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Abstract: Cell inconsistency can lead to poor performance and safety hazards. Therefore, cell equalizer
is essentially required to prevent the series-connected cells from overcharging, undercharging,
and overdischarging. Among current equalization schemes, passive equalizer has a continuously
wasting energy with low equalization efficiency, and active equalizer has high cost with complex
circuit structure. In this study, a novel composite equalizer based on an additional cell with low
complexity is presented. This method combines a passive equalizer and an active equalizer. Firstly,
the configuration and circuit of our proposed composite equalizer are introduced, and the equalization
principle is analyzed. On this basis, the control strategy and algorithm of the composite equalizer are
further proposed. Finally, the composite equalizer is verified through simulation and experiment
in various cases. The study results show that this method improves both the consistency level and
the available capacity of the battery pack. Moreover, our proposed equalizer can overcome the
shortcomings of commonly used equalizer and combining the advantages of different equalizer to
maximize the equalization efficiency with a simpler equalizer structure.

Keywords: lithium-ion power battery pack; composite equalizer; active equalization; passive
equalization; control strategy and algorithm

1. Introduction

Energy crisis and environmental problem are two major challenges facing humankind in recent
years, and energy savings and emission reduction have become real priorities all over the world.
New technologies and methods for saving energy and reducing emissions have become an important
research focus in modern automobiles [1–5]. In this situation, the development and popularization of
battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs) have entered a high-speed period.
As energy storage and supply components, batteries directly determine the safety and mileage of
electric vehicles (EVs). Therefore, battery and its management system are one of the core technologies
of EVs [6–8]. Various power batteries, such as lead acid, nickel-metal hydride (NiMH), and lithium-ion
batteries (LIBs) have been used in EVs. Among them, LIBs are widely used due to their high energy
density, long cycle life, and high efficiency [4,9–11]. In order to meet high-energy and high-power
application requirements for EVs, hundreds or thousands of cells are connected in series and parallel
to form battery packs [12–14]. Factors such as the manufacturing process and the actual working
environment cause inconsistencies in the performance of these LIBs. The most intuitive manifestation
is voltage inconsistency, while the other is internal resistance inconsistency. These inconsistencies
cause the actual capacity of the battery packs to be less than the theoretical capacity, which greatly
reduces their service life [5,15–17].
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In order to reduce cell inconsistency, it is necessary to screen cells before combining them
into a battery pack. Cells in the same battery pack should have the same chemical properties and
physical sizes. However, the consistency level among cells is already higher even after screening.
Cell inconsistency in a battery pack can lead a cell or some cells to be overcharged, undercharged,
or even overdischarged, causing serious security problems [5,16,18]. In order to maximize battery
life and utilization, battery equalization technology is widely used to reduce the impact of battery
inconsistencies. Therefore, equalization technology is critical for improving battery performance.

There are two main ways to equalize lithium-ion batteries. One is chemical equalization, i.e., to achieve
an equalization target through the chemical reaction inside the battery [19]. This method is easy
to implement and does not require complex circuit connections, but this method is presently in
its infancy. The other is physical equalization, i.e., to achieve an equalization target by means of
mechanics or electronics. Physical equalization mainly includes passive and active equalization [20,21].
Passive equalization, also known as energy dissipation equalization, can realize equalization by
passing the excess energy of the cell through a bypass resistor. Passive equalization is advantageous
in terms of its simple structure and low cost, but is disadvantageous due to its low equalization
current and large energy loss [22–24]. However, energy is dissipated in the form of heat by the
bypass resistor, which greatly reduces the energy utilization of the whole battery and simultaneously
increases the temperature. Due to the demands of controlling the temperature within a certain range,
the equalization current is usually low and the equalization time is long. In addition, the temperature
difference may worsen the battery inconsistency [25].

