
electronics

Article

A Fast Global Flight Path Planning Algorithm Based
on Space Circumscription and Sparse Visibility
Graph for Unmanned Aerial Vehicle

Abdul Majeed and Sungchang Lee *

School of Information and Electronics Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si,
Gyeonggi-do 412-791, Korea; abdulmajid09398@kau.kr
* Correspondence: sclee@kau.ac.kr; Tel.: +82-10-3232-5237; Fax: +82-2-3159-9969

Received: 30 September 2018; Accepted: 27 November 2018; Published: 2 December 2018 ����������
�������

Abstract: This paper proposes a new flight path planning algorithm that finds collision-free,
optimal/near-optimal and flyable paths for unmanned aerial vehicles (UAVs) in three-dimensional
(3D) environments with fixed obstacles. The proposed algorithm significantly reduces pathfinding
computing time without significantly degrading path lengths by using space circumscription and
a sparse visibility graph in the pathfinding process. We devise a novel method by exploiting
the information about obstacle geometry to circumscribe the search space in the form of a half
cylinder from which a working path for UAV can be computed without sacrificing the guarantees
on near-optimality and speed. Furthermore, we generate a sparse visibility graph from the
circumscribed space and find the initial path, which is subsequently optimized. The proposed
algorithm effectively resolves the efficiency and optimality trade-off by searching the path only from
the high priority circumscribed space of a map. The simulation results obtained from various maps,
and comparison with the existing methods show the effectiveness of the proposed algorithm and
verify the aforementioned claims.

Keywords: space circumscription; sparse visibility graph; computing time; path planning;
path length; unmanned aerial vehicles

1. Introduction

Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular due to their ability to
operate autonomously even in those areas that are difficult to reach, such as mountains, deserts, and
forests for performing a variety of tasks. Nowadays, UAVs being inexpensive, lightweight, and with
low and super low-altitude flights capabilities have demonstrated their usefulness in a wide-range of
both civilian and military applications. UAV technology continues to advance, driven by both military
and civilian investments. According to the Teal Group’s forecast of the rapidly growing global UAV
market, annual spending on UAVs including both military and civilian applications, will be more
than US $12 billion by 2024 [1]. Technological developments, such as processing speed of computers,
sensors, artificial intelligence, and computer vision based algorithms have enabled UAVs to conduct a
much wider range of practical applications with ease that otherwise would be done at higher costs
and times.

The commercial real-world applications of UAVs, such as vaccine distribution [2], vegetable
inspection [3], industrial applications [4], sensing of large areas [5], aerial forest fire detection [6],
traffic monitoring [7], scientific research data collection [8], disaster assessment and management [9],
rust detection of steel bridges [10], and ocean exploration missions [11], among others, are more
attractive than military applications. Meanwhile, the coming generation of UAVs will introduce some

Electronics 2018, 7, 375; doi:10.3390/electronics7120375 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3030-5054
https://orcid.org/0000-0002-4698-6018
http://dx.doi.org/10.3390/electronics7120375
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/7/12/375?type=check_update&version=2

Electronics 2018, 7, 375 2 of 27

unique capabilities that might eventually reshape the future of war around the world [12]. In most
of the applications, a UAV needs the ability to reach a target location quickly while avoiding various
obstacles it may find along the way. However, without human control, UAV usage imposes several
challenges that need to be resolved, and one of those challenges is finding the optimal, collision-free,
and computationally efficient flight path between source and target locations in 3D environments.
Due to the extensive use of UAVs in many fields, the problem of pathfinding for UAVs has been a very
active area of research, especially during the last decade.

Path planning is a method to obtain the most viable path between source and target locations
while preventing the collision with the underlying environment, and at the same time satisfying
certain optimization constraints, such as time, distance and energy consumption [13]. Path planning
is an NP-hard optimization problem that can be solved in deterministic and non-deterministic ways.
Generally, path planning problems are divided into two major categories, global and local path
planning. In global path planning, the path searching is carried out in a known environment.
In contrast, local path planning is relatively complex because the environment can be completely
or partially unknown. Considering UAV missions, pathfinding problems are of two types; namely,
multi-agent and single-agent pathfinding. In multi-agent pathfinding, a team of UAVs search for their
destinations simultaneously unlike the single-agent variant in which one UAV does so. The pathfinding
process usually starts with exploring a graph from a starting location and continues until the target
location is reached. The performance of any pathfinding algorithm is usually based on the selection of
highly relevant nodes and edges from the provided graph that result in an optimal solution with less
computing overheads. In this paper, our focus is on the single-agent global path planning problem
and our aim is to reduce the overall time required for computing an optimal or near-optimal path.

Several global path planning algorithms have been proposed for enhancing UAV autonomy
in an airspace for various missions [14–27]. The pathfinding process is mainly comprised of three
key-elements; setting up a suitable environment (e.g., a graph representation of an environment),
a search algorithm that explores the graph, and a heuristic function (e.g., distance and energy, etc.)
that guides the search. Accurate terrain representation with detailed information is necessary to obtain
a natural-looking path. Cell decomposition [28], roadmap [29], and potential field [30] are well-known
environment modelling approaches based on configuration space (C-space). Search algorithm explores
the terrain from start to the target locations for finding a feasible or optimal path. There exists a
series of well-known graph search algorithms developed from 1959 to date, such as Dijkstra [31] and
greedy best-first-search [32] which are known as the earliest graph search-based shortest pathfinding
algorithms. However, A* algorithm [33] is considered as the de-facto standard, and it is the most
widely used shortest path search algorithm. An independent study [34] proved that A* algorithm
is faster and more efficient than Dijkstra’s algorithm and its variants. Apart from these well-known
algorithms, many variants of A* algorithm, such as Theta* [35], IDA* [36], LPA* [37], Lazy-theta* [38]
and D*-Lite [39] can almost always find an optimal or near-optimal path. Most graph-based pathfinding
algorithms use a heuristic function that guides the search which can be either Euclidean distance or
energy estimates [40]. Algfoor et al. [41] study has provided a detailed survey about path planning
techniques for robotics.

Most of the existing pathfinding algorithms for UAVs do not provide thorough insight into search
space circumscription, particularly regarding the trade-off between optimality and speed in large
and complex 3D environments. Current pathfinding algorithms focus on building better heuristics
at the expense of memory overheads. Many algorithms sacrifice optimality for speed. Few offer
near-optimal paths or time performance guarantees, most provide only shortest paths, risking time
performance degradation. However, in many practical UAV applications, trade-off on any of the
given metrics is not acceptable. Therefore, it is mandatory to constrain the path searches only to
high priority space during pathfinding to effectively resolve the efficiency and optimality trade-off.
Various approaches have been proposed to speed-up the path computations, such as hierarchical
abstractions [42–44], symmetry breaking [45,46], jump point search [47–50], sub-goal graphs [51],

Electronics 2018, 7, 375 3 of 27

compressed path databases [52,53], accurate heuristics [54], swamp hierarchies [55], pruning dominant
states [56], influence-aware pathfinders [57], and constraints-aware navigation (CAN) [58]. Despite the
success of such enhancements, in most cases, either many locations of the maps are searched needlessly,
or path length degrades. In unrealistic cases, the worst-case running time of most algorithms increase
exponentially, and extensive pre- and post-processing are needed to obtain the final path.

Recently, some studies have focused on the problem of reducing the time complexity of
pathfinding by considering the obstacles that are on the straight line path between the source and
target locations or their extensions in the pathfinding process [59,60]. However, these methods are
subject to very high computational complexity and return non-taut paths if large numbers of obstacles
are lying on the straight line path. Therefore, such methods are prone to either inefficient paths or
need additional computation in finding the feasible path. To overcome the aforementioned limitations,
this study proposes a new flight path planning algorithm that reduces pathfinding computing time
significantly without significantly degrading path lengths by using space circumscription and sparse
visibility graph in 3D environments with fixed convex obstacles. The essence of the proposed approach
is to search only the desired region and to avoid unwanted regions by exploiting the obstacle geometry
to find good quality paths.

The remainder of this paper is organized as follows; Section 2 explains the background and related
work regarding well-known path planning algorithms. Section 3 presents the proposed global flight
path planning algorithm and explains its principal steps. Section 4 discusses the experiments and
results. Finally, conclusions and future directions are offered in Section 5.

2. Background and Related Work

This section presents the background and related work regarding the environment representation
techniques used for UAV path planning, path optimization algorithms and obstacle geometry
preserving UAV path planning methods. The primary step of global path planning is to represent
the world space with appropriate geometrical shapes. Environment representation is highly related
to a path search algorithm because some path search algorithms only do well when they are jointly
used with a specific environment representation. A detailed overview of the performance of different
environment representations jointly used with various search algorithms is presented in [61]. There are
plenty of methods in the existing literature to represent the UAV operating environment. These
methods are broadly classified into three categories: cell decomposition (CD), roadmap (RM), and
potential fields (PF). A detailed survey regarding environment modelling techniques was given by
Kim et al. [62]. Each method varies regarding the degree of computational complexity, accuracy of
environment representation, and solution quality. For instance, the main weakness of the CD-based
methods is poor solution quality when the cell sizes are too coarse. On the other hand, they are prone
to very high space and time complexity if the cells are too fine. Meanwhile, PF-based methods suffer
from the local minima problem and degrade the solution quality. A pictorial overview of the most
widely used environment representation methods is given in Figure 1.

After representing the UAV operating environment in the form of a graph, a search algorithm
is employed to explore the graph for shortest pathfinding. Due to the extensive use of UAVs
in many fields, several attempts have been made to find the optimal or feasible path with less
time complexity. The path planning algorithms, such as firefly algorithm (FA) [63], differential
evolution (DE) [64], genetic algorithms (GA) [65], ant colony optimization (ACO) [66], particle swarm
optimization (PSO) [67], artificial bee colony (ABC) [68], fuzzy logic (FL) [69], gravitational search
algorithm (GSA) [70], central force optimization (CFO) [71], simulated annealing (SA) [72] and their
improved versions, are used in global path planning. Each algorithm has its own strength over others
in terms of robustness, ease of implementation, simplicity, usability, scalability, convergence, and
environment representation. Due to simplicity and effectiveness, PSO, GA, ACO, ABC, and FA are
the most appealing to solve the global optimization problems. However, in some cases, GA and PSO
algorithms fall into premature convergence which results in poor solution quality. DE algorithms are

Electronics 2018, 7, 375 4 of 27

plausible because they require only few control parameters. CFO algorithms have demonstrated their
effectiveness in finding the feasible or optimal path under complicated constraints. In some cases,
multiple algorithms have been jointly used to find the path for UAV [73]. A comprehensive survey
regarding four fundamental path planning families was provided by Yang Liang et al. [74].

Figure 1. Most widely used environments representation techniques for global path planning.

