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Abstract: A biometric recognition system is one of the leading candidates for the current and the
next generation of smart visual systems. The visual system is the engine of the surveillance cameras
that have great importance for intelligence and security purposes. These surveillance devices can be
a target of adversaries for accomplishing various malicious scenarios such as disabling the camera in
critical times or the lack of recognition of a criminal. In this work, we propose a cross-layer biometric
recognition system that has small computational complexity and is suitable for mobile Internet of
Things (IoT) devices. Furthermore, due to the involvement of both hardware and software in realizing
this system in a decussate and chaining structure, it is easier to locate and provide alternative paths
for the system flow in the case of an attack. For security analysis of this system, one of the elements
of this system named the advanced encryption standard (AES) is infected by four different Hardware
Trojansthat target different parts of this module. The purpose of these Trojans is to sabotage the
biometric data that are under process by the biometric recognition system. All of the software and the
hardware modules of this system are implemented using MATLAB and Verilog HDL, respectively.
According to the performance evaluation results, the system shows an acceptable performance in
recognizing healthy biometric data. It is able to detect the infected data, as well. With respect to its
hardware results, the system may not contribute significantly to the hardware design parameters of a
surveillance camera considering all the hardware elements within the device.

Keywords: biometric recognition system; counter-terrorism; Hardware Trojan; Internet of Things;
security; surveillance

1. Introduction

The current generation of the Internet network enables user participation, collaboration
and interaction through two-way communication and improves the intelligence of machines and
search engines by translating the network information from a high-level to a low-level standardized
format. Advancement in other technologies, such as wireless communication and electronic systems’
design merged with this network, leads to a framework that provides the participation and interaction
of a massive number of electronic devices over the world-wide network. This framework is called the
Internet of Things (IoT) in which everything (i.e., every object) becomes smart by attaching/embedding
an electronic module to/inside it and has access to the world-wide network, using its unique features
and address, at any time and any place for interaction with other things, as well as network services [1].
The electronic module of everything makes the object capable of identifying, sensing, localizing,
connecting and communicating, processing information, predicting, making decisions and invoking
action. Furthermore, everything can be controlled and managed remotely through the Internet servers.
This enormous exchange of information between everything (which means among devices and servers)
helps influence every action in this world in real time. Consequently, every smart thing in this
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promising smart world (also known as the IoT world) can be positioned anywhere, such as military
systems, transportation systems and visual systems.

The smart visual system (or the IoT visual system) has attracted the research community in spite
of the increased concern and worries of privacy advocates. The state of the art technologies, namely
biometrics, crowd monitoring and automated human activity recognition, can assist the system in the
handling of the video feeds from a large number of surveillance cameras. Due to the vital demand
to provide a safer environment along with the increased anxiety about combating crimes and terror
attacks, the number of surveillance systems, such as automated closed-circuit television (CCTV),
installed in the metropolitan areas in many countries has increased tremendously. The biometric
technology has been leveraged in many of these systems to ease the management and monitoring
of the operations of the cameras, especially for its capability to screen a large number of video feeds
across different places in a real-time, remote, non-cooperative and non-invasive way.

The importance of biometric technology for surveillance purposes is extremely high [2,3].
The military forces of the United States, besides the country intelligence agencies, have utilized this
technology for their intelligence, surveillance, target acquisition and reconnaissance (ISTR) activities.
The incident of the September 11th attacks (coordinated by the al-Qaeda Islamic terrorist group)
accelerated and extended the usage of this technology in different areas of national security such as
surveillance applications in counter-terrorism and counter-piracy operations, identity management
systems, crime detection, international border crossing, time and attendance management systems,
government and law enforcement, DNA profiling, passport-free automated border crossings, collecting
security intelligence information and the determination of friend or enemy in military installation.

In this regard, we study an application of biometric technology named the biometric recognition
system here. The contributions of this paper can be stated as: (1) proposing a cross-layer biometric
recognition system suitable for mobile IoT devices; and (2) proposing four Hardware Trojans (HTs)
for the advanced encryption standard (AES) hardware unit positioned within this system. Section 2
presents the background on the area of the biometric recognition system. The security challenges for a
hardware-software (cross-layer) biometric recognition system are discussed in Section 3. The system
architecture is introduced in Section 4. The description of the designed Hardware Trojans is provided
in Section 5. The results, analysis and discussion are presented in Section 6. The conclusion is given
in Section 7.

2. The Background on the Biometric Recognition System

The process of acquiring, measuring and analyzing a range of human physiological characteristics
is called biometrics. The measurement is defined as deriving descriptive or quantitative measurements
from the characteristics for usage in a more accurate analysis. The appearance, behavior and cognition
state of a human being can all be included in the scope of characteristics. The major properties of a
biometric characteristic are uniqueness (which means having exclusive traits), permanence (which
means being consistent across time) and universality (which means it is obtainable from all the
individuals in the population). The primary advantages of biometric identifiers compared to their
traditional counterparts (i.e., user-name and password) are their precise identification, highest level of
security, mobility, difficulty in forging, being unforgettable, not being transferable and user friendliness.