Active equalization, also called energy transfer equalization, can realize energy transfer between
cells in the battery packs by means of energy storage elements or other driving circuit configurations.
Various active equalization configurations are summarized in Refs. [26–28]. The common energy
storage elements are capacitors, inductors, and transformers. The advantages of active equalization
include low energy loss and high efficiency. However, the disadvantages include complex control
algorithms and high cost. In addition to the equalization configuration, the equalization algorithm
also has a significant impact on the equalization efficiency improvement. It can be divided into state of
charge (SOC)-, capacity-, and voltage-based equalization algorithms [22,29–31]. Generally, the energy
transfer between the cells is a function of the voltage difference between cells. As a result, when the
voltage difference is low, the equalization speed decreases and cells can remain unbalanced [22,30,32],
and the balancing efficiency needs to be further improved [33]. Through the analysis above, we know
that both active and passive equalizers have their own advantages and disadvantages.

In this study, a novel composite equalization method based on an additional cell which combines
both passive and active equalizations is proposed, according to the characteristics of different
equalization methods. The principle, circuit, and control strategy and algorithm are studied, and the
effectiveness is verified by simulation in various cases. This method has the advantages of simple
structure, low cost, simple control, and high efficiency compared to common passive and active
equalization methods. Moreover, an additional cell is used in this method as the energy storage element,
which allows energy storage and transfer between the battery and the additional cell. This increases
the capacity of the battery pack to a certain degree while also realizing the equalization function.

The remainder of this paper is structured as follows: Section 2 gives a description of the circuit of
the composite equalization. Section 3 presents its operation principles and control strategy, respectively.
Modeling and simulation analysis are reported in Section 4. The effectiveness of the proposed equalizer
is validated by experimental results in Section 5. Finally, conclusions and final remarks are presented
in Section 6.
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2. Scheme of Composite Equalizer

2.1. Configuration of the Composite Equalization Circuit

To improve the equalization efficiency, we propose a composite equalization configuration based
on an additional cell that combines both passive and active equalization. This method makes full
use of the advantages of different equalizations, as shown in Figure 1a. The equalization circuit is
primarily composed of the main controller, the voltage acquisition module, the composite equalization
module, and so on.

Recently, the widely used passive equalization method uses a bypass resistor in parallel with
the cell to consume the excess energy of the cell, as shown in Figure 1b. The active equalization in
this paper uses an additional cell as the energy storage element, thus allowing for energy storage and
transfer between the battery and the additional cell. This increases the capacity of the battery pack
to a certain degree while also enabling the equalization function. As shown in Figure 1c, the active
equalization circuit mainly includes a cell selection circuit, a commutation circuit, a freewheeling
circuit, and so on. The cell selection circuit is used to select the cell to be equalized in the battery
pack. The function of the commutation circuit is to make the positive and negative polarity of the cell
which is to be equalized the same as the additional cell. The circuit includes four parallel branches.
The freewheeling circuit consists of diodes, MOSFETs, and an inductor, and is used to buffer the
current of the circuit and protect the circuit elements from being damaged when the circuit is switched
on or off.
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Figure 1. Configuration and circuit of composite equalization. (a) Configuration; (b) passive equalization
circuit; and (c) active equalization circuit.

2.2. Principle of the Composite Equalization Circuit

The basic principle of composite equalization is to choose the best equalization mode according
to the relative voltage state between the cell in the battery pack and the additional cell. Equalization
modes are generally divided into active and passive equalization modes. The active equalization mode
can also be divided into the first and second active equalization modes. The equalization modes are
explained separately as follows: (a) First active equalization mode: the high voltage cell charges the
additional cell when this mode is in operation. As shown in Figure 2a, it is assumed that C1 is the cell
with the maximum voltage in the battery pack. The corresponding MOSFETs are controlled to turn
on, and C1 then charges the additional cell C0. (b) Second active equalization mode: the additional
cell charges the low voltage cell when this mode is in operation. As shown in Figure 2b, it is assumed
that C2 is the cell with the minimum voltage in the battery pack. The corresponding MOSFETs are
controlled to turn on, and the additional cell C0 then charges C2. (c) Passive equalization mode:
the high voltage cell battery is discharged through the bypass resistor when this mode is in operation.
As shown in Figure 2c, it is assumed that C1 is the cell with the maximum voltage in the battery pack.
The corresponding MOSFETs are controlled to turn on and C1 is then discharged through the bypass
resistor. Therefore, through designing the control strategy and algorithm, each of the three equalization
modes is activated according to the cell voltage change during the equalization process.
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Figure 2. Principle of composite equalization. (a) First active equalization mode; (b) second active
equalization mode; and (c) passive equalization mode.