A geometrical path planning method that enables a UAV to find a feasible path in 3D complex
environments with less time complexity was offered by [75]. The proposed algorithm models the
environment with height reduction to resolve the conflict between accuracy of environment modelling
and path finding efficiency. Unfortunately, the proposed method does not constrain the path search
in the remaining UAV operating area after height reduction which can greatly affect the efficiency of
pathfinding in large and complex environments. Liang Hu et al. [76] proposed an incremental path
planning algorithm to solve the optimal pathfinding problem with least computation cost considering
the environmental and UAV constraints. The proposed algorithm is rapid and reduces the path set to
only four paths of desired quality with less time complexity. However, the authors make no attempt to
reduce the search space size to find the candidate solution efficiently. A general-purpose strategy to
improve time complexity of pathfinding by utilizing multi-scale information of the environments was
provided by the authors in [77], and this seems to be a reliable and practical solution. A related review
of the literature on improving the runtime search of the pathfinding process was introduced by [78]
using sparse A* search (SAS). They draw attention to construct the search space with a reasonable
number of nodes via a random function to compute an initial path which is then further optimized.
The main weakness of their study is that they make no attempt to reduce the UAV path planning area
and consider only few geometric constraints while deploying random nodes. Wang Zhu et al. [79]
proposed an enhanced SAS using Dubins path estimation that can significantly reduce path planning
time while preserving path accuracy by expanding only a few nodes.

Zhang Kun et al. [80] proposed an improved heuristic algorithm based on SAS considering the
UAV flight constraints to find a feasible path efficiently. Sikha Hota and Debasish Ghose [81] proposed
a geometric approach for optimal path planning in 3D space considering UAV minimum turn radius.
The proposed approach is efficient and reliable in finding a working path even from complex 3D
configuration spaces. Evis Plaku et al. [82] proposed a novel over-segmentation method to produce an
overlay of the free space into a set of connected regions. The proposed approach yields collision-free
and optimal paths with less time complexity. However, the proposed approach does not consider
the information about narrow passages, sharp turns, and terrain difficulty that may degrade the
algorithm performance in complex 3D environments. An even greater source of concern is to identify
the irrelevant areas of the terrain to prune if they cannot contribute to optimal or near-optimal solutions
to improve both accuracy and efficiency of pathfinding [83].

A number of studies have explored a closely related method used for UAV pathfinding with
reduced time complexity, the approximation with visibility line algorithm (ApVL) [84], and the related
bounded space algorithm [85]. The ApVL algorithm [84] is an extension of the BLOVL algorithm [60]

Electronics 2018, 7, 375 5 of 27

and it is a promising method for approximate shortest pathfinding for UAVs in urban environments.
The proposed method reduces the number of obstacles in pathfinding process (e.g., only consider
the straight-line path obstacles), and generates visibility graphs from selected obstacles to find the
approximate shortest path incrementally. The proposed algorithm has very high time complexity.
Furthermore, the proposed algorithm either produces an inefficient path or requires additional
computations to find a collision-free path. In some scenarios, the proposed algorithm even fails
to find a valid path due to numerous nearby obstacles. It has been suggested [85] that time complexity
of UAV path planning can be significantly reduced by restricting the search space only to a region of
interest and this seems to be a reliable solution. The proposed method limits the search space and
generates the visibility graph with equi-spaced vertical planes to find collision-free paths. However,
the proposed method does not consider the suitability of the first bounded space from a pathfinding
point of view and generates a dense visibility graph which increases the time cost.

Sample-based methods, such as rapidly exploring random trees (RRTs) [86], probabilistic
roadmaps (PRMs) [87] and their improved versions, are capable of generating near-optimal global
solution in a short time. Due to the conceptual simplicity these algorithms have demonstrated their
effectiveness in solving single-query and real-time path planning problems. RRT algorithm and its
variants such as Transition-based RRT (T-RRT) [88], Informed RRT* [89], Anytime T-RRT (AT-RRT) [90]
and RRT-connect [91] are probabilistically complete. Most of the RRT based algorithms have slow
convergence rate in high dimensional spaces and they often sacrifice optimality for speed. Karaman
and Frazzoli [92] proposed an extended version of the RRT, named RRT*. The proposed solution has
better convergence rate than RRT and it finds a near-optimal path through postprocessing. However,
the constraints. such as high memory consumption, slow convergence rate, exploration of the whole
space and pre-mature convergence by discarding the beneficial samples, make it unsuitable for complex
problems. Nasir et al. [93] proposed a variant of RRT* called RRT*-Smart which has better convergence
rate than the original RRT* by using the path optimization techniques and intelligent sampling.
However, the key limitations of the proposed solution are the high sensitivity to the environment map,
large number of iterations and extensive storage requirements. Noreen et al. [94] provided the detailed
comparison between three RRT-based methods. A recent study by Iram et a. [95] presents the closely
related method to our study based on RRT* named RRT*-AB to find an optimal path. The proposed
solution has significant improvements over the conventional RRT* methods. However, the proposed
approach is prone to the time performance overheads due to the extensive rewiring operations and
near-neighbour search during path length optimization. Therefore, optimal/near-optimal paths
produced by the existing algorithms have high computational overheads. Accordingly, an obstacle’s
geometry and reduced space feasibility analysis have not been jointly considered to obtain better
solution quality with less time complexity.

The contributions of this research in the field of UAV global flight path planning can be
summarized as follows: (i) it proposes a new flight path planning algorithm based on space
circumscription and a sparse visibility graph that has potentials to obtain the optimal or near-optimal
path with less time complexity; (ii) it introduces a novel space circumscription method in which a
full 3D map is transformed into a circumscribed half cylinder space with path guarantees; (iii) it
determines the feasibility of the circumscribed half cylinder space for good quality pathfinding
considering multicriteria such as ratio of occupied spaces, dominance of the obstacles, diversity of
obstacle avoidance options and ratio of overlapped obstacles; (iv) it expands the circumscribed half
cylinder space to next space by exploiting the nearby obstacle geometry if the first circumscribed
space fails to offer potential for good quality paths; (v) it generates a sparse visibility graph from
the circumscribed space and finds the initial path, which is further optimized by adding more nodes
around the initial path nodes.

Electronics 2018, 7, 375 6 of 27

3. The Proposed Global Flight Path Planning Algorithm

A space circumscription and sparse visibility graph-based path planning algorithm is necessary
to account for the time performance issues stemming from the needless path searches on low-priority
spaces of obstacle-rich environments. This algorithm not only reduces time complexity of pathfinding,
it also improves path length by exploiting the information about obstacle geometry. The proposed
algorithm constrains the path search only to the circumscribed space and safely discards the
low-priority spaces from the map that possibly cannot contribute to an optimal or near-optimal
path to speedup pathfinding computations. The proposed algorithm effectively resolves the efficiency
and accuracy trade-off in UAV pathfinding. This section presents the conceptual overview of the
proposed path planning algorithm and outlines its procedural steps. Figure 2 shows the conceptual
overview of our proposed global flight path planning algorithm.

Figure 2. Conceptual overview of the proposed global flight path planning algorithm.

To find a path between two locations, source u and target v for UAV while avoiding the
obstacles present in the operating environment, the following seven principal concepts are introduced:
(1) modelling of the UAV operating environment from the real environment map; (2) formation of the
circumscribed half cylinder space; (3) multicriteria-based circumscribed half cylinder space complexity
analysis; (4) need based extension of the circumscribed half cylinder space; (5) sparse visibility graph
generation; (6) initial pathfinding using A∗ algorithm; and (7) path length optimization by adding
more nodes around the initial path nodes. This approach is chosen to lower the overall time required
to compute an optimal or near-optimal path by exploiting the geometry of the obstacles. Brief details
of the principal components with equations and procedures are as follows.

3.1. Modelling of the UAV Operating Environment

The first step of path planning is to model the UAV operating environment with abstract
geometrical shapes from a real environment map. It is a way to classify the free (X f ree) and obstacle
regions (Xobstacles), and obstacles can be represented with geometrical shapes, such as cylinders, cubes,
polygons and prisms etc. However, in real environments, the shapes and sizes of the objects are not
uniform and do not pose an exact geometrical figure, but uneven shaped objects are modelled with
their closely resembled geometrical shapes. In this paper, we model the obstacles present in the UAV

Electronics 2018, 7, 375 7 of 27

operating area with 3D convex polyhedrons having six faces. The base height of every obstacle is
zero. We process the digital map elevation data according to digital terrain elevation data standard
and calculate the convex hull to generate the set of convex obstacles. After geometrical processing
of the real environment map a 3D convex polyhedron fixed obstacles map is obtained in the form
of a 3D co-ordinate space. Any point p in the modelled environment can be represented with their
co-ordinates, p = (x, y, z). The source location is represented with a point u, where u = (xs, ys, zs) and
destination is represented with a point v, where v = (xt, yt, zt). Considering the UAV environment
representation and pathfinding in 3D environments, the objective of the proposed path planning
algorithm is to reduce the computing time of pathfinding without impacting the solution quality while
finding a collision-free path W from u to v. The path nodes set (W) can be defined as, W ∈ X f ree and
W ∩ Xobstacles = ∅. In this work, for the path planning problem, the functional model between u and v
for two objective optimization is as follows:

W = [u = w1, w2, w3, . . . , wn, wn+1 = v]

Minimize f1(W) = Length(W)

Minimize f2(W) = Computing Time(W)

The proposed algorithm effectively resolves the two conflicting objectives by making use of the
obstacles’ geometry information, and UAV is assumed to be a single point.

3.2. Formation of the Circumscribed Half Cylinder Space

Exploring a full map during path search can be very costly, and it may yield serious time
performance issues in large and complex 3D environments. To effectively resolve this issue,
we transform the 3D convex polyhedron fixed obstacles map into a circumscribed half cylinder space
having source and target as endpoints with path guarantees to speed-up the pathfinding computations.
The space circumscription process consists of five principle steps: (1) specifying source (u) and target
(v) locations of UAV’s mission, (2) drawing primitive axis Paxis (a straight line) between u and v,
(3) filtering relevant obstacles (e.g., those obstacles whose edges intersect with the Paxis), (4) analysing
the cross-section of filtered obstacles, (5) drawing minimum diameter dmin half-circle such that the
diameter of the half-circle is not fully covered by the sum of the cross-section of the obstacles that
are on the Paxis between u and v. Upon reception of the u and v of the UAV mission, we draw a Paxis
between u and v.

