
electronics

Article

Sparse DOD/DOA Estimation in a Bistatic MIMO
Radar With Mutual Coupling Effect

Peng Chen 1,* , Zhenxin Cao 1, Zhimin Chen 2 and Chunhua Yu 3

1 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China; caozx@seu.edu.cn
2 School of Electronic and Information, Shanghai Dianji University, Shanghai 201306, China;

chenzm@sdju.edu.cn
3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210096, China;

yu506@hotmail.com
* Correspondence: chenpengseu@seu.edu.cn; Tel.: +86-158-9595-2189

Received: 1 November 2018; Accepted: 19 November 2018; Published: 21 November 2018 ����������
�������

Abstract: The unknown mutual coupling effect between antennas significantly degrades the target
localization performance in the bistatic multiple-input multiple-output (MIMO) radar. In this paper,
the joint estimation problem for the direction of departure (DOD) and direction of arrival (DOA)
is addressed. By exploiting the target sparsity in the spatial domain and formulating a dictionary
matrix with discretizing the DOD/DOA into grids, compressed sensing (CS)-based system model
is given. However, in the practical MIMO radar systems, the target cannot be precisely on the
grids, and the unknown mutual coupling effect degrades the estimation performance. Therefore,
a novel CS-based DOD/DOA estimation model with both the off-grid and mutual coupling effect
is proposed, and a novel sparse reconstruction method is proposed to estimate DOD/DOA with
updating both the off-grid and mutual coupling parameters iteratively. Moreover, to describe the
estimation performance, the corresponding Cramér–Rao lower bounds (CRLBs) with all the unknown
parameters are theoretically derived. Simulation results show that the proposed method can improve
the DOD/DOA estimation in the scenario with unknown mutual coupling effect, and outperform
state-of-the-art methods.

Keywords: bistatic MIMO radar; DOD/DOA estimation; mutual coupling; off-grid sparse problem

1. Introduction

In multiple-input multiple-output (MIMO) radar systems [1,2], the independent waveforms are
adopted in different transmitting antennas, so compared with the traditional array radars, the better
performance of target estimation and detection can be achieved by using more spatial and waveform
diversities [3–5]. Usually, the MIMO radar systems can be categorized into the following two types
with different antenna distances: (1) Colocated MIMO radar system: The antennas in receiver and
transmitter are close to each other, so the waveform diversity can be exploited to improve the radar
performance [1,6,7]; (2) Distributed MIMO radar system: The antennas in receiver and transmitter are
widely separated, so the radar performance can be improved by exploiting the diversity of target’s
radar cross-section (RCS) [2,8].

Moreover, with different positions of transmitter and receiver, the colocated MIMO radar can
also be categorized into monostatic and bistatic MIMO radar systems. The transmitter and receiver
are close in the monostatic MIMO radar system [9], so more reliable beam-pattern design and target
detection can be achieved. However, in the bistatic MIMO radar [9,10], the transmitter and receiver are
widely separated, so the better performance of target localization can be achieved with the different
view angles from transmitter and receiver. Therefore, in this paper, we consider the problem of the
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direction of departure (DOD) and the direction of arrival (DOA) estimation, and the bistatic MIMO
radar system is adopted.

The DOD/DOA estimation problem in the MIMO radar system has been widely studied.
For example, in the scenario with a non-uniform array, a novel method is proposed to construct
a virtual MIMO array and estimate DOD/DOA in [11]. In [12,13], the DOD/DOA estimation method
for the scenario with unknown correlated noise has been proposed, where the estimation method is
based on the canonical correlation decomposition and the shift-invariance properties of Kronecker
product. Additionally, some studies [14–17] have proposed algorithms based on the multiple signal
classification (MUSIC) and the estimation of signal parameters via rotational invariance techniques
(ESPRIT) to estimate DOD/DOA in MIMO radar systems. However, these studies have not considered
the mutual coupling between antennas in transmitter and receiver. In [18], the mutual coupling has
been studied in the problem of direction finding. Additionally, the DOD/DOA estimation method
with unknown mutual coupling is proposed in [19]. Different from these present papers, we propose a
novel method to estimate the DOD/DOA in the bistatic MIMO radar system, where the sparsity of
targets has been exploited to improve the estimation performance.