3. Control Strategy and Algorithm

The voltage-based equalization algorithm is adopted in this paper. First, a threshold of voltage
range (5 mV in this paper) is chosen. Then the voltages of cells in the battery pack are collected,
and the maximum and minimum voltage are selected. If the difference between the maximum and
minimum voltage is greater than the threshold, equalization control will be applied to the battery pack,
otherwise not.

We first need to determine the critical voltage difference value ∆U between the additional cell
and the cell to be equalized in the battery pack. When the active and passive equalization currents are
equal, the voltage difference between the cell to be equalized in the battery pack and the additional
cell is equal to the critical value ∆U.

It is assumed that the voltage of the cell i is Ui, where i = 1, 2, 3, . . . , n. The maximum voltage is
Umax, and the minimum voltage is Umin. The voltage range between the cells is u. The voltage of the
additional cell is U0. The difference between the maximum voltage and the additional cell voltage is
u1. The difference between the additional cell voltage and the minimum voltage is u2. The relationship
between these parameters can be expressed as follows:

Umax = Max{U1, U2, . . . , Un} (1)

Umin = Min{U1, U2, . . . , Un} (2)

u = Umax −Umin (3)
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u1 = Umax −U0 (4)

u2 = U0 −Umin (5)

Based on the analysis above, the composite equalization control algorithm designed in this paper
is shown in Figure 3a, and can be specifically described as:

(1) When the voltage U0 of the additional cell C0 is detected to be less than the minimum voltage
Umin in the battery pack and u1 is greater than ∆U, the first active equalization mode is used.
Otherwise, passive equalization is used.

(2) When the voltage U0 of the additional cell C0 is detected to be greater than the maximum voltage
Umax in the battery pack and u2 is greater than ∆U, the second active equalization mode is used.
Otherwise passive equalization is used.

(3) When the voltage U0 of the additional cell C0 is between the minimum voltage Umin and the
maximum voltage Umax and u1 is greater than u2, return to (1). Otherwise, return to (2).

(4) When the battery pack is charged or discharged (dynamic equalization), equalization will stop
once charging or discharging has completed. When the battery pack is not charged or discharged
(static equalization), equalization will stop if the difference between the maximum and the
minimum voltage in the battery pack is less than the threshold (5 mV in this paper).

The passive equalization control algorithm is shown in Figure 3b. To avoid frequent activation of
the switches, the cell’s single equalization time T must reach t0. The active equalization control
algorithm is shown in Figure 3c. To avoid frequent activation of the switches, the cell’s single
equalization time T must reach t0. The switch of the cell selection circuit is turned off immediately when
the active equalization current IL is greater than 2 A, thus suspending equalization. When the active
equalization current IL is less than 1 A, the switch is turned on to continue equalization. In dynamic
equalization, t0 should not be large; we take 60 s in this paper. In static equalization, t0 should not be
too small; we take 600 s in this paper.

Electronics 2018, 7, x FOR PEER REVIEW 6 of 19 

 

u = U − U  (4)u = U − U  (5)

Based on the analysis above, the composite equalization control algorithm designed in this paper 
is shown in Figure 3a, and can be specifically described as: 

(1) When the voltage U0 of the additional cell C0 is detected to be less than the minimum voltage 
Umin in the battery pack and u1 is greater than ∆U, the first active equalization mode is used. 
Otherwise, passive equalization is used. 