After drawing the Paxis, three results can be obtained, such as: (1) no intersection and no collision,
(2) no intersection but collision,(3) both intersection and collision. All three results are visually shown
in Figure 3. If no obstacle intersects with the Paxis, and collision can be avoided, then path W = Paxis,
which is a straight line path as shown in Figure 3a. Meanwhile, if no obstacle intersects with the Paxis,
but there exist some obstacles close to Paxis with whom UAV can possibly collide, then we take into
account such obstacles and process them to generate a safe flight path between u and v as shown
in Figure 3b. In the last scenario, as shown in Figure 3c, some obstacles intersect with the Paxis and
we need to avoid them in an appropriate way to find the optimal or near-optimal collision-free path
between u and v locations. These obstacles are filtered from a 3D map and are processed further.
The complete pseudo-code used to filter relevant obstacles from the full map is given in Algorithm 1.

Electronics 2018, 7, 375 8 of 27

Figure 3. Results of primitive axis between source and target locations.

In Algorithm 1, map M containing N number of obstacles, source point u, and target point v are
provided as an input. Set R, where (R ⊆ N) of relevant obstacles is obtained as an output. Line 2
implements the Paxis drawing between two locations u and v. Lines 3−7 perform the filtering of
obstacles that intersect with the Paxis. Finally, set R of relevant obstacles is returned (line 8). Meanwhile,
if no obstacle lies between the source and target locations, then R = ∅ will be returned as an output.

Algorithm 1: Filtering relevant obstacles from the map.

Input : (1) Map M containing N number of obstacles, where N = {o1, o2, o3, . . . , on}
(2) Source point (u)
(3) Target point (v)

Output : Set R of the relevant obstacles
Procedure :

1 Initialize, set R = ∅
2 Draw primitive axis Paxis between (u) and (v)
3 for each oi, where oi = o1 to on ∈ N do
4 if INTERSECTS (Paxis, oi) then
5 R = R ∪ {oi}
6 End if
7 End for
8 return R

After obtaining set R of relevant obstacles, we apply the UAV flight height limits: minimum flight
height limits (hmin), maximum flight height limits (hmax) and enlarge obstacles by safe distance (Dsa f e).
After that, we analyze the cross-section of relevant obstacles that are on the Paxis between u and v.
Then, we draw a minimum diameter half-circle keeping source location as the centre of the circle with
path guarantees. We draw another half-circle of the same radius at the target side (i.e., keep target
location as the centre of the half-circle) and join the bottom arcs of both half-circles with line segments.
This results in a 3D C-space whose outlines can be regarded as a half-cylinder and we call this enclosed
region a ‘circumscribed half cylinder space ’, denoted with R3

1. This C-space transforms the more
difficult geometric problem of finding a path for a UAV, considering its configuration and orientation
around the real environment obstacles, into the easier dual problem of finding a path for a point
around 3D convex obstacles. A pictorial overview of R3

1 is given in Figure 4.
It encloses the relevant obstacles, either as a whole or only part of them. Additionally, due to the 3D

environment, there can be some more obstacles which are not in set R but lying inside the R3
1 partially

or fully, we add those obstacles in set R and use them in the pathfinding process. The meaningfulness
of R3

1 is that it guarantees the collision-free path between u and v. Meanwhile, R3
1 can or cannot be

ideal for good quality (e.g., optimal or near-optimal) pathfinding due to several complex constraints
related to obstacle geometry. By taking into account such constraints and optimal path probabilistic

Electronics 2018, 7, 375 9 of 27

analysis (e.g., when several complex constraints exist in the R3
1 related to obstacle geometry, a good

quality path used to lie outside of the R3
1 with very high probability), we perform multicriteria-based

circumscribed half cylinder space complexity analysis.

Figure 4. Circumscribed half-cylinder space (R3
1)..

3.3. Multicriteria-Based Circumscribed Half Cylinder Space Complexity Analysis

In order to determine whether R3
1 is feasible for finding a path of good quality or not,

a multicriteria-based complexity analysis of R3
1 is performed. We find the complexity C of R3

1 by
exploiting detailed information about the obstacle geometry such as obstacle occupancy, obstacle
placement, obstacles dominance and diversity of obstacle avoidance options that can hinders the
path quality. There exists a strong correlation between path quality and space complexity criterions.
The overall space complexity is the weighted sum of four criterions such as ratio of occupied spaces,
diversity of obstacle avoidance options, dominance of the obstacles and ratio of overlapped obstacles.
Brief details of the four criteria with equations and procedures are as follows.

3.3.1. Ratio of Occupied Spaces

To obtain a smooth and natural-looking path for UAV, it is desirable that obstacle occupancy in
the space must be low. To quantify the obstacle occupancy in the circumscribed space, we find the
total size (X) of the R3

1, occupied spaces (Xobstacles) and free spaces (X f ree). The total size (X) of the
half-cylinder space can be obtained using Equation (1).

X =
1
2

πr2 × l (1)

where r is the radius of the half-circle and l is the Euclidian distance between u and v obtained using
following equation.

l =
√
(xt − xs)2 + (yt − ys)2 + (zt − zs)2 (2)

Out of the X sized space, we calculate amount of the space occupied by the obstacles (Xobstacles)
using Equation (3).

Xobstacles =
N

∑
i=1

VOi (3)

where N is the total number of the obstacles in R3
1 and VOi is the volume of the obstacles. The volume

of an obstacle Oi can be calculated using following equation.

VOi = Oh ×Ol ×Ow (4)

Electronics 2018, 7, 375 10 of 27

where Oh, Ol , and Ow represent the height, length and width of an obstacle respectively. The amount
of the free space (X f ree), where UAV can operate without collision with obstacles can be computed
using Equation (5).

X f ree = X \ Xobstacles (5)

The ratio (ro) of occupied space can be calculated using Equation (6).

ro =
Xobstacles

X
(6)

The value of ro ranges between 0 and 1. We use the ratio (ro) of occupied space value in overall
circumscribed space R3

1 complexity calculations in Equation (15).

3.3.2. Diversity of Obstacle Avoidance Options

In both local and global path planning, there are generally four options, left, right, up and down
(in case of flying or hanged obstacles), to avoid any obstacle a UAV finds during its course. Meanwhile,
after the space circumscription, its highly likely that obstacle avoidance options will be reduced,
and the diversity of the remaining options may increase. Because of this, a path may contain lots of
turns and path length can increase. Therefore, while finding the space complexity, we consider the
diversity of obstacle avoidance options. To calculate the diversity (DOAO) of each obstacle avoidance
option category, the Simpson index [96] is used. It is known as the most simple and reliable measure
for calculating DOAO. In our work, the path cannot be under an obstacle because the base height
of all obstacles is zero, and therefore, a total of three options (e.g., top, left and right) are available
to bypass any obstacle. The following procedure is used to calculate the DOAO values from the
circumscribed space.

1. Calculate the proportion (pi) of each obstacle avoidance option (e.g., OAOle f t, OAOright, OAOtop)
category from the circumscribed space using Equation (7).

pi =
OAOi

k
(7)

where k is the total number of the obstacle avoidance options and it can be calculated using
following equation.

k =
3

∑
j=1

OAOj (8)

2. Sum and square the individual proportions (p1, p2, p3, . . . , pn) of each obstacle avoidance option
category from the circumscribed space. The result is diversity denoted with DOAO.

DOAO =
n

∑
i=1

P2
i = (p1)

2 + (p2)
2 + (p3)

2+, . . . ,+(pn)
2 (9)

Equation (9) gives the diversity of the obstacles avoidance options from the circumscribed space
R3

1. The value of DOAO ranges between 0 and 1. The 0 value of DOAO represents infinite diversity
and 1, no diversity. To directly relate the value of DOAO with the space complexity we do (1−DOAO)
in our calculations. The greater the value of DOAO, the greater the obstacles avoidance options
diversity, and vice versa.

3.3.3. Dominance of the Obstacles

Apart from the ratio of occupied spaces and diversity of obstacle avoidance options, another
factor that introduces a serious performance bottleneck is the obstacle’s dominance. If most of the
obstacles are centred at one place (i.e., the obstacle distribution is not uniform) in space, then the

Electronics 2018, 7, 375 11 of 27

solution quality degrades. Obstacle dominance introduces cycles in a path because the path grazes
many of the obstacles’ boundaries before reaching the target location. In order to calculate obstacle
dominance, we divide R3

1 into n small subspaces {SS1, SS2, SS3, . . . , SSn} and find the dominance of
each subspace. The obstacle dominance in a subspace (SSi) is simply the ratio of the occupancy of the
obstacles in the subspace divided by the total occupancy of all obstacles in the circumscribed space.
For dominance calculations, the R3

1 is divided into four subspaces (n = 4). The dominance Di of the
subspace SSi can be mathematically expressed as,

Di =
SSi

obstacles
Xobstacles

(10)

where Xobstacles is the total occupancy of all obstacles in the space as given in Equation (3) and SSi
obstacles

is the occupancy of the obstacles in the subspace i, and it can be calculated using Equation (11).

SSi
obstacles =

O
′

∑
i=1

VO
′
i (11)

where VO
′
i is the volume of the obstacles and O

′
is the number of the obstacles in the subspace.

After calculating the dominance of the n subspaces, we calculate the overall dominance Dx of R3
1

using Equation (12).
Dx = max{D1, D2, D3 . . . , Dn} (12)

where Dx is the dominance of the obstacles in the R3
1. The main reason to take maximum values is to

handle the worst cases effectively.

3.3.4. Ratio of Overlapped Obstacles

In some cases, there exist few obstacles which are not penetrated by the primitive axis, but they
are overlapped with the relevant (e.g., the obstacles penetrated by the primitive axis) obstacles Oi.
Such obstacles increase the path calculation time and, once calculated, it can contain many unnecessary
turns, as stated by Frontera et al. [84]. Therefore, while evaluating the circumscribed space complexity,
we take this factor into account along with the other three factors. The ratio of overlapped obstacles is
simply the number of overlapped obstacles in the circumscribed space divided by the total number of
relevant obstacles. The number of overlapped obstacles can be calculated using Equation (13).

N
′
=

N

∑
i=1

(Oi ∪OEXT) (13)

where Oi denotes the relevant obstacles and OEXT represents the obstacles that intersects with the
relevant obstacles Oi. The ratio of overlapped obstacles (roo) can be calculated using following equation.

roo =
N
′

N
(14)

where N
′

denotes the number of overlapped obstacles and N represents the total number of relevant
obstacles. When all four criterions values have been calculated, the overall complexity C of R3

1 can be
quantified using Equation (15).

C(R3
1) = w1 × ro + w2 × (1− DOAO) + w3 × Dx + w4 × roo (15)

In Equation (15), ro denotes the ratio of occupied spaces, DOAO means the diversity of the
obstacle avoidance options, Dx is the dominance of the obstacles in the space, and roo is the ratio of
the overlapped obstacles with the relevant obstacles. For the sake of simplicity, we used normalized

Electronics 2018, 7, 375 12 of 27

values of each criterions, therefore the total complexity of the space has the range between 0 and 1.
In the above equation, wi, where i = 1, 2, 3, 4 denotes the weights of each criterion and they satisfy
the two conditions, (i) wi > 0 and (ii) w1 + w2 + w3 + w4 = 1. We adjust the weights by considering
the contribution and importance of each criterion in the space complexity. The probability P of the
optimal or near-optimal path W to be found from the first circumscribed space R3

1 is given as

P(W) =

{
1, if 0 < C(R3

1) < T.