In this context, a biometric system is defined as a pattern recognition machine that acquires
physiological characteristic data from an individual person, extracts a notable feature set from the
data, compares the feature set of input data (from an unknown source) against the feature set of
the reference data (from a trustworthy source) stored in the database and provides the comparison
results. The system can have two functionality modes depending on its application: identification
and verification/authentication [4]. In identification mode, it identifies an individual by searching the
feature sets of all the individuals by conducting a one-to-many comparison, while the comparison is
one-to-one in verification mode. Furthermore, the system should be initialized before being prepared
to deliver its functionalities. The initialization phase is called enrollment. In this phase, the authentic
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biometric characteristics are captured and processed. Next, their features are extracted and stored on
the database.

Commonly, this machine consists of five main modules to deliver this functionality: (a) the sensor
module, which acquires the raw biometric data of an individual by scanning and reading; every type
of biometric characteristic or data needs to be measured by a certain type of sensor; (b) the quality
assessment and enhancement module, which assesses and enhances the data quality by the respective
algorithms; (c) the feature extraction module, which extracts a set of discriminatory features from the
data to represent the underlying trait and structure; (d) the matching and decision making module,
which compares the input feature set against the reference feature set and calculates a matching score
for identity validation; the higher matching score demonstrates more accordance between the two
feature sets; the assessment afterward of all the matching scores renders the recognition of all the
individuals; (e) the system database module, which is the storage for all the reference feature sets
(obtained during the enrollment process). If there is a storage limitation, a data compression and data
decompression can be positioned in the biometric system architecture. It should be mentioned that
the biometric systems usually identify individuals based on the nearest matches rather than the exact
matches due to the variations among different instances of a biometric characteristic of an individual.

An individual characteristic should have seven factors to be a candidate for a biometric system:
(1) universality, which means it is possessed by every individual; (2) uniqueness, which means a
sufficient difference exists across individuals comprising the population; (3) permanence, which means
it should not change significantly over a period of time; (4) measurable, which means it should be
easy to digitize and compatible with the computing process; (5) performance, which means it should
comply with the recognition accuracy requirements; (6) acceptability, which means all the individuals
in the population are willing to present this characteristic; and (7) circumvention, which means the
system should be immune to fake characteristics.

Examples of biometric characteristics that have been successfully used in security applications
include face, fingerprint, palm print, iris, palm/finger vasculature structure and voice [5]. Among
these characteristics, fingerprint and iris have captured remarkable attention for security checking
purposes. Fingerprint has been used in criminal investigation for a long period of time and is known to
provide good accuracy, good execution time and good security. A fingerprint is the pattern of friction
ridges and valleys on the surface of a fingertip, the formation of which is determined during the first
seven months of fetal development. A common way to compare two fingerprints is locating all their
unique minutiae and ridge points and running a matching algorithm on the extracted feature sets to
calculate the similarity score.

The initial deployment of iris recognition was at airports to replace passport presentation (or any
other means for identity assessment) and is reputed for its excellent accuracy, fair execution time
and excellent security. The iris is the annular region of the eye bounded by the pupil and the sclera
(which is the white part of the eye) on either side. The visual texture of the iris is formed during fetal
development and is stabilized during the first two years of life. It contains very distinctive and useful
information for personal recognition. The texture features of two irises can be input to a matching
algorithm in order to compare them.

3. The Security Challenges for a Cross-Layer Biometric Recognition System

An important challenge faced by a biometric system relates to the possibility of identity theft.
What if a malicious person gets access to the biometric characteristic of an individual and performs an
active or a passive attack (such as damaging the information or stealing the information)? Considering
the fact that biometric data cannot be changed and canceled (easily), the security issue becomes worse.
The intrusion can happen by any software or hardware means in different scenarios. In one scenario,
all the enrolled users in a network can identify each other through their fingerprint and/or iris to be
taken by their own cellphones. In another scenario, a small portable surveillance system transmits the
biometric information to the operator’s cellphone. One solution for this security issue is encrypting
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the biometric data at the hardware- or the software-level before being sent to the involved units for the
identification/authentication functionality.

About ten years ago, the hardware implementation of security algorithms could be considered
as a more trustworthy element for security provision. Nowadays, any hardware or integrated circuit
(IC) chip can be a target of various attacks. ICs usually adopt the system-on-chip (SoC) technique as
their design principle for acceleration of their design-to-usage process. According to this technique,
the IC designer (or SoC integrator) builds and implements a specified main function and its circuit by
forming the essential interconnections between the delivered analog and digital intellectual property
(IP) cores (or sub-circuits) by third parties (external sources). The chip designs by unknown external
sources in the diverse environment of the semiconductor supply chain may not be trustworthy. It
is probable for a design to render an alternative function due to an applied malicious change to its
circuit, which is known as a Hardware Trojan (HT). A Trojan should be activated by a rare event
(to be sneaky), and it can be designed and inserted during design or fabrication processes by untrusted
people, design tools or modules. In other words, it manipulates the functionality for a certain data
pattern and/or after a certain number of clock cycles. Hardware Trojans can create catastrophic and
life-threatening situations in surveillance systems such as corrupting the biometric data to dismantle
an authorized access or achieving an illegal access through misidentification/misauthentication.

4. The Cross-Layer Biometric Recognition System

In this section, a cross-layer biometric recognition system with small computational complexity
suitable for mobile IoT devices is presented. In a cross-layer (hardware-software) system, the entire
design problem is partitioned into manageable areas of expertise, which means small, separate
and interchangeable components. Having well-defined, strict and logical interfaces within the system
allows each of the leveraged layers in the system to operate independently. They are designed by
different sets of experts, such as control theorists, compiler designers, software engineers, operating
system designers, embedded system designers, computer architects, circuit designers and semiconductor
experts. All the layers in this system architecture are employed to store information and coordinate
their actions in order to jointly improve the system performance. This helps achieve phenomenal
advancements in the design and development of biometric recognition systems.