(2) When the voltage U0 of the additional cell C0 is detected to be greater than the maximum voltage 
Umax in the battery pack and u2 is greater than ∆U, the second active equalization mode is used. 
Otherwise passive equalization is used. 

(3) When the voltage U0 of the additional cell C0 is between the minimum voltage Umin and the 
maximum voltage Umax and u1 is greater than u2, return to (1). Otherwise, return to (2). 

(4) When the battery pack is charged or discharged (dynamic equalization), equalization will stop 
once charging or discharging has completed. When the battery pack is not charged or discharged 
(static equalization), equalization will stop if the difference between the maximum and the 
minimum voltage in the battery pack is less than the threshold (5 mV in this paper). 

The passive equalization control algorithm is shown in Figure 3b. To avoid frequent activation 
of the switches, the cell’s single equalization time T must reach t0. The active equalization control 
algorithm is shown in Figure 3c. To avoid frequent activation of the switches, the cell’s single 
equalization time T must reach t0. The switch of the cell selection circuit is turned off immediately 
when the active equalization current IL is greater than 2 A, thus suspending equalization. When the 
active equalization current IL is less than 1 A, the switch is turned on to continue equalization. In 
dynamic equalization, t0 should not be large; we take 60 s in this paper. In static equalization, t0 should 
not be too small; we take 600 s in this paper. 

Collect
Un, U0

Select
Umax,Umin

u>5 mV

Start

End

U0>Umin

u1>10 mV

Active(First)

u2>10 mV

Active(Second)

Passive 
U0<Umax

u1>u2

u=Umax-Umin
u1=Umax-U0
u2=U0-Umin

N
Y N

N

N

N

N

Y 

Y 

Y

Y

Y

Charging or 
discharging

End of charging or 
discharging 

Y

Y

N

N

 
(a) 

Figure 3. Cont.



Electronics 2018, 7, 366 7 of 18
Electronics 2018, 7, x FOR PEER REVIEW 7 of 19 

 

By discharge

Select
By=Umax

T>t0
Avoid turning on/off 
switches frequently 

N

Y

Passive

 
(b) 

Select
Bx=Umax

Bx charges 
B0

T>t0

IL>2A Pause

IL<1A

Avoid turning on/off switches frequently 

Avoid excessive current

Select
Bx=Umin

B0 charges 
Bx

T>t0

IL>2A Pause

IL<1A

N

N

N

N

NN
Y

Y

Y
Y

Y

Y

Active
(First)

Active
(Second)  

(c) 

Figure 3. Flow chart of composite equalization control strategy. (a) Selection of composite 
equalization mode; (b) passive equalization mode; and (c) active equalization mode. 

4. Modeling and Simulation Analysis 
In this section, we use the Simscape module in MATLAB/Simulink (MathWorks, Natick, MA, 

USA) to build a physical model of the composite equalization circuit, and we model the equalization 
control strategy and algorithm in Simulink/Stateflow. The simulation model is shown in Figure 4. 
Based on the simulation model, the equalization process is simulated in various cases, to verify the 
effectiveness of the proposed composite equalization. 

Figure 3. Flow chart of composite equalization control strategy. (a) Selection of composite equalization
mode; (b) passive equalization mode; and (c) active equalization mode.

4. Modeling and Simulation Analysis

In this section, we use the Simscape module in MATLAB/Simulink (MathWorks, Natick, MA,
USA) to build a physical model of the composite equalization circuit, and we model the equalization
control strategy and algorithm in Simulink/Stateflow. The simulation model is shown in Figure 4.
Based on the simulation model, the equalization process is simulated in various cases, to verify the
effectiveness of the proposed composite equalization.
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The parameters set in the simulation are as follows: four lithium-ion cells with nominal voltage
3.7 V and rated capacity 24 Ah are connected in series to form a battery pack. The additional cell is
also a lithium-ion cell with nominal voltage 3.7 V and rated capacity 24 Ah. The resistance of the
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bypass resistor is 30 Ω. According to the control strategy in the last section, we need to determine the
size of ∆U. Preliminary simulation results show that the size of passive equalization current is 0.13 A.
When the active equalization current reaches 0.13 A, the voltage difference between the additional
cell and the cell which is being equalized in the battery pack is about 10 mV, thus the size of ∆U is
10 mV. The equalization process is simulated under three different states named charging, discharging
and static to verify the effectiveness of the proposed composite equalization method. Simulation is
carried out in MATLAB 2014a on a computer with a 3.1 GHz processor, 4 GB memory, and 64-bit
operating system.