In this paper, we consider the problem of estimating the DOD/DOA in the bistatic MIMO radar
system with mutual coupling between antennas. A novel iterative method based on compressed
sensing (CS) is proposed to estimate the parameters including DOD/DOA, mutual coupling
matrices, and target scattering coefficients, by exploiting the sparsity of targets in the spatial domain.
Additionally, to further improve the estimation performance, an off-grid problem is formulated, and the
parameters are polished iteratively by solving the off-grid problem. Furthermore, the corresponding
Cramér–Rao lower bounds (CRLBs) for the estimated target parameters are derived theoretically.
To summarize, we make the contributions as follows:

• Sparse DOD/DOA estimation model with mutual coupling effect: In the bistatic MIMO radar
system, the DOD/DOA estimation model is proposed based on the sparse reconstruction model,
and the unknown mutual coupling effect between antennas is also considered.

• Sparse DOD/DOA estimation method with off-grid effect: In the sparse reconstruction
methods, the detection area is discretized into grids to formulated the dictionary matrix, so the
off-grid effect limits the reconstruction performance. Therefore, combining both off-grid effect
and mutual coupling effect, the sparse DOD/DOA estimation method is proposed.

• Theoretical CRLB expression for DOD/DOA estimation with mutual coupling effect:
The corresponding CRLB with the unknown mutual coupling effect is theoretically derived
to describe the estimation performance.

The remainder of this paper is organized as follows. The system model of bistatic MIMO radar is
given in Section 2. The estimation method for DOD/DOA and mutual coupling matrices is proposed in
Section 3. Section 4 derives the Cramér–Rao lower bound (CRLB). Then, Section 5 gives the computational
complexity. Simulation results are given in Section 6. Finally, Section 7 concludes the paper.

Notations: IN denotes an N × N identity matrix. E {·} denotes the expectation operation.
CN (a, B) denotes the complex Gaussian distribution with the mean being a and the variance
matrix being B. ‖ · ‖1, ‖ · ‖2, ⊗, Tr {·}, vec {·}, (·)∗, (·)T and (·)H denote the `1 norm, the `2 norm,
the Kronecker product, the trace of a matrix, the vectorization of a matrix, the conjugate, the matrix
transpose and the Hermitian transpose, respectively. For a matrix A, [A]n denotes the n-th column of
A, and for a vector a, [a]n denotes the n-th entry of a.

2. The System Model of Bistatic MIMO Radar

2.1. Bistatic MIMO Radar System without Mutual Coupling

In this paper, the bistatic MIMO radar system [12,20,21] is considered and the radar system is
shown in Figure 1, where M transmitting antennas and N receiving antennas are adopted. In each
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transmitting antenna, the orthogonal signal is transmitted. The transmitted waveform for the m-th
transmitting antenna is denoted as sm(t, p) (m = 0, 1, . . . , M− 1) in the time domain, where p denotes
the pulse index (p = 0, 1, . . . , P− 1) and the number of pulses is P. Therefore, for the transmitted
waveforms, we have

∫
t∈Tp

sm(t, p)sH
m′(t, p) dt =

{
0, m 6= m′

1, m = m′
, (1)

where Tp denotes the pulse duration.

Transmitter Receiver

Target

d d

… …

Figure 1. The system model of the bistatic MIMO radar.

Assuming that there are K far-field targets, the direction of departure (DOD) and the direction of
arrival (DOA) for the k-th target (k = 0, 1, . . . , K− 1) are denoted as φk and ψk, respectively. In each
target, we assume that the the scattering coefficient is a type of Swerling II RCS [22] and follows the
independent and identically distribution (i.i.d.) between pulses. Therefore, during the p-th pulse,
the scattering coefficient of the k-th target can be denoted as αk(p).