0, otherwise.
(16)

where C(R3
1) is the complexity of R3

1 and T is a threshold. The probability value 1 means that no
space extension is needed because R3

1 is good enough for finding an optimal or near-optimal path.
Meanwhile, zero probability cases need space extension because R3

1 fails to offer potential for good
quality paths due to complex obstacle geometry. The threshold T value depends on the geometric
factors present in the UAV operating environment, such as type of the mission, UAV manoeuvrability
constraints and UAV resources. In our experiments, we used a threshold value of 0.65 to decide about
the space extension. We performed rigorous experiments to verify the decision criteria using path
length as the main objective. However, this value can be adjusted adaptively according to the UAV
operating environment and available resources.

3.4. Extension of the Circumscribed Half Cylinder Space

Although the first circumscribed half cylinder space guarantees the path between source and target
locations, it does not ensure the path quality in every scenario due to obstacle complexity. To effectively
resolve this problem and ensure consistent quality, the scenarios which need space extensions
are carefully identified though space complexity analysis. Through the use of multicriteria-based
complexity analysis of R3

1, we were able to accurately identify the scenarios which need relatively
bigger space than R3

1. Having complete information about the obstacles intersected by the surface of
R3

1 enabled us to extend the space to the next level with ease. We choose this procedure to extend the
space since it yields much less computing overhead in space extension and significantly improves path
quality . Therefore, by including the obstacles that were crossed by the surface of the R3

1 and drawing
a half-circle in a similar way as we did for the first space creation result into a second circumscribed
half cylinder space of relatively bigger size than R3

1 as shown in Figure 5b.

Figure 5. Circumscribed half-cylinder space (R3
1) and its extension (R3

2)..

We call this space an extended space, denoted with R3
2 inclusive of R3

1. The extended space fully
includes relevant obstacles and it offers potential for a path to be obtained solely from the extended

Electronics 2018, 7, 375 13 of 27

space R3
2. As mentioned earlier, due to the 3D environment, more obstacles can become part of R3

2, so
we add those obstacles in set R and use them in the pathfinding process. The meaningfulness of R3

2 is
that it is the space from which good quality paths (i.e., the obtained path length is close to the optimal
or near-optimal paths) can be obtained with very high probability. The space can be extended further
in an analogous way up to the nth-level. Meanwhile, in our algorithm, we extend the spaces up to
two levels only because optimal path tends to lie in R3

1 and R3
2 with a very high probability. Once the

decision about the appropriate space has been made, a visibility graph is generated from the selected
circumscribed space for pathfinding.

3.5. Sparse Visibility Graph Generation

Visibility graph (VG) is one of the most widely used approaches for UAV pathfinding in a
known environment. VG constructs a compact, undirected graph connecting u with v by capturing
the connectivity of X f ree to form a network of paths. Due to its simplicity and effectiveness in
shortest pathfinding, VG has been widely used in many applications. However, constructing a VG
is computationally expensive and the time complexity of constructing VG is O(n3), where n is the
number of vertices. Much work on reducing the complexity of VG construction has been carried
out by changing obstacle shapes, merging nearby obstacles and ignoring tiny obstacles. More recent
evidence [84] shows that time complexity of VG can be reduced to O(n2) in 3D environments by only
taking into account the straight line path obstacles.

To further reduce the visibility graph construction time complexity, this paper proposes a sparse
visibility graph (SVG) construction algorithm which does not construct the complete visibility graph.
This algorithm constructs an SVG from the circumscribed space in the form of a roadmap which has
connectivity between u and v via intermediate nodes. Mathematically, SVG is a double edge graph
G of inter-visible locations: G = {V, E}. There are two steps to constructs G from a 3D C-space:
sampling the nodes set V and creating the edge set E. The first step involves the generation of nodes
set V. We used the top, bottom and mid vertices of the obstacles to make the SVG. The top and
bottom vertices of the obstacles are known in the form of 3D points (i.e., x, y, z) and mid vertices can
be computed on the adjacent edges by employing the midpoint formula. Each obstacle has total eight
vertices. The vertices of the ith obstacle along with the values can be mathematically expressed in
following matrix

Oi =

xmin ymin zmin; xmin ymin zmax

xmin ymax zmin; xmin ymax zmax

xmax ymin zmin; xmax ymin zmax

xmax ymax zmin; xmax ymax zmax

 =

100 200 0; 100 200 190
100 240 0; 100 240 190
190 200 0; 190 200 190
190 240 0; 190 240 190

 (17)

The bottom four vertices are generalized to the hmin of the UAV and top vertices of the obstacles
have height values equal to half-circle radius. For example, for an obstacle whose actual height is
higher than the half-circle radius while the top and bottom vertices are given, the set of mid vertices
pairs on both the vertical faces F1 and F2 can be computed using Equations (18) and (19).

F1 = {xmin, ymin,
zmax + zmin

2
}, {xmin, ymax,

zmax + zmin
2

} (18)

F2 = {xmax, ymin,
zmax + zmin

2
}, {xmax, ymax,

zmax + zmin
2

} (19)

After finding the nodes set V from the relevant obstacles edges, we add the pair of u and v in
set V and create the edge set E via visibility checks. Two nodes p and q in nodes set V are mutually
visible if the line segment pq joining them does not intersect with any obstacle. The line of sight (LOS)
checking function determines the visible connection between the pair of nodes located on the same
obstacle as well as on different obstacles. More details on adding the collision free edges between

Electronics 2018, 7, 375 14 of 27

visible vertices by exploiting the convex characteristics of the obstacles are given in our previous
paper [85]. The time complexity of the edges creation process heavily depends on the LOS checking
function. Meanwhile, in our work, we reduce the time complexity of the LOS checking function by
taking direction into account; that is, it only adds the edges between a pairs of vertices that lead to the
direction of the target. We set the visibility of the pair of vertices to false using co-ordinate values that
are on the same obstacle but lead to the opposite direction of the target. Therefore, with the linear time
complexity of the visibility checking function, the time complexity of SVG creation is O((nk f)2) time
where n is number of obstacles, k is the number of levels, and f is the number of facets. Meanwhile, k
has a constant upper bound therefore, the time complexity of SVG is O((n f)2). Due to less number of
obstacles and facets our algorithm is a clear improvement over related studies. With the help of the
node set V and edge set E, a graph G is obtained from the circumscribed space which connects u and
v, and it possess all properties of a roadmap.

3.6. Path Searching

After an SVG is constructed, the pathfinding algorithm is applied to search for the path W. In our
work, we used A∗ algorithm for collision-free pathfinding between u and v on SVG. A* is considered
as one of the best heuristic-based optimization algorithms for finding the paths of low cost. A* search
avoids expanding the paths that are expensive in terms of path lengths. The evaluation function
(i.e., an estimation of path length) used by A* algorithm is given in Equation (20).

f (n) = g(n) + h(n) (20)

where f (n) represents the estimated total cost of path between source and target location through the
node n, g(n) represents the exact path length to reach to node n, and h(n) is the heuristic function
which estimates the cost from node n to target location. A∗ algorithm was chosen to speed up the
path searching process over SVG. After the exploration of the SVG using A∗ algorithm, the path W is
obtained. In our work, we calculate the path length and computation time for quantifying the quality
of the obtained paths. However, in some cases, the obtained path W cannot be the true shortest path,
which requires a post-processing step to optimize it.

3.7. Path Length Optimization

In most UAV applications, the length of the planned path is extremely important, and it should be
held to a minimum to preserve UAV resources. However, degradation in path length is an unfortunate
and inevitable consequence of any path planning algorithm with reduced search space. To circumvent
this issue, we optimize the length of the obtained path W by adding more nodes around the initial path
nodes. Our proposed path optimization method is mainly carried out in three steps. To begin with,
it tries to determine the adjacent neighbour nodes of the path W nodes. Later, we find the distance
between the path nodes and their adjacent neighbour nodes. On the closest half region around the
initial path nodes, we add more nodes with dense resolution (Dres) and on the farthest half region
with sparse resolution (Sres). The reason to cluster more nodes around the initial path nodes is that
all nodes possess visibility, and path length can be significantly optimized. After adding more nodes,
a path of optimized length is obtained using the newly discovered and initial path nodes by applying
the same mechanism as explained in former subsections. This path-refining method reduces the path
length significantly with much less computing overhead.

4. Results and Discussion

This section demonstrates the output of the discussed concepts . The improvements of the
proposed algorithm were compared using two criteria; the improvements in computation time and
path lengths with the existing closely related algorithms. To benchmark the proposed algorithm,
we compared the proposed algorithm results with visibility graph-based and randomized motion

Electronics 2018, 7, 375 15 of 27

planning approaches. All the simulation results were produced and compared on a PC running
Windows 10, with a CPU of 2.6 GHz and 8.00 GB of RAM, using MATLAB version 9.4.0.813654
(R2018a). In the proposed algorithm simulations, we consider a 25-kg fixed wing UAV similar to
our previous work [85]. We considered both local and global constraints during the simulations.
The numerical values related to local constraints (i.e., UAV itself) are: maximum steering angle: π/6
radius and wing span: 1 m. The minimum and maximum UAV flight height limits are 22 m and 150 m
(hmin = 22 m, hmax = 150 m). The global constraints are related to the obstacle’s composition in the
environment. We consider four dominant constraints such as obstacle occupancy, obstacle dominance,
diversity of obstacle avoidance options and overlapped obstacles in space size selection that can impact
solution quality as well as UAV safety. We assumed that the UAV has sufficient battery to finish the
mission successfully. The safe distance is set to 10 m (Dsa f e = 10 m) for collision avoidance with
obstacles. We assumed a zero-wind scenario during the flight. The proposed approach finds paths
using visibility graph that respect both local and global constraints. The initialization of the parameters
of our algorithm: the weights of each space complexity criterions are 0.2, 0.2, 0.3 and 0.3 (w1 = 0.2,
w2 = 0.2, w3 = 0.3, w4 = 0.3). The dense and sparse resolutions are 10 m and 15 m (Dres = 10 m,
Sres = 15 m) for path length optimization.