4.1. Equalization during the Charging Process

During the entire charging equalization process, there are three different conditions on the relative
voltage state between the cell to be equalized in the battery pack and the additional cell, which are
described as follows:

(1) The relative voltage state between the cell to be equalized in the battery pack and the additional
cell stays constant, and the voltage U0 of the additional cell is always less than the minimum
voltage Umin.

(2) The relative voltage state between the cell to be equalized in the battery pack and the additional
cell undergoes a dynamic change process. At first, the voltage U0 of the additional cell is greater
than the maximum voltage Umax. Then it takes a value between the minimum voltage Umin and
the maximum voltage Umax. Finally, it is less than the minimum voltage Umin.

(3) The relative voltage state between the cell to be equalized in the battery pack and the additional
cell stays constant, and the voltage U0 of the additional cell is always greater than the maximum
voltage Umax.

Assuming that the SOC of C1 to C4 are set to 5%, 8%, 11%, and 14%, respectively. Before charging,
the SOC of the additional cell is set to 2%, 50%, and 98% under the three conditions above, respectively.
A constant current power supply with 8 A of current is used to charge the battery pack. When the
voltage of any cell in the battery pack reaches 4.2 V, the constant current power supply will stop
charging the battery pack.

In this study, four cases marked as case A, B, C, and D are set to simulate the equalization effect
under charging conditions, and the simulation results are shown in Figure 5 and Table 1. As shown
in Figure 5, the voltage difference among cells during the charging process without equalization is
43.20 mV, but it decreases to 27.50 mV, 27.70 mV, and 14.20 mV after equalization.
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As shown in Table 1, the charging time increases when charging with equalization, indicating that
the capacity of the battery pack increases after charging with equalization. Our previous studies [33,34]
show the relationship between pack capacity and cell capacities is:

Cpack = min(SOC·C) + min{(1− SOC)·C} (6)

where Cpack is pack capacity, SOC is the state of charge of the cell, and C is the cell capacity.
The voltage range and the SOC extremum after charging are shown in Table 2. According to
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22.63 Ah, 23.42 Ah, and 23.04 Ah.

Table 2. Voltage range and SOC (State of Charge) extremum after charging.

Case Voltage Range (mV) Maximum of SOC (%) Minimum of SOC (%)

A 43.20 78.9709 69.4039
B 27.50 78.9935 73.2911
C 27.70 79.1225 76.7093
D 14.20 80.1918 76.2118

Electronics 2018, 7, x FOR PEER REVIEW 10 of 19 

 

0 3000 6000 90002.5

3.1

3.7

4.3
V

ol
tag

e
(V

)

C1 C2 C3 C4

Time (s)

End of charging

Case C

 
0 3000 6000 90002.5

3.1

3.7

4.3

V
ol

ta
ge

(V
)

C1 C2 C3 C4

Time (s)

End of charging

Case D

 
(c) (d) 

Figure 5. Simulation results of charging equalization. (a) Case A: no equalization; (b) Case B: SOC 
(State of Charge) of C0 = 2%; (c) Case C: SOC of C0 = 50%; and (d) Case D: SOC of C0 = 98%. 

Table 1. Charging time comparison. 

Case Charging Time (s) 
A 7602 
B 8022 
C 8044 
D 7783 

As shown in Table 1, the charging time increases when charging with equalization, indicating 
that the capacity of the battery pack increases after charging with equalization. Our previous studies 
[33,34] show the relationship between pack capacity and cell capacities is: C = min SOC · C + min 1 − SOC · C  (6)

where Cpack is pack capacity, SOC is the state of charge of the cell, and C is the cell capacity.  