Without considering the mutual coupling between antennas, the received signals in the n-th
antenna (n = 0, 1, . . . , N − 1) can be expressed as

rn(t, p) =
K−1

∑
k=0

M−1

∑
m=0

αk(p)sm(t, p)e−j2π d
λ (n sin ψk+m sin φk) + wn(t, p), (2)

where d denotes the fundamental antenna spacing, λ denotes the wavelength, and wn(t, p) denotes
the additive white Gaussian noise (AWGN) in the n-th receiving antenna during the p-th pulse,
and wn(t, p) ∼ CN (0, σ2

n).
After the matched filter hm(t, p) , s∗m(t0 − t, p) for the m-th transmitted waveform and sampling

at time t0, we can obtain the result of pulse compression

rn,m(p) ,
∫

t∈Tp
rn(t, p)s∗m(t, p) dt

=
K−1

∑
k=0

αk(p)e−j2π d
λ (n sin ψk+m sin φk) + wn,m(p),

(3)
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where we define wn,m(p) ,
∫

t∈Tp
wn(t, p)s∗(t, p) dt, and wn,m(p) ∼ CN (0, σ2

n). By collecting rn,m(p)

into a vector rn(p) , [rn,0(p), rn,1(p), . . . , rn,M−1(p)]T , the vector form of received signal can be
obtained as

rn(p) =
K−1

∑
k=0

e−j2π nd
λ sin ψk αk(p)a(φk) + wn(p), (4)

where the noise vector is defined as wn(p) , [wn,0(p), rn,1(p), . . . , wn,M−1(p)]T , and the steering vector
in the transmitter is defined as

a(φk) ,
[
1, e−j2π d

λ sin φk , . . . , e−j2π
(M−1)d

λ sin φk

]T
. (5)

Collect all the received signals into a matrix, and we can obtain

R(p) ,
[
r0(p), r1(p), . . . , rN−1(p)

]
=

K−1

∑
k=0

αk(p)a(φk)b
T(ψk) + W(p), (6)

where the steering vector in the receiver is defined as

b(ψk) ,
[
1, e−j2π d

λ sin ψk , . . . , e−j2π
(N−1)d

λ sin φk

]T
, (7)

and the noise matrix is defined as W(p) ,
[
w0(p), w1(p), . . . , wN−1(p)

]
.

Vectorizing the matrix of received signals into a vector r(p) , vec {R(p)}, the received signals
can be expressed as the following vector form

r(p) =
K−1

∑
k=0

αk(p) vec
{

a(φk)b
T(ψk)

}
+ w(p) =

K−1

∑
k=0

αk(p)b(ψk)⊗ a(φk) + w(p) (8)

where w(p) , vec {W(p)}, and w(p) ∼ CN
(
0, σ2

n IMN
)
. Therefore, without the mutual coupling

effect between antennas, the problem of DOD/DOA estimation is formulated in (8), where both φk
and ψk will be estimated from the received signal r(p) without the knowledge of target scattering
coefficient αk(p).

2.2. Bistatic MIMO Radar System With Mutual Coupling

However, in the practical radar system, when the mutual coupling between the antennas in
both transmitter and receiver is considered [23], the system model developed in (8) cannot be used.
Therefore, this subsection will discuss the system model with mutual coupling. Usually, the mutual
coupling matrices in the transmitter and receiver are respectively defined as [18]

CT , (ZTA + ZTL) (ZT + ZTL I)−1 , (9)

CR , (ZRA + ZRL) (ZR + ZRL I)−1 , (10)

where ZTA and ZTL denote the antenna impedance and terminating load in transmitter, and ZRA and
ZRL denote the antenna impedance and terminating load in receiver. ZT and ZR denote the mutual
impedance matrix in transmitter and receiver, respectively.