4.1. Comparison with the Visibility Graph-Based Approaches

We compared the proposed algorithm performance with two visibility graph-based path planning
algorithms which are closely related to the proposed study in many aspects. To assess the performance
of the proposed algorithm, we designed three different scenarios of 3D environments with obstacles.
Every scenario is solved using three algorithms, including our own, and the results are then compared.
Obstacles have a rectangular base with random width, depth, and height. The details about map
sizes, number of maps, source and target locations, obstacle counts and obstacle dimensions, etc.
are explained in each scenario. We present the overview of the 3D maps used in the experiments
and two exemplary results visually with length values of all three algorithms (ApVL algorithm [84],
Bounded space algorithm [85] and the proposed algorithm) paths in Figure 6.

Figure 6. Examples of three different paths generated by each algorithm from the same 3D environments.

Scenario (I) is defined within an operational area of size 100× 100× 300− 1000× 1000× 400.
It includes one hundred maps with random numbers of obstacles (between five and 50). For the
convenience of comparing algorithm performance, we arranged all one hundred maps in ten groups
based on map size and obstacle counts as shown in Table 1. The start point u and target point v of the
UAV mission are located on different places in each map. To benchmark the proposed path planning
algorithm with other existing methods, the proposed method results are compared with ApVL [84]
and bounded space [85] algorithms, both of which have been demonstrated as being better than other
methods in terms of computing speed and path lengths when finding paths in 3D environments.

Electronics 2018, 7, 375 16 of 27

Besides the two existing algorithms, we compare the algorithm performance with the optimal solution
that is obtained from utilizing the full map information and very dense VG with fine resolution.
Depending upon the u and v locations and obstacle placement in each map, the algorithms will tackle
a different number of obstacles to find a path W. The area covered by the obstacles is different from
map to map.

The ApVL algorithm [84] only processes straight line path obstacles and uses dense VG to find
paths incrementally. Meanwhile, the ApVL method incurs a high time cost and yields non-taut paths
in many situations. Bounded space algorithm [85] performs path searches on relatively large space
(i.e., process a larger number of obstacles) and use dense VG. The paths produced by this algorithm
are shorter in length, but computation time is very high. On the other hand, the proposed algorithm
processes fewer number of obstacles and uses SVG to find paths of good quality. It also introduces a
viable solution to effectively resolve the optimality and speed trade-off by optimizing the path length
at the end with much less computing overhead. The environment for each run is different due to the
random positions of the obstacles. The complete description regarding the maps used in this scenario
and average running time of environment modelling of the proposed algorithm and its comparisons
with the two existing algorithms is shown in Table 1.

Table 1. Description about the maps used in experiments and operating environment modelling results.

Group No.
Map Size/No. of Obstacles Proposed Algorithm ApVL Algorithm Bounded Space Algorithm

(x × y × z)/(5 − 50) Avg. Running Time (s) Avg. Running Time (s) Avg. Running Time (s)

1 100 × 100 × 300/5 0.91 1.16 2.67
2 200 × 200 × 300/10 4.91 7.39 12.89
3 300 × 300 × 300/15 15.06 20.57 28.21
4 400 × 400 × 300/20 36.13 46.56 57.24
5 500 × 500 × 300/25 72.56 93.84 110.64
6 600 × 600 × 400/30 96.67 106.17 136.81
7 700 × 700 × 400/35 129.63 132.59 176.93
8 800 × 800 × 400/40 151.51 181.49 207.19
9 900 × 900 × 400/45 176.31 195.26 221.33

10 1000 × 1000 × 400/50 187.22 204.30 242.49

The environment modelling time shown in Table 1 is the sum of the circumscribed space formation,
SVG construction, and SVG enhancement time for path length optimization. Through simulations
and comparison with the two existing algorithms, on average, our algorithm reduces the computing
time of UAV operating environment modelling by 18.65%. The pathfinding performance results in
terms of the running time and their comparison with the two state-of-the-art methods and optimal
solution is shown in Figure 7 (Left). The computational time is the average of ten maps in each group
(listed in Table 1) with random obstacle placement. The mean path length results and their comparison
with the two state-of-the-art methods and optimal solution are shown in Figure 7 (Right). These
results show that, for each algorithm, the computation time increases with the increase in map size
and number of obstacles. Meanwhile, the proposed algorithm shows 11.9% and 26.3% reduction in
mean computational time as compared to ApVL and bounded space method, respectively.

Electronics 2018, 7, 375 17 of 27

1 2 3 4 5 6 7 8 9 10

Maps group number

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
M

e
a
n

 r
u

n
n

in
g

 t
im

e
 (

s
e
c
o

n
d

s
)

Proposed Algorithm

Bounded Space Algorithm

ApVL Algorithm

Optimal Solution

1 2 3 4 5 6 7 8 9 10

Maps group number

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

M
e
a
n

 p
a
th

 l
e
n

g
th

s
(m

)

Proposed Algorithm

Bounded Space Algorithm

ApVL Algorithm

Optimal Solution

Figure 7. (Left): Running time: Proposed algorithm versus bounded space algorithm, ApVL algorithm
and optimal solution. (Right): Path Lengths: Proposed algorithm versus bounded space algorithm,
ApVL algorithm and optimal solution.

From the comparisons with the optimal solution, our proposed algorithm lowers the computation
time of pathfinding by 39.41%. The proposed algorithm reduces the computational time of pathfinding
significantly by searching for paths on high priority spaces using SVG. From path lengths point of
view, the proposed algorithm shows 8.33% improvements in mean path length compared to the ApVL
algorithm. Meanwhile, average degradation in path lengths for our proposed algorithm with respect
to bounded space and optimal solution are only 3.41%. The marginal degradation in path lengths is
possibly due to complex obstacle arrangement that can be optimized by extending space or decreasing
graph resolution values.

Scenario (II) contains ten maps with a pre-determined number of obstacles over an operational
area of 1 km2 to assess impacts of increased obstacles on algorithm performance. These obstacles are
placed in 3D environments in such a way that all obstacles will be processed to obtain the final path.
Table 2 summarizes the results of our proposed algorithm with varying numbers of obstacles and its
comparison with the two existing algorithms. The bounded space algorithm [85] provides the shortest
path whose length is very close to the optimal solution (although it finds paths at a very high time
cost). Therefore, we used the path provided by the bounded space algorithm [85] as a reference path
to measure the quality of paths produced by the proposed and ApVL algorithms. We reported the
average path lengths of the bounded space algorithm, and path lengths in the form of ratios for our
proposed algorithm and ApVL algorithm in Table 2. When the environment becomes crowded with
obstacles, our algorithm can find a collision-free and good quality path inside these areas efficiently.
The proposed method is superior than the ApVL and bounded space methods in computation time
even with an increased number of obstacles. The paths produced by the proposed algorithm are
shorter and smoother than the ApVL algorithm and only marginally longer than the bounded space
method. Through simulations and comparison with the two existing algorithms on these ten obstacle
counts specific maps, on average, our proposed algorithm reduces the computing time of pathfinding
by 31.08%. From a path length point of view, the paths produced by our algorithm are only marginally
(0.01–1.3%) longer than the reference paths.

Electronics 2018, 7, 375 18 of 27

Table 2. Proposed algorithm pathfinding performance with varying number of obstacles.

No. of Obstacles
Proposed Algorithm ApVL Algorithm Bounded Space Algorithm

Avg. Time (s) Length Ratio Avg. Time (s) Length Ratio Avg. Time (s) Avg. Length (m)

10 0.15 1.02298 0.28 1.05371 0.63 482.33
20 0.63 1.01350 0.87 1.01983 1.97 1093.94
30 1.02 1.01722 1.30 1.02577 2.04 1169.02
40 1.10 1.05135 1.37 1.08586 3.05 1283.12
50 1.30 1.01384 2.76 1.03214 3.25 1639.66
60 1.38 1.01071 2.92 1.01606 4.57 1681.23
70 1.53 1.00511 3.03 1.01589 5.03 1868.77
80 1.87 1.00527 3.32 1.01577 5.24 1904.50
90 2.32 1.00659 4.06 1.01492 6.08 2004.32
100 2.98 1.00768 4.29 1.01393 7.30 2210.53

Scenario (III) is defined within an operational area of size 200× 200× 400− 1000× 1000× 400.
It includes five maps with random numbers of obstacles (between five and 25). We compared the
algorithms through five experiments on each map with alternate locations of the u and v in each run to
validate the applicability and efficiency of the proposed algorithm for practical purposes. By changing
the locations of u and v, the number of obstacles processed in each run can be different and, accordingly,
the path length and computation time may wary. The proposed algorithm averages obtained from 25
runs are shown in Figure 8.

200 × 200 × 400/5 400 × 400 × 400/10 600 × 600 × 400/15 800 × 800 × 400/20 1000 × 1000 × 400/25

Map Size/No. of obstacles

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

M
e

a
n

 r
u

n
n

in
g

 t
im

e
(s

e
co

n
d

s)

Proposed Algorithm
ApVL algorithm
Bounded space algorithm

200 × 200 × 400/5 400 × 400 × 400/10 600 × 600 × 400/15 800 × 800 × 400/201000 × 1000 × 400/25

Map Size/No. of obstacles

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

M
e

a
n

 P
a

th
 L

e
n

g
th

s(
m

)

Proposed Algorithm
ApVL algorithm
Bounded space algorithm

Figure 8. (Left): Running time: Proposed algorithm versus ApVL and bounded space algorithm.
(Right): Path lengths: Proposed algorithm versus ApVL and bounded space algorithm.

The proposed algorithm gives the average running time value of 0.75 s as compared to ApVL and
bounded space algorithms that give mean running time values of 1.04 s and 1.54 s, respectively.

From a path length point of view, the proposed algorithm improves path length by 5.3% compared
to the ApVL algorithm and shows marginal degradation (1.28%) compared to the bounded space
algorithm. These results emphasize the validity of the proposed algorithm with respect to achieving
better computational time and improved path lengths. Apart from the numerical result companions,
we compared the proposed algorithm results in three unique aspects with the existing visibility
graph-based algorithms.

A. Compared with the previous solution in search space size: Figure 9 shows the search space
selected by the bounded space and proposed algorithm for pathfinding. From the results, it can be seen
that bounded space algorithm Figure 9a unnecessarily considers more space compared to the proposed
algorithm Figure 9b. The collision-free path lies along the straight-line and it can be computed by
avoiding only one obstacle. Ignoring the obstacles complexity in space reduction process dramatically
increases the solution cost. In contrast, the proposed algorithm considers the obstacles’ complexity and

Electronics 2018, 7, 375 19 of 27

circumscribes the search space of small size which is enough for good quality collision-free pathfinding.
In the given scenario, the proposed algorithm only considers one relevant obstacle. Meanwhile,
bounded space algorithm processes nine obstacles causing a very high time performance overheads.

Figure 9. Reduced spaces for pathfinding with (b) and without (a) considering obstacles complexity.