The software components run on the computing cores, and the hardware components are used to
accelerate some parts of the application, as well as providing interfaces to the environment. This helps
extract benefits from further scaled transistor and memory technologies (such as tunnel field effect
transistors or magnetic tunnel junctions) within these systems. The system modularity makes the
optimization, management and maintenance processes easier. With these features, a higher level of
robustness is provided in front of unpredictable events, such as node failure, loss of connectivity,
security attack, reduction of channel capacity or anomalies in communications. Furthermore, the
quality of the system service can be tuned according to different applications. In this heterogeneous
architecture, the software elements can be changed without affecting the hardware elements, and the
hardware elements can simply reuse the functionality provided by the software elements. However,
the system has its disadvantages, as well: (a) suboptimal, which means layering brings redundancy
to the system (i.e., multiple elements performing the same function); (b) information hiding, which
means each layer may not easily access the processing information within another layer (while it can
have security privileges); and (c) performance degradation if there are strict constraints on the system
quality of service.
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Our system architecture is shown in Figure 1. The system needs to go to an initialization or user
enrollment phase in the beginning. The architecture has two sides: the Sender and the Receiver. At the
sender side, an individual takes his/her biometric data (fingerprint and/or iris here) using a cellphone
or any other type of mobile device. After data acquisition, it is transformed into a number of 128-bit
in-sequence plaintext blocks by a built-in software module within the device. The transformed data
blocks stay in a queue dedicated to plaintext. Next, the data blocks based on their priority (based on
their order in the sequence) are sent to a 128-bit AES hardware module for encryption. Once a data
block is encrypted, it is sent to stay in a queue dedicated to ciphertext.

Data Transformation
(Software-Level)

Data Encryption Unit
(Hardware-Level)Data Biometric

First-Stage
Data Analysis

(Hardware-Level)
Data Sender /RejectionAcceptance

Data SenderStorage Level
(Software-Level)

Second-Stage
Data Analysis

(Hardware-Level)

Data Decryption Unit
(Software-Level)

Figure 1. The architecture of the cross-layer biometric recognition system.

At the receiverside, the ciphertexts are captured one by one and are stored in a queue. Next,
they are sent to a software-level AES decryption module. After decryption, the biometric data are
reconstructed and sent to the first-level data analysis hardware unit. In this unit, twelve basic statistical
measures from the biometric data are compared against their reference values, which are stored
in either registers or memory. The statistical measures are: (1) the number of maximum values;
(2) the average value; (3) the median value; (4) the number of minimum values; (5) the mode (or the
smallest frequent value); (6) the standard deviation; (7) the number of values that is greater than a
high threshold value; (8) the number of values that is less than a low threshold value; (9) the kurtosis;
(10) the skewness; (11) the Manhattan norm; and (12) the Euclidean norm. The high threshold value is
equal to the mean of the biometric data plus the standard deviation of the data multiplied by three.
The low threshold value is equal to the mean of the biometric data. The biometric data are accepted to
be sent to the next stage of the recognition system if nine out of twelve statistical measures have their
values within a selected tolerance boundary. If the data do not comply with this condition, they are
rejected, and the process is stopped.

At the next stage, the biometric data are filtered in order to eliminate noise or any malicious effect
introduced into the data. Performing a comparison on the filtered data in this step helps to detect fake
biometric data, as well. Average filtering with a window size of three is used for this purpose. Then,
the filtered data are sent to the second-level data analysis hardware unit. In this unit, four distance
measures are leveraged to compare the filtered biometric data block against the reference biometric
data. The distance measures are: (a) the average of the Euclidean distance; (b) the average of the
city block (Manhattan) distance; (c) the average of the Hamming distance; and (d) the average of the
Chebyshev distance. Next, the calculated values for the distance measures of the test biometric data are
compared against their reference values (i.e., the values for four distance measures between the filtered
reference biometric data block against the reference biometric data). An acceptance happens when
three out of four of the distance measures are within the selected tolerance boundary. This process
continues for all of the entering data to the receiver side. The process flow of this system is shown
in Algorithm 1.
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Algorithm 1 The flow of the cross-layer biometric recognition system.

1: Input: A biometric dataset
2: Output: The system performance parameters (true positive rate (TPR), true negative rate (TNR), false positive

rate (FPR) and false negative rate (FNR))
3: Initialization:
4: ThresholdValuePercentage← AdminValue
5: TrueAccept← 0
6: TrueReject← 0
7: FalseAccept← 0
8: FalseReject← 0
9: for i = 1 to UserNumbers do