The m1-th row and m2-th column of mutual impedance matrix ZT can be expressed as [19,24,25]

ZT,m1,m2 =

{
30(0.5772 + ln(2γL)− gC(2γL) + jgS(2γL)), m1 = m2

30(gR(m1, m2) + jgX(m1, m2)), m1 6= m2
(11)
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where γ , 2π/λ, and L denotes the length of dipole antennas. gR(m1, m2) and gX(m1, m2) are defined
respectively as

gR(m1, m2) , sin(γL)
[
gS(ν0)− gS(µ0) + 2gS(µ1)

− 2gS(ν1)
]
+ cos(γL)

[
gC(µ0) + gC(ν0)− 2gC(µ1)

− 2gC(ν1) + 2gC(γd(m1, m2))
]
−
[
2gC(µ1) + 2gC(ν1)

− 4gC(γd(m1, m2))
]
,

(12)

gX(m1, m2) , sin(γL)
[
gC(ν0)− gC(µ0) + 2gC(µ1)

− 2gC(ν1)
]
+ cos(γL)

[
− gS(µ0)− gS(ν0) + 2gS(µ1)

+ 2gS(ν1)− 2gS(γd(m1, m2))
]
+
[
2gS(µ1) + 2gS(ν1)

− 4gS(γd(m1, m2))
]
,

(13)

where d(m1, m2) denotes the distance between the m1-th antenna and the m2-th antenna. µ0, ν0, µ1 and
ν1 are defined respectively as

µ0 = γ

(√
d2(m1, m2) + L2 − L

)
, (14)

ν0 = γ

(√
d2(m1, m2) + L2 + L

)
, (15)

µ1 = γ

(√
d2(m1, m2) + 0.25L2 − 0.5L

)
, (16)

ν1 = γ

(√
d2(m1, m2) + 0.25L2 + 0.5L

)
. (17)

gC(x) and gS(x) are defined respectively as

gC(x) ,
∫ x

−∞

cos(t)
t

dt, gS(x) ,
∫ x

0

sin(t)
t

dt. (18)

Similarly, the mutual impedance matrix ZR can be also obtained from the expression of ZT .
However, the expresses for ZT and ZR in (11) are too complex to analysis. Since ZT and ZR

depend on the length of dipole antennas and the distances between antennas, the mutual coupling
matrices CT and CR can be approximated, respectively, by two symmetric Toeplitz matrices

CT ≈ T(cT), CR ≈ T(cR), (19)

where T(cT) ∈ CM×M is defined as

T(cM) ,


cT,0 cT,1 cT,2 . . . cT,M−1

cT,1 cT,0 cT,1 . . . cT,M−2

cT,2 cT,1 cT,0 . . . cT,M−3
...

...
...

. . .
...

cT,M−1 cT,M−2 cT,M−3 . . . cT,0

 , (20)
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and T(cR) ∈ CN×N is defined as

T(cR) ,


cR,0 cR,1 cR,2 . . . cR,N−1

cR,1 cR,0 cR,1 . . . cR,N−2

cR,2 cR,1 cR,0 . . . cR,N−3
...

...
...

. . .
...

cR,N−1 cR,N−2 cR,N−3 . . . cR,0

 . (21)

Additionally, for the mutual coupling matrices, we also have

1 = |cT,0| ≥ |cT,1| ≥ . . . ≥ |cT,M−1|, (22)

1 = |cR,0| ≥ |cR,1| ≥ . . . ≥ |cR,N−1|. (23)

Therefore, in the scenario with mutual coupling between antennas, the received signal in (8) can
be rewritten as

r(p) =
K−1

∑
k=0

αk(p) [CRb(ψk)]⊗ [CTa(φk)] + w(p) (24)

= CAα(p) + w(p),

where

C , CR ⊗ CT , (25)

α(p) ,
[
α0(p), α1(p), . . . , αK−1(p)

]T
, (26)

A ,
[
b(ψ0)⊗ a(φ0), . . . , b(ψK−1)⊗ a(φK−1)

]
. (27)

The orthogonal signals are affected by the mutual coupling effect, but we describe the
corresponding effect by a matrix, and the non-orthogonality is transferred into the steering vectors by
the mutual coupling matrix.