B. Compared with the previous solution in path guarantees (i.e., completeness): ApVL
algorithm [84] does not guarantee the path from the selective part of the UAV’s C-space due the
presence of the nearby obstacles. Figure 10 presents a scenario where the ApVL algorithm [84] fails
to find a path even though it exists. Ignoring the path guarantees in the space reduction process,
instead of considering only the straight-line path obstacles which is not an effective method of reducing
computing time of pathfinding in a fine-grained manner. However, the proposed algorithm always
guarantees a path from the selective part of the UAV’s C-space.

Figure 10. Path guarantees test: Proposed algorithm versus ApVL algorithm.

C. Compared with the previous solutions in graph size: Most of the visibility graph-based path
planning algorithms are prone to very high time performance overheads due to the extensive visibility
checks. In order to effectively resolves this issue, we generate sparse graph considering the goal
direction with only few nodes and edges. Figure 11 shows the graph size for finding a path from a 3D
environment involving five obstacles. From the results, it can be observed that the proposed algorithm
contains only fewer potential nodes. The proposed algorithm performs less number of visibility checks
compared to ApVL [84] and bounded space [85] during SVG construction which significantly reduces
the computation load.

Electronics 2018, 7, 375 20 of 27

Figure 11. Visibility graph size test: Proposed algorithm versus ApVL and bounded space algorithm.

Although the proposed approach is a major advance, a high number of initial path nodes can
limit its performance. The worst case time complexity of the proposed algorithm is O(n3). However,
simulation results show that computing time does not increase as fast as O(n3) in all three scenarios
while finding paths of comparable lengths. The results obtained from all three scenarios and three
examples emphasize the validity of the proposed algorithm with respect to achieving better computing
time, improved path length, and lower computational complexity. This study provides additional
support for quick pathfinding compared to the current state-of-the-art and closely related methods.
The findings appear to be well substantiated for both accuracy and efficiency.

4.2. Comparison with the Randomized Motion Planning Techniques

To further validate the proposed algorithm’s feasibility and effectiveness, we compared the
proposed algorithm results with the RRT* algorithm [92] and its improved version RRT*-AB [95].
RRT* algorithm [92] is superior compared to RRT due to the two optimization procedures in the extend
function. It ignores the connection of high cost and retains only the low cost vertices to obtain a path
with minimum cost. RRT*-AB [95] shows clear improvements in path lengths and convergence rate
as compared to the earlier versions of RRT* algorithm. The proposed approach bounds the search
space between the initial and goal locations. It performs intelligent sampling in the bounded space
for tree construction. Once an initial path is found, the proposed approach optimizes the path length
using three strategies such as concentrated sampling, node rejection and path pruning. The RRT*-AB
approach has slow convergence rate, and it performs extensive rewiring in finding the optimal path.
In contrast, the proposed algorithm chooses the appropriate space intelligently for low cost pathfinding
with fewer nodes. Figure 12 shows a pictorial overview of the proposed algorithm, RRT*-algorithm
and RRT*-AB algorithm path results obtained from a 3D environment.

Electronics 2018, 7, 375 21 of 27

(a) RRT* algorithm (b) RRT*-AB algorithm

600
500

400

Y
300

2000

0 100

X

100 200

20

300 400 0500 600

40Z

60

80

u

UAV path

v Relevent obstacle

Primitive Axis
Circumscribed space

(c) Proposed algorithm

Figure 12. Pictorial overview of the proposed, RRT* and RRT*-AB algorithms paths.

In Figure 12, our proposed algorithm gives path length value of 594.54 m, as compared to RRT*
and RRT*-AB algorithms that give path length values of 627 m and 614 m respectively. In terms of
computational efficiency, the proposed algorithm is faster and features lower computational complexity
across experiments. To compare the proposed algorithm results, we select five maps from each map
groups listed in Table 1 and perform five experiments on each map with random numbers of obstacles
(between 5 to 50). The average computation times and path lengths obtained from the simulations
are summarized in Table 3. The average time shown in Table 3 is the sum of the modelling phase
(i.e., graph/tree construction) and path searching phase.

Table 3. Proposed algorithm pathfinding performance comparison with RRT* and RRT*-AB algorithms.

Maps Group No.
RRT* Algorithm RRT*-AB Algorithm Proposed Algorithm

Avg. Time (s) Avg. Length (m) Avg. Time (s) Avg. Length (m) Avg. Time (s) Avg. Length (m)

1 10.23 245.13 7.21 175.67 1.14 178.24
2 22.40 275.34 14.44 244.19 5.31 248.27
3 31.94 423.12 28.06 389.23 15.91 381.77
4 61.53 546.43 46.66 524.32 37.18 504.69
5 99.49 839.22 89.19 828.45 73.82 791.34
6 182.62 1039.56 161.61 997.67 98.14 969.17
7 234.47 1240.96 202.18 1159.86 131.60 1126.34
8 286.58 1465.25 213.55 1308.12 153.55 1276.29
9 321.81 1542.65 267.12 1509.87 178.95 1491.89
10 415.45 1992.58 287.21 1896.18 189.97 1826.24

The results clearly illustrate that the proposed algorithm yields more time efficient and
near-optimal paths, with the exception of the first two cases, where the RRT*-AB has improved
path lengths due to the small scale 3D environments with only fewer obstacles. It is clear that, as the
environment size and number of obstacles grow, the performance of the proposed approach improves
on both metrics (i.e., running time and path lengths). Through simulations and comparison with

Electronics 2018, 7, 375 22 of 27

the RRT* and RRT*-AB, on average, our algorithm reduces the overall time required to compute an
optimal/near-optimal path by 38.45%. From the path lengths point of view, it lowers the path lengths
by 5.6% in most cases. Besides the computing times and path lengths, we compared the proposed
algorithm performance with RRT* and its variant on the basis of number of path nodes and tree/graph
nodes. In Table 4, the performance of the proposed approach in terms of average graph/tree nodes
and path nodes for the aforementioned experiments is presented. As given in the last two rows of
Table 4, the graph nodes and number of path nodes of the proposed SVG approach are much lower
than other methods.

Table 4. Average graph/tree nodes and path nodes: proposed algorithm versus RRT* and RRT*-AB.

Algorithms Evaluation Criteria
Maps Group No.

1 2 3 4 5 6 7 8 9 10

RRT*
Avg. tree nodes
Avg. path nodes

300
17

500
21

650
28

825
31

1045
39

1235
35

1479
41

1979
37

2129
43

2521
44

RRT*-AB
Avg. tree nodes
Avg. path nodes

221
13

351
16

423
14

549
19

661
21

835
24

1056
29

1461
29

1598
34

1932
40

Proposed
Avg. graph nodes
Avg. path nodes

112
5

198
8

276
9

342
13

467
15

681
17

799
21

981
24

1292
27

1538
31

The proposed algorithm is complete, and it is applicable for various UAV missions. The proposed
algorithm performs well regarding good quality pathfinding for two reasons: (1) the novel space
circumscription method is introduced, which not only reduces computation time by constraining
the path search to the high priority space, but also helps in finding an optimal or near-optimal
path with very high probability; and (2) the SVG, which generates a very sparse visibility graph,
reduces the computation time of pathfinding significantly by allowing direction oriented target search.
The proposed algorithm resolves time performance issues stemming from the size of the search space
and needless path searches on low priority spaces, and in addition, it overcomes the difficulty of
pathfinding for UAVs in an obstacle-rich environment.

5. Conclusions and Future Work

In this paper, we proposed a global flight path planning algorithm based on space circumscription
and sparse visibility graph for unmanned aerial vehicles (UAVs) in three-dimensional (3D)
environments with fixed convex obstacles. The main goals of the proposed algorithm are to reduce
the computing time of both environment modelling and pathfinding without significantly impacting
the path quality for UAVs flying at low-altitudes in 3D environments. We devised a novel method by
exploiting the information about obstacle geometry to circumscribe the search space in the form of
a half cylinder that guarantees an optimal or near-optimal path with significantly reduced time cost.
We generate a sparse visibility graph from the circumscribed space and find the initial path, which is
subsequently optimized by adding more nodes around the initial path nodes. The proposed algorithm
effectively resolves the efficiency and optimality trade-off, and in most cases, it consistently performs
better than state-of-the-art and closely related global flight path planning algorithms. It reduces
pathfinding computing time significantly by constraining path searches only to the high priority
circumscribed space and, at the same time, find paths that are only marginally longer than the
optimal path. In future work, we are planning to enhance the proposed algorithm by incorporating
in-depth obstacle geometry information for more intelligent space circumscription and visibility graph
generation. Furthermore, we are focusing to apply the proposed approach in space decomposition
for UAV coverage tasks in urban settings due to its simplicity, effectiveness, ease of implementation
and less computational complexity. Finally, we intend to extend the proposed algorithm for solving
multi-objectives path planning problems in large and complex 3D environments.

Electronics 2018, 7, 375 23 of 27

Author Contributions: All authors contributed equally to this work.

Funding: This work was supported by Institute for Information & Communications Technology Promotion (IITP)
grant funded by the Korean Government (MSIT) (no. 2015-0-00893, Technology Development of DMM-based
Obstacle Avoidance and Vehicle Control System for a Small UAV).

Conflicts of Interest: The authors declare no conflict of interest regarding the publication of this manuscript.

References

1. Song, B.D.; Park, K.; Kim, J. Persistent UAV delivery logistics: MILP formulation and efficient heuristic.
Comput. Ind. Eng. 2018, 120, 418–428. [CrossRef]

2. Haidari, L.A.; Brown, S.T.; Ferguson, M.; Bancroft, E.; Spiker, M.; Wilcox, A.; Ambikapathi, R.; Sampath, V.;
Connor, D.L.; Lee, B.Y. The economic and operational value of using drones to transport vaccines. Vaccine
2016, 34, 4062–4067. [CrossRef] [PubMed]

3. Torresan, C.; Berton, A.; Carotenuto, F.; di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.;
Zalde, A.; Wallace, L. Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017,
38, 2427–2447. [CrossRef]

4. Sarris, Z.; Atlas, S. Survey of UAV applications in civil markets. In Proceedings of the IEEE Mediterranean
Conference on Control and Automation, Corfu, Greece, 20–23 June 2011; p. 11.

5. Näsi, R.; Honkavaara, E.; Blomqvist, M.; Lyytikäinen-Saarenmaa, P.; Hakala, T.; Viljanen, N.; Kantola, T.;
Holopainen, M. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel
hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 2018, 30, 72–83. [CrossRef]

6. Yuan, C.; Zhang, Y.; Liu, Z. A survey on technologies for automatic forest fire monitoring, detection,
and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res. 2015,
45, 783–792. [CrossRef]

7. Kanistras, K.; Martins, G.; Rutherford, M.J.; Valavanis, K.P. A survey of unmanned aerial vehicles (UAVs)
for traffic monitoring. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems
(ICUAS), Atlanta, GA, USA, 28–31 May 2013.