10: Re f erenceData← User(i).Data(1)
11: DataBlocks← DataTrans f ormation(Re f erenceData)
12: EncryptedDataBlocks← AESEncryptionHardware(DataBlocks)
13: DecryptedDataBlocks← AESDecryptionSo f tware(EncryptedDataBlocks)
14: ReconstructedData← InverseDataTrans f ormation(DecryptedDataBlocks)
15: Re f StatVector ← TwelveStatMeasures(ReconstructedData)
16: for j = 1 to UserNumbers do
17: for k = 1 to DataNumbers do
18: Skip← 0
19: if User(j).Data(k) = Re f erenceData then
20: Skip← 1
21: end
22: if Skip 6= 1 then
23: TestData← User(j).Data(k)
24: WrongFlag← 0
25: if ((TestData = In f ectedData) or (TestData = IncorrectData)) then
26: WrongFlag← 1
27: end
28: end
29: DataBlocks← DataTrans f ormation(TestData)
30: EncryptedDataBlocks← AESEncryptionHardware(DataBlocks)
31: DecryptedDataBlocks← AESDecryptionSo f tware(EncryptedDataBlocks)
32: ReconstructedData← InverseDataTrans f ormation(DecryptedDataBlocks)
33: TestStatVector ← TwelveStatMeasures(ReconstructedData)
34: StatAcceptCount← StatMeasuresComparison(Re f StatVector, TestStatVector)
35: NextStage← 0
36: if (StatAcceptCount < StatAcceptThreshold) then
37: if (WrongFlag = 1) then
38: TrueReject← TrueReject + 1
39: else
40: FalseReject← FalseReject + 1
41: end
42: else
43: NextStage← 1
44: end
45: if (NextStage = 1) then
46: FilteredRe f Data← DataFiltering(Re f erenceData)
47: FilteredTestData← DataFiltering(ReconstructedData)
48: Re f DistanceVector ← FourStatDistances(Re f erenceData, FilteredRe f Data)
49: TestDistanceVector ← FourStatDistances(Re f erenceData, FilteredTestData)
50: DistAcceptCount← StatDistancesComparison(Re f DistanceVector, TestDistanceVector)
51: if (DistAcceptCount < DistAcceptThreshold) then
52: if (WrongFlag = 1) then
53: TrueReject← TrueReject + 1
54: else
55: FalseReject← FalseReject + 1
56: end
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57: else
58: if (WrongFlag = 1) then
59: FalseAccept← FalseAccept + 1
60: else
61: TrueAccept← TrueAccept + 1
62: end
63: end
64: end
65: end
66: end
67: end
68: TPR← TrueAccept/(TrueAccept + FalseAccept)
69: TNR← TrueReject/(TrueReject + FalseReject)
70: FPR← 1− TNR
71: FNR← 1− TPR

5. Attacks on the Cross-Layer Biometric Recognition System

In this section, four new Hardware Trojans for the AES hardware module are presented as attacks
on the proposed biometric recognition system. The existing works related to the security vulnerabilities
of the AES cryptographic hardware are [6,7]. These Trojans target the hardware functionality in order
to harm the biometric data. Our scenario for these Trojans is that they are not detected during the
testing and verification phase since the “Mate Trigger” for the “Main Trigger” of each Hardware Trojan
is generated by other parts of the SoC during the “chip run-time operation”. In other words, the mate
trigger and the main trigger for each Trojan go to an AND function before being applied to the Trojan
payload part. Meanwhile, the main trigger mechanism of each Trojan circuit is designed based on the
principle of making its activation “random” and “sneaky”.

Without considering this scenario, the Trojans are not sneaky enough in terms of activation time,
and the changes caused in the hardware functionality are considered as limitations. By taking the
scenario into account, the function-targeting Hardware Trojans may not be detected during the testing
phase since there is no knowledge about the application that is going to be run on the chip. Therefore,
there is less controllability and observability for each Trojan circuitry, and they behave more covertly.
Furthermore, we can consider a scenario for Hardware Trojan implementation according to which
the idle cells (or the time-based unused cells) of the SoC chip are detected and employed adaptively
in order to construct the Trojan functionality. In addition, hardware obfuscation may reduce the
possibility of detecting the Trojans through physical inspection. The area overheads for the Trojans are
calculated, considering the insertion of “extra” cells to implement the Trojans. Without the discussed
scenario, these Trojans have limitations in terms of the added circuitry. Meanwhile, only the main
trigger is considered for activation of the Trojans here.

Our first attack targets the output of the intermediate transformation round within the AES
algorithm. The trigger circuit and the payload circuit of this attack are shown in the top and the bottom
parts of Figure 2, respectively. According to the trigger circuit, the first, the last and the middle data
points of the plaintext and the initial key are chosen. The first data point of the plaintext and the
last data point of the key go to an exclusive-OR (XOR) gate; the first data point of the key and the
last data point of the plaintext enter an OR gate; and middle data points of the plaintext and the key
enter an XOR gate. The resulting three signals go to an AND gate. The gate output signal and the
clock signal are sent to another AND gate. The obtained signal from this process triggers a two-bit
counter. Whenever the counter reaches its saturation state and also the clock signal is in its active state,
the enable signal of the HT becomes active. The output of the intermediate transformation round is
built by four 32-bit data elements that are constructed by performing the XOR operation on the round
sub-keys and the outputs of the lookup table. If the HT becomes active, then the order of these data
elements is changed before being sent to the output port of the intermediate transformation round.
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Figure 2. Attack 1: The hardware Trojan circuit for malicious manipulation of the output of the
intermediate transformation round.

The second attack targets the data elements that make the output key generated by the key
expansion unit. The trigger and the payload circuits of this attack are shown in Figure 3. For the trigger
circuit, the first and the last data points of the plaintext are selected. Furthermore, the middle data
points in the first and the second half of the key are chosen. The first data point of the plaintext and
the middle data point of the first and the second halves of the key are sent to an AND gate, and the
other data points are dispatched to an NAND gate. The resulting signals go to an XOR gate. Next,
the generated signal and the clock signal enter an AND gate to make the trigger signal for the four-bit
counter. The first and the last bits of the counter are sent to an AND gate, and the yield signal goes to
an AND function along with the middle data point of the first and the second halves of the plaintext.
The outcome signal is the enable signal for the Hardware Trojan. In the normal operation of the key
expansion unit, each data element is made by performing the XOR operation on its corresponding
sub-key and the substitution-box (S-Box) output when its input is the fourth sub-key. When the HT
becomes active, all the bits of the data element are XORed with the logical value of one.