Finally, collect the received signals from all pulses, and the matrix form of all received signals can
be obtained as

R ,
[
r(0), r(1), . . . , r(P− 1)

]
= CAΓ + W , (28)

where W ,
[
w(0), w(1), . . . , w(P− 1)

]
, Γ ,

[
α(0), α(1), . . . , α(P− 1)

]
. Then, the vector form of all

received signals can be expressed as

r ,
[
rT(0), rT(1), . . . , rT(P− 1)

]T
= (IP ⊗ C) (IP ⊗ A) α + w, (29)

where w ,
[
wT(0), wT(1), . . . , wT(P− 1)

]T
, α , vec {Γ}.

Therefore, considering the mutual coupling between antennas in both receiver and transmitter,
we will develop an algorithm to estimate the DOD/DOA in A from the received signal r in (29) without
the knowledge of mutual coupling matrix C and the scattering coefficient α.



Electronics 2018, 7, 341 7 of 23

3. DOA/DOD and Mutual Coupling Matrix Estimation

With the received signal R, we propose a novel sparse-based method to estimate the DOD/DOA
in the scenario with unknown mutual coupling matrix. The possible DOD and DOA are, respectively,
from the following two discretized sets

Sφ ,
{

φD,z1 |z1 = 0, 1, . . . , Z1 − 1
}

, (30)

Sψ ,
{

ψD,z2 |z2 = 0, 1, . . . , Z2 − 1
}

, (31)

where φD,z1 ≤ φD,z1+1 and ψD,z2 ≤ ψD,z2+1.
Therefore, assume that the DOD and DOA of a target are respectively the z1-th entry of Sφ, i.e.,

φD,z1 , and the z2-th entry of Sψ, i.e., ψD,z2 , so the steering vector for this target can be expressed as

dz1,z2 = b(ψD,z2)⊗ a(φD,z1). (32)

Then, collecting the steering vectors for all the possible targets, a dictionary matrix can be
formulated as

D ,
[
d0,0, d0,1, . . . , d0,Z2−1, d1,0, . . . , dZ1−1,Z2−1

]
. (33)

Consequently, we can formulate the following compressed sensing (CS)-based problem [26,27]
for the DOD/DOA estimation

min
X
‖X‖2,0 (34)

s.t. ‖R− CDX‖2
F ≤ ε,

where the norm ‖X‖2,0 denotes the number of rows in X with the nonzero entries, and the parameter
ε is adopted to control the accuracy of sparse reconstruction. As shown in Figure 2, X ∈ CQ×P denotes
a sparse matrix and the nonzero entries are the scattering coefficients from Γ. The indexes of nonzero
rows in X indicate the DOD/DOA of targets.

α0(0) α0(1) α0(2) α0(p) …

α1(0) α1(1) α1(2) α1(p) …

αk(0) αk(1) αk(2) αk(p) …

αK-1(0) αK-1(1) αK-1(2) αK-1(p) …

The k-th 

target

The p-th pulse

0 0 0 0 …

0 0 0 0 …

0 0 0 0 …

0 0 0 0 …

0 0 0 0 …

α0(P-1)

α1(P-1)

αk(P-1)

αK-1(P-1)

0

0

0

0

0

…

…

…

…

…

…

…

…

…

Figure 2. The structure of sparse matrix X.

In (34), both the sparse matrix X and the mutual coupling matrix C are unknown, so this
paper proposes a novel method to estimate DOD/DOA with the unknown mutual coupling matrix.
Additionally, the off-grid problem in DOD/DOA estimation is also considered, where the off-grid
problem means that the actual values of DOD/DOA can be not exactly contained by the discretized
DOD and DOA sets, i.e., φk 6∈ Sφ and ψk 6∈ Sψ, but φD,0 ≤ φk ≤ φD,Z1−1 and ψD,0 ≤ ψk ≤ ψD,Z2−1,
for k = 0, 1, . . . , K− 1.
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Unlike the traditional multiple measurement vectors (MMV) problem [28–30] in the CS theory,
the mutual coupling matrix in the DOA/DOD estimation problem (34) is unknown, so the traditional
MMV methods cannot be used directly. Therefore, a novel method is proposed to estimate DOD/DOA
with the following objective function{