8. Stöcker, Cl.; Eltner, A.; Karrasch, P. Measuring gullies by synergetic application of UAV and close range
photogrammetry—A case study from Andalusia, Spain. Catena 2015, 132, 1–11. [CrossRef]

9. Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the sky: Leveraging UAVs for disaster
management. IEEE Pervasive Comput. 2017, 16, 24–32. [CrossRef]

10. Liao, K.-W.; Lee, Y.-T. Detection of rust defects on steel bridge coatings via digital image recognition.
Autom. Constr. 2016, 71, 294–306. [CrossRef]

11. Sujit, P.B.; Sousa, J.; Pereira, F.L. UAV and AUVs coordination for ocean exploration. In Proceedings of the
Oceans 2009-Europe, Bremen, Germany, 11–14 May 2009.

12. Zikidis, K.C. Early Warning Against Stealth Aircraft, Missiles and Unmanned Aerial Vehicles; Surveillance
in Action; Springer: Cham, Switzerland, 2018; pp. 195–216.

13. Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320.
[CrossRef]

14. Nikolos, I.K.; Valavanis, K.P.; Tsourveloudis, N.C.; Kostaras, A.N. Evolutionary algorithm based offline/online
path planner for UAV navigation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2003, 33, 898–912. [CrossRef]

15. Mittal, S.; Deb, K. Three-dimensional offline path planning for UAVs using multiobjective evolutionary algorithms.
In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007.

16. Yang, X.; Sun, Ji. Solving the Path Planning Problem in Mobile Robotics with the Multi-Objective
Evolutionary Algorithm. Appl. Sci. 2018, 8, 1425.

17. Yang, L.; Zhang, X.; Guan, X.; Delahaye, D. Adaptive sensitivity decision based path planning algorithm for
unmanned aerial vehicle with improved particle swarm optimization. Aerosp. Sci. Technol. 2016, 58, 92–102.

18. Krishnan, J.; Rajeev, U.P.; Jayabalan, J.; Sheela, D.S. Optimal motion planning based on path length
minimisation. Robot. Auton. Syst. 2017, 94, 245–263. [CrossRef]

19. Nuske, S.; Choudhury, S.; Jain, S.; Chambers, A.; Yoder, L.; Scherer, S.; Chamberlain, L.; Cover, H.;
Singh, S. Autonomous exploration and motion planning for an unmanned aerial vehicle navigating rivers.
J. Field Robot. 2015, 32, 1141–1162. [CrossRef]

http://dx.doi.org/10.1016/j.cie.2018.05.013
http://dx.doi.org/10.1016/j.vaccine.2016.06.022
http://www.ncbi.nlm.nih.gov/pubmed/27340098
http://dx.doi.org/10.1080/01431161.2016.1252477
http://dx.doi.org/10.1016/j.ufug.2018.01.010
http://dx.doi.org/10.1139/cjfr-2014-0347
http://dx.doi.org/10.1016/j.catena.2015.04.004
http://dx.doi.org/10.1109/MPRV.2017.11
http://dx.doi.org/10.1016/j.autcon.2016.08.008
http://dx.doi.org/10.5897/IJPS11.1745
http://dx.doi.org/10.1109/TSMCB.2002.804370
http://dx.doi.org/10.1016/j.robot.2017.04.014
http://dx.doi.org/10.1002/rob.21596

Electronics 2018, 7, 375 24 of 27

20. Lv, T.; Zhao, C.; Bao, J. A Global path planning algorithm Based on Bidirectional SVGA. J. Robot. 2017,
2017, 8796531. [CrossRef]

21. Yan, F.; Liu, Y.-S.; Xiao, J.-Z. Path planning in complex 3D environments using a probabilistic roadmap
method. Int. J. Autom. Comput. 2013, 10, 525–533. [CrossRef]

22. Chen, Y.; Yu, J.; Mei, Y.; Wang, Y. Modified central force optimization (MCFO) algorithm for 3D UAV path
planning. Neurocomputing 2016, 171, 878–888. [CrossRef]

23. Duan, H.; Yu, Y.; Zhang, X.; Shao, S. Three-dimension path planning for UCAV using hybrid meta-heuristic
ACO-DE algorithm. Simul. Model. Pract. Theory 2010, 18, 1104–1115. [CrossRef]

24. Kala, R.; Shukla, A.; Tiwari, R. Robotic path planning in static environment using hierarchical multi-neuron
heuristic search and probability based fitness. Neurocomputing 2011, 74, 2314–2335. [CrossRef]

25. Nikolos, I.K.; Zografos, E.S.; Brintaki, A.N. UAV path planning using evolutionary algorithms. In Innovations
in Intelligent Machines-1; Springer: Berlin/Heidelberg, Germany, 2007; pp. 77–111.

26. Wang, Y.; Wei, T.; Qu, X. Study of multi-objective fuzzy optimization for path planning. Chin. J. Aeronaut.
2012, 25, 51–56. [CrossRef]

27. Niu, H.; Lu, Y.; Savvaris, A.; Tsourdos, A. An energy-efficient path planning algorithm for unmanned surface
vehicles. Ocean Eng. 2018, 161, 308–321. [CrossRef]

28. Hwang, J.Y.; Kim, J.S.; Lim, S.S.; Park, K.H. A fast path planning by path graph optimization. IEEE Trans.
Syst. Man Cybern. Part A Syst. Hum. 2003, 33, 121–129. [CrossRef]

29. Meng, B.; Gao, X. UAV path planning based on bidirectional sparse A* search algorithm. In Proceedings
of the 2010 International Conference on Intelligent Computation Technology and Automation, Changsha,
China, 11–12 May 2010.

30. Chen, G.; Shen, D.; Cruz, J.; Kwan, C.; Riddle, S.; Cox, S.; Matthews, C. A novel cooperative path planning for
multiple aerial platforms. In Proceedings of the AIAA-2005-6948, Arlington, Virginia, 26–29 September 2005.

31. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
32. Imai, T.; Kishimoto, A. A novel technique for avoiding plateaus of greedy best-first search in satisficing

planning. In Proceedings of the Fourth Annual Symposium on Combinatorial Search, Barcelona, Spain,
15–16 July 2011.

33. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths.
IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [CrossRef]

34. Chen, X.; Qi, F.; Wei, L. A new shortest path algorithm based on heuristic strategy. In Proceedings of the
Sixth World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 1,
pp. 2531–2536.

35. Nash, A.; Daniel, K.; Koenig, S.; Felner, A. Theta*: Any-Angle Path Planning on Grids. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22–26 July 2007; pp. 1177–1183.

36. Korf, R.E. Depth-first iterative-deepening: An optimal admissible tree search. Artif. Intell. 1985, 27, 97–109.
[CrossRef]

37. Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005,
21, 354–363. [CrossRef]

38. Nash, A.; Koenig, S.; Tovey, C. Lazy theta*: Any-angle path planning and path length analysis in 3D.
In Proceedings of the Third Annual Symposium on Combinatorial Search, Atlanta, GA, USA, 8–10 July 2010.

39. Reyes, N.H.; Barczak, A.L.C.; Susnjak, T.; Jordan, A. Fast and Smooth Replanning for Navigation in Partially
Unknown Terrain: The Hybrid Fuzzy-D* lite Algorithm. In Robot Intelligence Technology and Applications
4; Springer International Publishing: Basel, Switzerland, 2017; pp. 31–41.

40. Cabreira, T.M.; di Franco, C.; Ferreira, P.R.; Butta, G.C. Energy-Aware Spiral Coverage Path Planning for
UAV Photogrammetric Applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668 [CrossRef]

41. Algfoor, Z.A.; Sunar, M.S.; Kolivand, H. A comprehensive study on pathfinding techniques for robotics and
video games. Int. J. Comput. Games Technol. 2015, 2015, 736138. [CrossRef]

42. Botea, A.; Müller, M.; Schaeffer, J. Near optimal hierarchical path-finding. J. Game Dev. 2004, 1, 7–28.
43. Sturtevant, N.; Buro, M. Partial pathfinding using map abstraction and refinement. In Proceedings of the

20th national conference on Artificial intelligence, Pittsburgh, Pennsylvania, 9–13 July 2005; Volume 5,
pp. 1392–1397.

44. Bulitko, V.; Sturtevant, N.; Lu, J.; Yau, T. Graph abstraction in real-time heuristic search. J. Artif. Intell. Res.
2007, 30, 51–100. [CrossRef]

http://dx.doi.org/10.1155/2017/8796531
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1016/j.neucom.2015.07.044
http://dx.doi.org/10.1016/j.simpat.2009.10.006
http://dx.doi.org/10.1016/j.neucom.2011.03.006
http://dx.doi.org/10.1016/S1000-9361(11)60361-0
http://dx.doi.org/10.1016/j.oceaneng.2018.01.025
http://dx.doi.org/10.1109/TSMCA.2003.812599
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1016/0004-3702(85)90084-0
http://dx.doi.org/10.1109/TRO.2004.838026
http://dx.doi.org/10.1109/LRA.2018.2854967
http://dx.doi.org/10.1155/2015/736138
http://dx.doi.org/10.1613/jair.2293

Electronics 2018, 7, 375 25 of 27

45. Harabor, D.; Botea, A. Breaking Path Symmetries on 4-Connected Grid Maps. In Proceedings of the
Association for the Advancement of Artificial Intelligence, Stanford, CA, USA, 11–13 October 2010.

46. Harabor, D.D.; Grastien, A. Online Graph Pruning for Pathfinding on Grid Maps. In Proceedings of the
Twenty-Fifth Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011.

47. Aversa, D.; Sardina, S.; Vassos, S. Path planning with inventory-driven jump-point-search. In Proceedings
of the Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), Santa Cruz, CA,
USA, 14–18 November 2015.

48. Jia, J.; Pan, J.; Xu, H.; Wang, C.; Meng, Z. An Improved JPS Algorithm in Symmetric Graph. In Proceedings of
the 2015 Third International Conference on Robot, Vision and Signal Processing (RVSP), Kaohsiung, Taiwan,
18–20 November 2015; pp. 208–211.

49. Harabor, D.D.; Grastien, A. The JPS Pathfinding System. In Proceedings of the Fifth Annual Symposium on
Combinatorial Search, Niagara Falls, ON, Canada, 19–21 July 2012.

50. Harabor, D. Graph pruning and symmetry breaking on grid maps. In Proceedings of the International Joint
Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; Volume 22, p. 2816.

51. Nussbaum, D.; Yörükçü, A. Moving target search with subgoal graphs. In Proceedings of the Eighth Annual
Symposium on Combinatorial Search, Ein Gedi, Israel, 11–13 June 2015.