/2]Key[Middle
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]2/Middle*3[Key
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Figure 3. Attack 2: the Hardware Trojan circuit for malicious manipulation of the functionality of the
key expansion unit.

The third attack targets the output of the table boxes (T-Boxes) within the lookup table. The structure
of the trigger circuit and the payload circuit for this attack are shown in Figure 4. For the trigger circuit, the
first data point along with the one-fourth and the middle data points of the first half of the input data
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to the intermediate transformation round along with the clock signal are sent to an AND gate. The gate
output signal triggers a two-bit counter. When the counter reaches its saturation state, the Hardware
Trojan becomes active. Once it becomes activated, a replacement happens between different portions
of the input data to a T-Box. Considering four portions for the input data, the first portion is placed for
the last portion, the last portion for the second portion and the second portion for the first portion. The
third portion stays the same.

CLK

]2/Middle[State

]4/Middle[State
2-Bit Counter

Q0

Q1

]Begin[State

Enable Trojan

T-Box(i)

Lookup Table

]X:7X[DataIN  ]X:7X[DataOUT 
S1

S2

D

C ENB

Digital Multiplexer

Enable Trojan

]X:7X[DataIN 

]Y:7Y[DataIN 

]X:7X[DataOUT 

State: Transformation Round Input

Table Lookup ofBox -T to Input :INData

Figure 4. Attack 3: The Hardware Trojan circuit for malicious manipulation of the input of the table
boxes (T-Boxes ) within the lookup table.

The fourth attack targets the S-Box output for malicious manipulation. The structure of this attack
is shown in Figure 5. For the trigger circuit, two pairs of data, each consisting of three bits, are selected.
In each pair, a data point with a certain index is chosen (either zero or one), and the index of the second
data point is the first data point plus three, and the index of the third data point is the second data
point plus three. The pair of data with the starting index of zero goes to an XOR gate, and the other
one goes to an AND gate. The output signals from these two gates are transmitted to an XOR gate.
The resulting signal is the enable signal for the HT. When the Trojan becomes active, the first and the
last bits of the S-Box are replaced.

Concatenation
Module

Concatenation
Module

S1

S2

D

C ENB

Digital Multiplexer

Out[7]}1],:Out[6{Out[0],

Enable Trojan

IN[0]

IN[3]

IN[6]

IN[1]

IN[4]

IN[7]

Enable Trojan

0]:Out[7
Out Final

IN: S-Box Input
OUT: S-Box Output

Figure 5. Attack 4: The Hardware Trojan circuit for malicious manipulation of the output of the
substitution-box (S-Box).

Figures 6–9 show the effects of these Hardware Trojans on two biometrics of fingerprint and iris.
The used biometric data in this experiment are from the Institute of Automation, Chinese Academy
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of Sciences (CASIA) -FingerprintV5 and the CASIA-IrisV4 datasets [8,9]. Among all the fingerprints
in the dataset, the thumb is selected. The indices of these data instances in the datasets are: 139 for
the left thumb, 100 for the right thumb, 94 for the left iris and 50 for the right iris. The utilized AES
hardware module in this experiment is from [10]. All the software and the hardware implementation
of the modules are done using MATLAB and Verilog HDL, respectively. It is assumed that these are
the decrypted data at the receiver side. As can be seen from the figures, the first attack makes the
biometric data blurry at the receiver side. However, the structure of the fingerprint or the iris can still
be observed. The second attack is more destructive than the first attack, and only a small portion of
the biometric data can be seen. Both the third and the fourth attacks fully annihilate the data, but it
is believed that the third attack still leaves a minor pattern in the image intact (shown in Part (b) of
Figure 7).

(a) Genuine Left Thumb (b) Infected Left Thumb 
by Hardware Trojan 1

(c) Infected Left Thumb 
by Hardware Trojan 2

(d) Infected Left Thumb 
by Hardware Trojan 3

(e) Infected Left Thumb 
by Hardware Trojan 4

Figure 6. Attack Fingerprint Example (1): The payloads of the Hardware Trojans in sabotaging the
image prints of the left thumb.

(a) Genuine Right Thumb (b) Infected Right Thumb 
by Hardware Trojan 1

(c) Infected Right Thumb 
by Hardware Trojan 2

(d) Infected Right Thumb 
by Hardware Trojan 3

(e) Infected Right Thumb 
by Hardware Trojan 4

Figure 7. Attack Fingerprint Example (2): The payloads of the Hardware Trojans in sabotaging the
image prints of the right thumb.
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(a) Genuine Left Iris (b) Infected Left Iris by 
Hardware Trojan 1

(c) Infected Left Iris by 
Hardware Trojan 2

(d) Infected Left Iris by 
Hardware Trojan 3

(e) Infected Left Iris by 
Hardware Trojan 4

Figure 8. Attack Iris Example (1): The payloads of the Hardware Trojans in sabotaging the image prints
of the left iris.