φ̂, ψ̂, X̂, Ĉ
}
= min

φ,ψ,X,C
f (φ, ψ, X, C), (35)

where Xq denotes the q-th row of X, and

f (φ, ψ, X, C) , µ ‖X‖2,1 + ‖R− CDX‖2
F, (36)

‖X‖F ,

√√√√P−1

∑
p=0

Q−1

∑
q=0

X2
q,p, (37)

‖X‖2,1 ,
Q−1

∑
q=0

√√√√P−1

∑
p=0

X2
q,p =

Q−1

∑
q=0
‖Xq‖2. (38)

In (35), the `1 norm is adopted as a relaxation form of `0 norm [31].
A novel iterative method is proposed to solve the problem (35), and the flow chart of the proposed

method is shown in Figure 3. First, ignoring the effect of mutual coupling, the CS-based method is
adopted to estimate the sparse matrix X̂ with assuming C = I. Second, based on the estimated X̂,
the mutual coupling matrix C can be estimated as Ĉ with the gradient descent method. Then, with the
roughly estimated results, another gradient descent method is proposed to further polish the estimated
results and solve the off-grid problem. Finally, Estimate DOD/DOA and mutual coupling matrix
iteratively, and the estimated results are obtained when the estimation method is that of convergence.
Details about the proposed method are given in the following subsections.

Received signal

Compressed 

sensing-based 

DOA/DOD 

estimation

Mutual coupling 

matrix estimation

Gradient descent 

method to polish 

the estimated 

results

1. Mutual coupling

    matrix

2. DOD/DOA

Estimated 

results

Figure 3. The flow chart of proposed method for DOD/DOA estimation with the unknown mutual
coupling matrix.
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3.1. CS-Based DOD/DOA Estimation

The CS-based method is adopted to estimate DOD/DOA. Since the multiple pulses are adopted in
the bistatic MIMO radar system, the simultaneous orthogonal matching pursuit (SOMP) method [32]
can be adopted with ignoring the mutual coupling between antennas. In Algorithm 1, the details of
the SOMP method for DOD/DOA estimation is given. At Step 4 of Algorithm 1, the `1 norm is used to
find the discretized DOD/DOA with the maximum correlation coefficient for all pulses.

Algorithm 1 Simultaneous orthogonal matching pursuit for DOD/DOA estimation

1: Input: received signal R, maximum number of targets K, dictionary matrix D.

2: Initialization: iteration i = 0, support Sx = ∅, residual matrix Zi = R, assuming C = I.

3: for i = 0 to K− 1 do

4: {ẑ1, ẑ2} = arg maxz1,z2 .‖ZH
i dz1,z2‖1.

5: j = z1Z1 + z2.

6: Sx ← Sx ∪ {j}.
7: Ri+1 = DSx D†

Sx
R, where DSx is formed by the columns from D with the column indexes from

the support Sx.

8: Zi+1 = R− Ri+1.

9: i = i + 1.

10: end for
11: Output: the estimated DOD/DOA from the support Sx and the estimated sparse matrix X̂.

3.2. Gradient Decent-Based Mutual Coupling Matrix Estimation

With the estimated DOD/DOA and the sparse matrix X̂, considering the symmetry characteristic
of mutual coupling matrix, the mutual coupling vectors cT and cR can be estimated by the following
objective function

{ĉT , ĉR} = arg min
cT ,cR

g(cT , cR), (39)

where the objective function is defined as

g(cT , cR) ,
∥∥R− [T(cR)⊗ T(cT)] DX̂

∥∥2
F . (40)

Therefore, a gradient decent method is proposed in this paper to estimate the mutual coupling
vectors cT and cR, and the details are given in Algorithm 2.