52. Botea, A.; Baier, J.A.; Harabor, D.; Hernández, C. Moving Target Search with Compressed Path Databases.
In Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling, Rome,
Italy, 10–14 June 2013.

53. Strasser, B.; Botea, A.; Harabor, D. Compressing optimal paths with run length encoding. J. Artif. Intell. Res.
2015, 54, 593–629. [CrossRef]

54. Sturtevant, N.R.; Felner, A.; Barer, M.; Schaeffer, J.; Burch, N. Memory-Based Heuristics for Explicit State
Spaces. In Proceedings of the Twenty-First International Joint Conference, Pasadena, CA, USA, 14–17 July
2009; pp. 609–614.

55. Pochter, N.; Zohar, A.; Rosenschein, J.S.; Felner, A. Search space reduction using swamp hierarchies.
In Proceedings of the Third Annual Symposium on Combinatorial Search, Atlanta, GA, USA, 8–10 August 2010.

56. Gonzalez, J.P.; Dornbush, A.; Likhachev, M. Using state dominance for path planning in dynamic
environments with moving obstacles. In Proceedings of the 2012 IEEE International Conference on Robotics
and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012.

57. Amador, G.P.; Gomes, A.J.P. xTrek: An Influence-Aware Technique for Dijkstra’s and A Pathfinders. Int. J.
Comput. Games Technol. 2018, 2018, 5184605. [CrossRef]

58. Ninomiya, K.; Kapadia, M.; Shoulson, A.; Garcia, F.; Badler, N. Planning approaches to constraint-aware
navigation in dynamic environments. Comput. Anim.Virtual Worlds 2015, 26, 119–139. [CrossRef]

59. Liang, X.; Meng, G.; Xu, Y.; Luo, H. A geometrical path planning method for unmanned aerial vehicle in
2D/3D complex environment. Intell. Serv. Robot. 2018, 11, 301–312. [CrossRef]

60. Omar, R.; Gu, D.-W. Visibility line based methods for UAV path planning. In Proceedings of the ICCAS-SICE,
Fukuoka, Japan, 18–21 August 2009.

61. Sariff, N.; Buniyamin, N. An overview of autonomous mobile robot path planning algorithms. In Proceedings
of the 4th Student Conference on Research and Development, Selangor, Malaysia, 27–28 June 2006.

62. Kim, H.-G.; Yu, K.-A.; Kim, J.-T. Reducing the search space for pathfinding in navigation meshes by using
visibility tests. J. Electr. Eng. Technol. 2011, 6, 867–873. [CrossRef]

63. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput.
2010, 2, 78–84. [CrossRef]

64. Zhang, X.; Duan, H. An improved constrained differential evolution algorithm for unmanned aerial vehicle
global route planning. Appl. Soft Comput. 2015, 26, 270–284. [CrossRef]

65. Roberge, V.; Tarbouchi, M.; Labonté, G. Comparison of parallel genetic algorithm and particle swarm
optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 2013, 9, 132–141. [CrossRef]

66. Marco, D.; Maniezzo, V.; Colorni, A. Ant system: optimization by a colony of cooperating agents. IEEE Trans.
Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41.

67. Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its
applications. Math. Probl. Eng. 2015, 2015, 931256. [CrossRef]

68. Kiran, M.S.; Hakli, H.; Gunduz, M.; Uguz, H. Artificial bee colony algorithm with variable search strategy
for continuous optimization. Inf. Sci. 2015, 300, 140–157. [CrossRef]

http://dx.doi.org/10.1613/jair.4931
http://dx.doi.org/10.1155/2018/5184605
http://dx.doi.org/10.1002/cav.1622
http://dx.doi.org/10.1007/s11370-018-0254-0
http://dx.doi.org/10.5370/JEET.2011.6.6.867
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1016/j.asoc.2014.09.046
http://dx.doi.org/10.1109/TII.2012.2198665
http://dx.doi.org/10.1155/2015/931256
http://dx.doi.org/10.1016/j.ins.2014.12.043

Electronics 2018, 7, 375 26 of 27

69. Xiang, X.; Yu, C.; Lapierre, L.; Zhang, J.; Zhang, Q. Survey on fuzzy-logic-based guidance and control of
marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 2018, 20, 572–586. [CrossRef]

70. Li, P.; Duan, H. Path planning of unmanned aerial vehicle based on improved gravitational search algorithm.
Sci. China Technol. Sci. 2012, 55, 2712–2719. [CrossRef]

71. Formato, R.A. Central force optimization: A new metaheuristic with applications in applied electromagnetics.
Prog. Electromagn. Res. PIER 2007, 77, 425–491. [CrossRef]

72. Meng, H.; Xin, G. UAV route planning based on the genetic simulated annealing algorithm. In Proceedings of
the 2010 International Conference on Mechatronics and Automation (ICMA), Xi’an, China, 4–7 August 2010.

73. Elkazzaz, F.S.; Abozied, M.A.H.; Hu, C. Hybrid RRT/DE Algorithm for High Performance UCAV Path
Planning. In Proceedings of the 2017 VI International Conference on Network, Communication and
Computing, Kunming, China, 8–10 December 2017.

74. Yang, L.; Qi, J.; Xiao, J.; Yong, X. A literature review of UAV 3D path planning. In Proceedings of the 2014 11th
World Congress on Intelligent Control and Automation (WCICA), Shenyang, China, 29 June–4 July 2014.

75. Lv, Z.; Yang, L.; He, Y.; Liu, Z.; Han, Z. 3D environment modeling with height dimension reduction and path
planning for UAV. In Proceedings of the 2017 9th International Conference on Modelling, Identification and
Control (ICMIC), Kunming, China, 10–12 July 2017.

76. Liang, H.; Zhong, W.; Chunhui, Z. Point-to-point near-optimal obstacle avoidance path for the unmanned
aerial vehicle. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China,
28–30 July 2015

77. Lu, Y.; Huo, X.; Tsiotras, P. A beamlet-based graph structure for path planning using multiscale information.
IEEE Trans. Autom. Control 2012, 57, 1166–1178.

78. Chen, S.; Liu, C.W.; Huang, Z.P.; Cai, G.S. Global path planning for AUV based on sparse A* search algorithm.
Torpedo Technol. 2012, 20, 271–275.

79. Wang, Z.; Liu, L. Enhanced sparse A* search for UAV path planning using dubins path estimation.
In Proceedings of the 2014 33rd Chinese Control Conference (CCC), Nanjing, China, 28–30 July 2014.

80. Zhang, K.; Liu, P.; Kong, W.; Zou, J.; Liu, M. An improved heuristic algorithm for UCAV path planning.
J. Optim. 2017, 2017, 8936164. [CrossRef]

81. Hota, S.; Ghose, D. Optimal path planning for an aerial vehicle in 3D space. In Proceedings of the 2010 49th
IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010.

82. Plaku, E.; Plaku, E.; Simari, P. Direct path superfacets: An intermediate representation for motion planning.
IEEE Robot. Autom. Lett. 2017, 2, 350–357. [CrossRef]

83. Stenning, B.E.; Barfoot, T.D. Path planning with variable-fidelity terrain assessment. Robot. Auton. Syst. 2012,
60, 1135–1148. [CrossRef]

84. Frontera, G.; Martín, D.J.; Besada, J.A.; Gu, D. Approximate 3D Euclidean Shortest Paths for Unmanned
Aircraft in Urban Environments. J. Intell. Robot. Syst. 2017, 85, 353–368. [CrossRef]

85. Ahmad, Z.; Ullah, F.; Tran, C.; Lee, S. Efficient Energy Flight path planning algorithm Using 3-D Visibility
Roadmap for Small Unmanned Aerial Vehicle. Int. J. Aerosp. Eng. 2017, 2017, 2849745. [CrossRef]

86. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report TR: 98-11;
Computer Science Department, Iowa State University: Ames, IA, USA, 1998; pp. 1–4.

87. Svestka, P.; Latombe, J.C.; Kavraki, L.E.O. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580.

88. Jaillet, L.; Cortés, J.; Siméon, T. Sampling-based path planning on configuration-space costmaps.
IEEE Trans. Robot. 2010, 26, 635–646. [CrossRef]

89. Gammell, J.D.; Srinivasa, S.; Barfoot, T. Informed RRT*: Optimal sampling-based path planning focused
via direct sampling of an admissible ellipsoidal heuristic. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA, 14–18 September 2014.

90. Nieuwenhuisen, D.; Overmars, M.H. Useful cycles in probabilistic roadmap graphs. In Proceedings of the
2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May
2004; Volume 1.

91. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings
of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April
2000; Volume 2.

http://dx.doi.org/10.1007/s40815-017-0401-3
http://dx.doi.org/10.1007/s11431-012-4890-x
http://dx.doi.org/10.2528/PIER07082403
http://dx.doi.org/10.1155/2017/8936164
http://dx.doi.org/10.1109/LRA.2016.2619381
http://dx.doi.org/10.1016/j.robot.2012.05.020
http://dx.doi.org/10.1007/s10846-016-0409-1
http://dx.doi.org/10.1155/2017/2849745
http://dx.doi.org/10.1109/TRO.2010.2049527

Electronics 2018, 7, 375 27 of 27

92. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011,
30, 846–894. [CrossRef]

93. Nasir, J.; Islam, F.; Malik, U.; Ayaz, Y.; Hasan, O.; Khan, M.; Muhammad, M.S. RRT*-SMART: A rapid
convergence implementation of RRT. Int. J. Adv. Robot. Syst. 2013, 10, 299. [CrossRef]

94. Noreen, I.; Khan, A.; Habib, Z. A comparison of RRT, RRT* and RRT*-smart path planning algorithms. Int. J.
Comput. Sci. Netw. Secur. 2016, 16, 20.

95. Noreen, I.; Khan, A.; Ryu, H.; Doh, N.L.; Habib, Z. Optimal path planning in cluttered environment using
RRT*-AB. Intell. Serv. Robot. 2018, 11, 41–52. [CrossRef]

96. Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.5772/56718
http://dx.doi.org/10.1007/s11370-017-0236-7
http://dx.doi.org/10.1038/163688a0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	The Proposed Global Flight Path Planning Algorithm
	Modelling of the UAV Operating Environment
	Formation of the Circumscribed Half Cylinder Space
	Multicriteria-Based Circumscribed Half Cylinder Space Complexity Analysis
	Ratio of Occupied Spaces
	Diversity of Obstacle Avoidance Options
	Dominance of the Obstacles
	Ratio of Overlapped Obstacles

	Extension of the Circumscribed Half Cylinder Space
	Sparse Visibility Graph Generation
	Path Searching
	Path Length Optimization

	Results and Discussion
	Comparison with the Visibility Graph-Based Approaches
	Comparison with the Randomized Motion Planning Techniques

	Conclusions and Future Work
	References