(a) Genuine Right Iris (b) Infected Right Iris by 
Hardware Trojan 1

(c) Infected Right Iris by 
Hardware Trojan 2

(d) Infected Right Iris by 
Hardware Trojan 3

(e) Infected Right Iris by 
Hardware Trojan 4

Figure 9. Attack Iris Example (2): The payloads of the Hardware Trojans in sabotaging the image prints
of the right iris.

6. Results and Discussion

In this section, the results of the performance evaluation and the hardware synthesis of the proposed
biometric recognition system are presented. All the biometric images are resized to 256× 256 pixels, and
the software and the hardware modules of the system are implemented accordingly. Fifty subjects
are selected from each of the CASIA-FingerprintV5 and the CASIA-IrisV4 datasets for performance
evaluation. The chosen subjects for the fingerprint dataset are 50–99, and the ones for the iris dataset
are 1 and 100–149 (except 147). The performance evaluation of the biometric recognition system is
done using four statistical metrics: (1) the true positive rate, which is the rate of correctly-accepted data
samples; (2) true negative rate, which is the rate of correctly-rejected data samples; (3) false positive
rate, which is the rate of wrongly-rejected data samples; and (4) false negative rate, which is the rate of
wrongly-accepted data samples. Furthermore, the evaluation of each dataset is done for seven different
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threshold values. For each biometric, the assessment is done through comparing the first image of
the biometric data of each person against the second to the fifth images of the biometric data of all
the registered people. In order to evaluate the system performance for the malicious incidents as well,
two infection cases are developed. For each infection case, ten images from ten people from the set of
each biometric data type (which means the left/right side of the fingerprint/iris) are infected by the
designed Hardware Trojans. For the first infection case, the third image of the victim subjects is chosen,
while the fifth image of the victim subjects is selected for the second infection case. The description of
infecting the datasets is shown in Table 1.

Table 1. The description of infecting the biometric datasets.

Biometric Data Subject Infection Case 1 Infection Case 2 Biometric Data Subject Infection Case 1 Infection Case 2

Left Thumb

5 Trojan 4 Trojan 3

Left Iris

2 Trojan 4 Trojan 4

10 Trojan 3 Trojan 2 7 Trojan 1 Trojan 4

15 Trojan 1 Trojan 4 12 Trojan 3 Trojan 2

20 Trojan 1 Trojan 2 17 Trojan 2 Trojan 2

25 Trojan 1 Trojan 2 22 Trojan 3 Trojan 1

30 Trojan 2 Trojan 2 27 Trojan 4 Trojan 3

35 Trojan 3 Trojan 3 32 Trojan 4 Trojan 3

40 Trojan 4 Trojan 3 37 Trojan 4 Trojan 3

45 Trojan 3 Trojan 4 42 Trojan 2 Trojan 3

50 Trojan 2 Trojan 4 47 Trojan 1 Trojan 3

Right Thumb

1 Trojan 2 Trojan 4

Right Iris

3 Trojan 1 Trojan 1

6 Trojan 2 Trojan 4 8 Trojan 2 Trojan 2

11 Trojan 2 Trojan 4 13 Trojan 4 Trojan 2

16 Trojan 1 Trojan 3 18 Trojan 4 Trojan 3

21 Trojan 4 Trojan 2 23 Trojan 3 Trojan 3

26 Trojan 4 Trojan 2 28 Trojan 3 Trojan 2

31 Trojan 3 Trojan 1 33 Trojan 1 Trojan 2

36 Trojan 3 Trojan 1 38 Trojan 2 Trojan 1

41 Trojan 2 Trojan 2 43 Trojan 4 Trojan 1

46 Trojan 1 Trojan 3 48 Trojan 3 Trojan 4

The results of the performance evaluation of the genuine and the infected biometric recognition
system are shown in Tables 2–4. The average execution time of the biometric recognition system in
evaluating a dataset is 36.9246 min. The most important parameter for security evaluation of the system
is the false negative rate. As can be comprehended from Table 2, the system demonstrates a proper
rejection capability at lower values of the threshold value. From the other side, the system performs
poorly at accepting authentic data. As the threshold value becomes larger, the system operation
becomes better at accepting valid data, while its ability for true rejection is degraded. Furthermore, the
system performance is similar for all of the tested biometrics. More importantly, the system has a low
false negative rate at higher values of the threshold value, which means it exhibits striking defense
power in front of incorrect (or malicious) biometric data.
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Table 2. Performance Evaluation Results (1): The performance evaluation of the healthy cross-layer
biometric recognition system for four biometric datasets.

Biometric Percentage of True Positive Rate True Negative Rate False Positive Rate False Negative Rate

Data Threshold Value (%) (
True Positive

True Positive + False Negative
) (

True Negative
True Negative + False Positive

) (
False Positive

False Positive + True Negative
) (

False Negative
True Positive + False Negative

)

Left Thumb

5 0.2000 0.7453 0.2547 0.8000
7.5 0.4300 0.6402 0.3598 0.5700
10 0.6150 0.5189 0.4811 0.3850

12.5 0.7650 0.4117 0.5883 0.2350
15 0.8400 0.3198 0.6802 0.1600

17.5 0.9000 0.2367 0.7633 0.1000
20 0.9200 0.1759 0.8241 0.0800

Right Thumb

5 0.2200 0.7333 0.2667 0.7800
7.5 0.4700 0.6142 0.3858 0.5300
10 0.6750 0.4747 0.5253 0.3250

