhancing these
models with advanced tools aimed at relating the actual derated power capability to the pitch angle
represents a strategic tool for reducing renewable power curtailments and power system congestions.

Indeed, the proposed method allows managing huge data-sets by processing a large matrix of
measured data with computational times compatible with the time constraints imposed by power
system operation. Moreover, the developed wind generator model has shown to be highly adaptive,
since it allows correctly describing the behavior of all the available generators.

Another important feature characterizing the proposed method is its capability in on-line detection
of potential miscorrelation between the measured and the estimated power output, as a function of
the available SCADA data. Thanks to this feature, the system operator can define effective policies
for optimal reserve management, by taking into account the expected operating state of the available
wind generators.

Finally, the proposed model, by explicitly taking into account the pitch angle, is particularly
suitable for supporting condition monitoring applications, since it allows detection if a reduction of
the generated power is related to a failure or due a voluntary power reduction imposed by the system
operator for congestion management. This feature is particularly useful in accurately quantifying the
wind power curtails that should be imposed in order to mitigate expected network congestion.

Author Contributions: F.D.C. and A.V. conceived and designed the experiments; F.D.C. performed the
experiments; F.D.C. and A.V., analyzed the data; F.D.C., A.V., D.V. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

X[R, 2] matrix of raw data
R number of elements wind speed corresponding power output contained in X
XV [j, 2] matrix of valid data
j number of elements of matrix XV
XU [k, 2] matrix of invalid data
k number of elements of matrix XU
w generic value of wind speed
P̂ power output of the manufacturer model assigned a generic wind speed value w
w1, w2, w3 cut in, rate and cut off wind speeds, respectively
a, b, c polynimial coefficients in the manufacturer curve model
PR rate power value
xr rth element (row vector) of matrix X
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P̂(r) estimated power output for rth object using manufacturer power curve [kW]

P(r) measured power output for xr element [kW].
Γ(r) vector of half width values of the acceptability bound [−]
w(r) wind speed value for rth object [m/s]
Jm sum of squared error in Fuzzy C-Means method
U membership matrix in FCM
V clusters center matrix in FCM
m index referred to the iteration number in FCM
OptNC Optimal number of clusters
NCLobj number of objects contained for each cluster
Xs

Cl sth cluster of XU
Pdmax[OptNC ] vector of the max derated power output for each considered cluster [kW]

Xs
Cl1

sth expanded cluster of XU with the elements of XV that respect the described
condition in the Algorithm 2

α, β, η, τ sensitive coefficients [−]
f s(w(r)) polynomial function of sth derated power curve
P̂s( f ) estimated power for f th element of XU using the sth derated power curve [kW]

wdmax[OptNC ] value of wind speed for sth limit (beyond which for any wind speed value lower than
cut-off limit the power output is a constant value) [m/s]

Γs( f ) vectors of half width value of acceptability bound for sth derated power curve [−]
XVf in [n,2][G, C] final matrix of valid objects obtained with the proposed data extraction methodology
n number of elements of matrix XVf in

θ pitch angle value [−], where for each element of the X f in corresponds a pitch angle
Pm measured power vector for the validation period
P̂ generic estimated power valued using one of the discussed model in this paper
e vector of the forecasting error for the validation period [−]
NRSME, NMAE Normalized Normal Root Square Mean Error and Normalized Mean Absolute Error
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