The voltage range and the SOC extremum after charging are shown in Table 2. According to 
Equation (6), as shown in Figure 6, the battery pack capacity under four cases after charging is 21.70 
Ah, 22.63 Ah, 23.42 Ah, and 23.04 Ah. 

Table 2. Voltage range and SOC (State of Charge) extremum after charging. 

Case Voltage Range (mV) Maximum of SOC (%) Minimum of SOC (%) 
A 43.20 78.9709 69.4039 
B 27.50 78.9935 73.2911 
C 27.70 79.1225 76.7093 
D 14.20 80.1918 76.2118 

Case A20

21

22

23

24

Case

21.70

22.63

23.42
23.04

Ca
pa

cit
y 

of
 b

at
te

ry
 p

ac
k 

 (A
h)

Case B Case C Case D
 

Figure 6. Battery pack capacity after charging. 

4.2. Equalization during the Discharging Process 

Figure 6. Battery pack capacity after charging.



Electronics 2018, 7, 366 11 of 18

4.2. Equalization during the Discharging Process

During the entire discharging equalization process, there are three different conditions on the
relative voltage state between the cell to be equalized in the battery pack and the additional cell,
which are as follows:

(1) The relative voltage state between the cell to be equalized in the battery pack and the additional
cell stays constant, and the voltage U0 of the additional cell is always less than the minimum
voltage Umin.

(2) The relative voltage state between the cell to be equalized in the battery pack and the additional
cell undergoes a dynamic change process. At first, the voltage U0 of the additional cell is less
than the minimum voltage Umin. Then, it takes a value between the minimum voltage Umin and
the maximum voltage Umax. Finally, it is greater than the maximum voltage Umax.

(3) The relative voltage state between the cell to be equalized in the battery pack and the additional
cell stays constant, and the voltage U0 of the additional cell is always greater than the maximum
voltage Umax.

Assuming that the SOC of C1–C4 is set to 90%, 92%, 94%, and 96%, respectively, before discharging,
the SOC of the additional cell is set to 2%, 50%, and 98%, respectively, under the three conditions
above. A 2 Ω resistor is used to discharge the battery pack. When the voltage of any cell in the battery
pack reaches 2.6 V, the battery pack will stop discharging. The voltage change trajectory of the cells
in the battery pack is shown in Figure 7 and the discharging time is shown in Table 3. As shown in
Figure 7, the voltage difference among cells during the discharging process without equalization is
789.10 mV, but it decreases to 95.10 mV, 40.30 mV, and 21.80 mV after equalization.Electronics 2018, 7, x FOR PEER REVIEW 12 of 19 
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Table 3. Discharging time comparison.

Case Discharging Time
(s)

E 9948
F 10,189
G 10,610
H 10,841

The voltage range and the SOC extremum after discharging are shown in Table 4. According
to (6), as shown in Figure 8, the battery pack capacity under four cases after discharging is 22.47 Ah,
23.83 Ah, 23.99 Ah, and 23.99 Ah.

Table 4. Voltage range and SOC extremum after discharging.

Case Voltage Range (mV) Maximum of SOC (%) Minimum of SOC (%)

E 789.10 6.3843 0.0063
F 95.10 0.6933 0.0019
G 40.30 0.0477 0.0008
H 21.80 0.0482 0.0046
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Figure 8. Battery pack capacity after discharging.

4.3. Equalization during the Static Process

During the entire static equalization process, the relative voltage state between the cell to be
equalized in the battery pack and the additional cell stays constant. There are three different conditions,
which are as follows:

(1) The voltage U0 of the additional cell is always less than the minimum voltage Umin.
(2) The voltage U0 of the additional cell is always between the minimum voltage Umin and the

maximum voltage Umax.
(3) The voltage U0 of the additional cell is always greater than the maximum voltage Umax.