12.5 0.7900 0.3641 0.6359 0.2100
15 0.9000 0.2627 0.7373 0.1000

17.5 0.9450 0.1876 0.8124 0.0550
20 0.9700 0.1330 0.8670 0.0300

20 0.6200 0.5777 0.4223 0.3800
25 0.6850 0.5060 0.4940 0.3150
30 0.7250 0.4515 0.5485 0.2750

Left Iris 35 0.7950 0.3958 0.6042 0.2050
40 0.8350 0.3437 0.6563 0.1650
45 0.8600 0.2745 0.7255 0.1400
50 0.9500 0.1679 0.8321 0.0500

20 0.6450 0.5615 0.4385 0.3550
25 0.6850 0.4898 0.5102 0.3150
30 0.7250 0.4318 0.5682 0.2750

Right Iris 35 0.7850 0.3841 0.6159 0.2150
40 0.8450 0.3371 0.6629 0.1550
45 0.8850 0.2889 0.7111 0.1150
50 0.9250 0.2065 0.7935 0.0750

Tables 3 and 4 show the system performance when the AES hardware module is infected. Since
there are infected images among the datasets in these evaluations, the system demonstrates its defense
capability, either through rejecting the infected images or filtering them for removal of an HT payload,
if the rates for true rejection and true acceptance are increased. As can be seen from the results, the
system proves its defense strength in confronting both infection cases. The graphical illustration of all
these results is shown in Figure 10. As can be observed from the figure, there is growth in the correct
acceptance and the correct rejection rates for the infection cases, which helps with the detection and
localization of the Trojans.

Table 3. Performance Evaluation Results (2): The performance evaluation of the infected cross-layer
biometric recognition system for four biometric datasets.

Biometric Percentage of True Positive Rate True Negative Rate False Positive Rate False Negative Rate

Data Threshold Value (%) (
True Positive

True Positive + False Negative
) (

True Negative
True Negative + False Positive

) (
False Positive

False Positive + True Negative
) (

False Negative
True Positive + False Negative

)

Left Thumb

5 0.2053 0.7488 0.2512 0.7947
7.5 0.4368 0.6496 0.3504 0.5632
10 0.6211 0.5340 0.4660 0.3789

12.5 0.7684 0.4335 0.5665 0.2316
15 0.8421 0.3468 0.6532 0.1579

17.5 0.9000 0.2669 0.7331 0.1000
20 0.9211 0.2090 0.7910 0.0789

Right Thumb

5 0.2316 0.7356 0.2644 0.7684
7.5 0.4789 0.6203 0.3797 0.5211
10 0.6789 0.4871 0.5129 0.3211

12.5 0.7842 0.3813 0.6187 0.2158
15 0.9000 0.2862 0.7138 0.1000

17.5 0.9474 0.2156 0.7844 0.0526
20 0.9684 0.1643 0.8357 0.0316

20 0.6211 0.5877 0.4123 0.3789
25 0.6895 0.5191 0.4809 0.3105
30 0.7263 0.4674 0.5326 0.2737

Left Iris 35 0.8000 0.4129 0.5871 0.2000
40 0.8316 0.3618 0.6382 0.1684
45 0.8579 0.2927 0.7073 0.1421
50 0.9526 0.1886 0.8114 0.0474

20 0.6368 0.5738 0.4262 0.3632
25 0.6789 0.5050 0.4950 0.3211
30 0.7211 0.4489 0.5511 0.2789

Right Iris 35 0.7842 0.4010 0.5990 0.2158
40 0.8474 0.3536 0.6464 0.1526
45 0.8895 0.3044 0.6956 0.1105
50 0.9316 0.2217 0.7783 0.0684
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Table 4. Performance Evaluation Results (3): The performance evaluation of the infected cross-layer
biometric recognition system for four biometric datasets.

Biometric Percentage of True Positive Rate True Negative Rate False Positive Rate False Negative Rate

Data Threshold Value (%) (
True Positive

True Positive + False Negative
) (

True Negative
True Negative + False Positive

) (
False Positive

False Positive + True Negative
) (

False Negative
True Positive + False Negative

)

Left Thumb

5 0.2000 0.7487 0.2513 0.8000
7.5 0.4421 0.6494 0.3506 0.5579
10 0.6158 0.5349 0.4651 0.3842

12.5 0.7684 0.4334 0.5666 0.2316
15 0.8474 0.3458 0.6542 0.1526

17.5 0.9053 0.2675 0.7325 0.0947
20 0.9263 0.2094 0.7906 0.0737

Right Thumb

5 0.2158 0.7354 0.2646 0.7842
7.5 0.4632 0.6205 0.3795 0.5368
10 0.6737 0.4869 0.5131 0.3263

12.5 0.7895 0.3820 0.6180 0.2105
15 0.9053 0.2862 0.7138 0.0947

17.5 0.9526 0.2148 0.7852 0.0474
20 0.9789 0.1635 0.8365 0.0211

20 0.6316 0.5853 0.4147 0.3684
25 0.6895 0.5168 0.4832 0.3105
30 0.7263 0.4652 0.5348 0.2737

Left Iris 35 0.7842 0.4098 0.5902 0.2158
40 0.8263 0.3604 0.6396 0.1737
45 0.8526 0.2950 0.7050 0.1474
50 0.9474 0.1883 0.8117 0.0526

20 0.6316 0.5740 0.4260 0.3684
25 0.6737 0.5059 0.4941 0.3263
30 0.7158 0.4488 0.5512 0.2842

Right Iris 35 0.7789 0.4020 0.5980 0.2211
40 0.8368 0.3554 0.6446 0.1632
45 0.8789 0.3061 0.6939 0.1211
50 0.9211 0.2250 0.7750 0.0789
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Figure 10. The graphical analysis of the system performance for different biometric data.