Assuming that the SOC of C1–C4 is set to 46%, 50%, 54%, and 58%, respectively, the SOC of the
additional cell is set to 36%, 52%, and 68% under the three conditions above, respectively. Equalization
will only begin if the voltage range of the cells in the battery pack is greater than 5 mV. The voltage
change trajectory of the cells in the battery pack is shown in Figure 9, and the discharging time is
shown in Table 5. As shown in Figure 9, the voltage difference among cells without equalization is
36.60 mV, but it decreases to about 5 mV after equalization.
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Figure 9. Simulation results of static equalization. (a) Case J: SOC of C0 = 36%; (b) Case K: SOC of C0 =
52%; and (c) Case L: SOC of C0 = 68%.

Table 5. Equalization time comparison.

Case Equalization Time (s)

I 1 None
J 86,400
K 86,800
L 48,300

1 No equalization.

The voltage range and the SOC extremum after static equalization are shown in Table 6. According
to (6), as shown in Figure 10, the battery pack capacity under four cases after static equalization is
20.86 Ah, 23.64 Ah, 23.52 Ah, and 23.42 Ah.

Table 6. Voltage range and SOC extremum after static equalization.

Case Voltage Range (mV) Maximum of SOC (%) Minimum of SOC (%)

I 1 36.60 55.3540 42.5980
J 5.10 44.0755 42.5843
K 5.00 47.7993 45.7882
L 5.10 52.8665 50.5495

1 No equalization.
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4.4. Comparative Study with Passive and Active Equalization

In this section, the composite equalization is compared to the passive and active equalization
introduced in Section 2. We only choose the equalization during the static process in this section.
The equalization during other process (charge and discharge) is similar, so there is no detail. Therefore,
the initial conditions of cells in this section is consistent with that in Section 4.3. As for the comparison
results, the end voltage and capacity of the cells are not very different because the equalization target
(5 mV) of different equalizers are the same. In the previous sections, the end voltage and capacity of
the cells are used to compare results between no equalization and equalization, so the comparison in
this section is mainly through the equalization time. The shorter the equalization time, the better the
equalization effect.

The voltage change of the cells in the battery pack during the different equalization methods
is shown in Figure 11, and the equalization time of the different equalization methods is listed in
Figure 12. It can be seen that the equalization time of the active and passive equalizers is longer than
that of the proposed composite equalizer in the case of the additional cell with various SOCs, indicating
the proposed method has higher equalization efficiency. Moreover, the equalization efficiency increases
with the increase of the SOC of the additional cell.Electronics 2018, 7, x FOR PEER REVIEW 15 of 19 
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To verify the effectiveness of the proposed equalizer, experimental verification is investigated 
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the microcontroller unit (MCU) based on XC164CS (Infineon Technologies, Neubiberg, Germany). 
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5. Experiment Verification

To verify the effectiveness of the proposed equalizer, experimental verification is investigated
in this section. The composite equalization system is mainly divided into three parts. The first part
is the microcontroller unit (MCU) based on XC164CS (Infineon Technologies, Neubiberg, Germany).
The function of this part is to receive the voltage information of all single cells in the battery pack,
to drive the corresponding relay switch, and to communicate with the host computer. The second
part is the cell voltage acquisition circuit based on LTC6804 (Analog Devices, Norwood, MA, USA).
The function of this part is to detect and collect all cell voltage information in the battery pack, and
then transmit it to the MCU. The third part is the core equalization circuit, including passive and active
equalization. The function of this part is to adjust the voltage level of cells in the battery pack so as to
keep the voltage level of cells in good consistency.

Figure 13 shows the experimental platform. The equalization circuit is the proposed circuit, and
the control algorithm is realized in the controller. The data can be read by the human machine interface,
and experimental data is recorded by the personal computer (PC). In this experiment, 12 cells are used
as test cells for the equalizer, and a cell is used as additional cell. The parameters of the experimental
cells are as follows: nominal capacity is 3200 mAh; nominal voltage is 3.6 V, lower and upper cut-off
voltage are 2.5 V and 4.2 V, respectively. In the experiment, each cell has different initial SOC, and the
SOC of the additional cell is the highest.