For the hardware analysis, all the Verilog implementations of the hardware elements are
synthesized using the Synopsys Armenia Educational Department (SAED) 32/28 nm generic library
and the Synopsys Design Compiler tool. The clock period is set to 20 ns; the input delay is set to 1 ns;
and the output delay is set to 1 ns. The synthesis results of the hardware elements of the biometric
recognition system are shown in Table 5. According to the results, the hardware overheads of the
Trojans are expressed as: HT 1, 0.88% for power consumption, 0% for critical path duration time and
0.82% for area; HT 2, 0.22% for power consumption, 0% for critical path duration time and 0.19%
for area; HT 3, 1.46% for power consumption, 13.14% for critical path duration time and 0.68% for
area; and HT 4, 1.45% for power consumption, 6.29% for critical path duration time and 1.01% for
area. These overheads are relatively negligible considering all the cores within the chip. In order to
compare the proposed system with its counterparts, two benchmark recognition systems are adopted
from [11]. The fingerprint recognition system has a power consumption of 7.8862352 (mW), a critical



Electronics 2018, 6, 26 15 of 17

path duration time of 891.2896 (ms) and an area of 329.5636 (mm2). The palm recognition system has
a power consumption of 105,159.8520 (mW), a critical path duration time of 3656.1606 (ms) and an
area of 2516.5824 (mm2). Our recognition system has higher values for all of the hardware parameters,
but it has three main benefits: (i) performing the recognition process in two stages, which reduces
the possibility of passing and accepting infected biometric data; (ii) performing a filtering process to
eliminate the impact of a Hardware Trojan if applicable; and (iii) easier to locate an intrusion in the
system due to a decussate and chaining hardware-software architecture. Meanwhile, our system has a
conspicuously smaller hardware footprint in comparison to the existing exclusively hardware-based
works, and its algorithm is computationally much simpler in comparison to the existing lightweight
biometric recognition systems [12–22].

Table 5. Hardware evaluation results: The synthesis results of the hardware elements of the healthy
and the infected cross-layer biometric recognition system.

User Role Hardware Module Power Consumption (mW) Critical Path Duration Time (ms) Area (mm2)

Genuine AES Encryption Unit 32.8160 0.0175 1.0059
Infected AES Encryption Unit 1 33.1040 0.0175 1.0141

Sender Side Infected AES Encryption Unit 2 32.8880 0.0175 1.0078
Infected AES Encryption Unit 3 33.2940 0.0198 1.0127
Infected AES Encryption Unit 4 33.2930 0.0186 1.0161

Number of Maximum Value 235.4176 8.5811 8.8064
Average Value 151.1424 11.5302 5.5296
Median Value 997.7856 57.0163 34.4064

Number of Minimum Value 236.1344 8.5811 8.8064
Mode Value 6345.5232 224.9523 250.6752

Standard Deviation 43,832.1152 2434.1709 1748.1728
Number of Values >High Threshold Value 76.5952 8.4070 2.7648
Number of Values <Low Threshold Value 103.3216 8.4070 3.6864

Kurtosis 2188.9024 10,277.5194 8921.088
Skewness 88,165.5808 10,469.7037 3735.552

Manhattan Norm 773.3248 179.5686 31.1296
Euclidean Distance 2421.5552 207.5853 81.92

First-Stage Comparison Unit 0.1319 0.0166 0.0045
Mean Filtering 629.9648 67.5021 22.9376

Average Euclidean Distance 7750.0416 262.8608 239.8208
Average Cityblock/Manhattan Distance 2633.3184 337.8995 90.7264

Average Hamming Distance 958.0544 80.1792 35.0208
Average Chebyshev Distance 792.576 53.3914 23.552

Receiver Side

Second-Stage Comparison Unit 66.7188 0.0111 0.0025

7. Conclusions

A cross-layer biometric recognition system with small computational complexity is studied in
this work. The system has both software and hardware modules in a decussate and chaining structure.
With this structure, it becomes easier to localize an intrusion in the system caused by an adversary.
The system analyzes and security checks biometric data under investigation in two processing stages,
which provides a higher level of defense strength. Regarding its hardware analysis, the main design
parameters (power consumption, area and critical path duration time) of the hardware modules within
the system are acceptable considering all hardware elements within the device. In order to further
assess the recognition ability and the confrontation power of the system in front of malicious biometric
data, four Hardware Trojans for the encryption unit positioned within the system are presented.
The Trojans target different locations of the AES module namely the intermediate transformation round,
the key expansion unit, the lookup table and the substitution-box. The HTs subvert the biometric data
at different intensity levels with the aim of denial of service. According to the performance evaluation
of the system, it is able to recognize the chosen biometrics, fingerprint and iris, with an acceptable
level of accuracy. Furthermore, it has the potency to detect the maliciously-manipulated biometric
data caused by the designed Hardware Trojans. The footprints of the designed HTs are negligible
considering all the hardware elements within the victim chip. At last, studying cross-layer biometric
recognition systems for surveillance applications is a relatively new research area, and more research
and experiments are required to deliver more trustworthy security cameras for the IoT world.
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