Figure 14 shows the experiment results under static condition. It can be seen that the test cells are
charged by additional cell. Except Cell 8, the maximum voltage difference between cells is reduced
from 32 mV to 6 mV in 3500 s. Moreover, it is obvious that passive equalizer is running (Cell 8) while
passive equalizer is turned on, which greatly improves the equalization efficiency. The maximum
voltage difference of all cells is reduced from 72 mV to 18 mV.

It is necessary to point out that the speed of passive equalization is slow (Cell 8), which is caused
by the smaller voltage difference between cells, which is caused by the smaller equalization current,
which is the disadvantage of passive equalization. However, our proposed composite equalization
method combines active and passive equalizers to improve equalization efficiency, and our designed
active equalizer based on an additional cell has a simpler structure than the traditional active equalizer.
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the control algorithm is realized in the controller. The data can be read by the human machine 
interface, and experimental data is recorded by the personal computer (PC). In this experiment, 12 
cells are used as test cells for the equalizer, and a cell is used as additional cell. The parameters of the 
experimental cells are as follows: nominal capacity is 3200 mAh; nominal voltage is 3.6 V, lower and 
upper cut-off voltage are 2.5 V and 4.2 V, respectively. In the experiment, each cell has different initial 
SOC, and the SOC of the additional cell is the highest. 

Figure 14 shows the experiment results under static condition. It can be seen that the test cells 
are charged by additional cell. Except Cell 8, the maximum voltage difference between cells is 
reduced from 32 mV to 6 mV in 3500 s. Moreover, it is obvious that passive equalizer is running (Cell 
8) while passive equalizer is turned on, which greatly improves the equalization efficiency. The 
maximum voltage difference of all cells is reduced from 72 mV to 18 mV.  
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Figure 13. Experimental platform of the proposed equalizer. 

 

Figure 14. Experimental result under static condition. Figure 14. Experimental result under static condition.

6. Conclusions

In order to improve the consistency of cells in lithium-ion powered battery packs for EVs,
a composite equalization method based on an additional cell that combines both active and passive
equalizers is proposed. The equalization principle, circuit, control strategy and algorithm are studied
through simulation and experiment in many cases. The main conclusions of this study are as follows:

(1) A novel composite equalization method is proposed, and its configuration and circuit are
designed. The composite equalization includes passive and active equalization parts. These are
mutually independent in structure and are mutually coordinated in function. Passive equalization
adopts common energy dissipation equalization by using a bypass resistor. Active equalizer adopts
non-dissipative equalization by using an additional cell, which has a simpler structure than the
traditional active equalizer.

(2) A composite equalization algorithm containing three equalization modes is proposed.
The equalization mode can be switched automatically according to the state of the cells. When the
voltage difference between the cell to be equalized and the additional cell is large, active equalization
will be used. When the voltage difference between the cell to be equalized and the additional cell
is small, passive equalization will be used. The algorithm combines the advantages of the different
equalization methods.
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(3) The Simscape module in MATLAB/Simulink is used to build a physical model of the composite
equalization circuit, and the equalization control strategy and algorithm are modeled in Simulink/
Stateflow. The simulation results show that the consistency level of the battery pack improved and the
available capacity increased. Moreover, the equalization time of the composite equalization during the
static equalization process is obviously shortened compared to single equalization.

(4) Experimental results have shown the proposed equalizer demonstrates a good comprehensive
performance of active and passive equalizers.

The proposed method is not sufficient tested and verified in a real battery management system
for various cases. Further works include: (a) More intensive verification of the proposed method
and algorithm in battery packs for various cases; (b) a more advanced equalization algorithm based
on composite equalizer; and (c) equalization control of parallel-connected battery based on our
proposed method.
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