Here, the subgradients of objective function g(cT , cR) can be obtained as

∇c∗T
g(cT , cR) =

∂g(cT , cR)

∂c∗T
=
[

∂g(cT ,cR)
∂c∗T,0

, . . . , ∂g(cT ,cR)
∂c∗T,m

, . . .
]

, (41)

∇c∗R
g(cT , cR) =

∂g(cT , cR)

∂c∗R
=
[

∂g(cT ,cR)
∂c∗R,0

, . . . , ∂g(cT ,cR)
∂c∗R,n

, . . .
]

, (42)
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where the subgradients of
∂g(cT , cR)

∂c∗T,m
and

∂g(cT , cR)

∂c∗R,n
are given respectively as

∂g(cT , cR)

∂c∗T,m
= 2R

{
vecT {R− CDX̂

}
vec∗

{
−
[

T(cR)⊗
∂T(cT)

∂c∗T,m

]
DX̂

}}
, (43)

∂g(cT , cR)

∂c∗R,n
= 2R

{
vecT {R− CDX̂

}
vec∗

{
−
[

∂T(cR)

∂c∗R,n
⊗ T(cT)

]
DX̂

}}
. (44)

Algorithm 2 Mutual coupling matrix estimation

1: Input: received signal R, estimated sparse matrix X̂, dictionary matrix D, step size δ,

stop threshold εS.

2: Initialization: ĉT =
[
1, 01×(M−1)

]T
,

ĉR =
[
1, 01×(N−1)

]T
,

Ĉ = T(ĉR)⊗ T(ĉT),

e = ‖R− ĈDX̂‖2
F.

3: while e ≤ εS do

4: Obtain ∇c∗R
g(cT , cR) and ∇c∗R

g(cT , cR) from (41) and (42), respectively.

5: ĉT ← ĉT − δ∇c∗T
g(cT , cR).

6: ĉR ← ĉR − δ∇c∗R
g(cT , cR).

7: Ĉ = T(ĉR)⊗ T(ĉT).

8: e′ = ‖R− ĈDX̂‖2
F.

9: if e′ > e then

10: δ← δ
2 .

11: end if
12: e = e′.
13: end while
14: Output: the estimated mutual coupling matrix Ĉ.

3.3. Polish the Estimated DOD/DOA and Mutual Coupling Matrix

The DOD/DOA are discretized and the dictionary matrix is formulated in Algorithm 1, so the
estimated DOD/DOA must be in set Sφ and Sψ. However, in the practical scenarios, the DOD/DOA
of targets are continuous and can be not exact in the sets with discretized angles. Therefore, with the
roughly estimated DOD/DOA and mutual coupling matrix from Algorithms 1 and 2, this subsection
proposes a gradient descent method to further polish the estimated results and solve the off-grid
problem. The details to polish the estimation results is given in Algorithm 3. The mutual coupling
effect is compensated in Algorithm 3, where we estimate the mutual coupling coefficients. Then,
the estimated coefficients can be used to improve the performance of DOD/DOA estimation.
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Algorithm 3 Polish the estimated DOD/DOA and mutual coupling matrix

1: Input: received signal R, estimated sparse matrix X̂, estimated mutual coupling matrxi Ĉ,

dictionary matrix D, step size δ, stop threshold εS.

2: Initialization: obtain ĉT and ĉR from Ĉ; obtain φ̂ and ψ̂ from X̂; x̂ = vec
{

X̂
}

; e = ‖R− ĈDX̂‖2
F.

3: while e ≤ εS do

4: Obtain ∇φ f (φ, ψ, X, C), ∇ψ f (φ, ψ, X, C), ∇x∗ f (φ, ψ, X, C), ∇c∗T
f (φ, ψ, X, C), and

∇c∗R
f (φ, ψ, X, C).

5: ĉT ← ĉT − δ∇c∗T
f (φ, ψ, X, C).

6: ĉR ← ĉR − δ∇c∗R
f (φ, ψ, X, C).

7: Ĉ = T(ĉR)⊗ T(ĉT).

8: φ̂← φ̂− δ∇φ f (φ, ψ, X, C).

9: ψ̂← φ̂− δ∇ψ f (φ, ψ, X, C).

10: x̂← x̂− δ∇x∗ f (φ, ψ, X, C).

11: e′ = ‖R− ĈDX̂‖2
F.

12: if e′ > e then

13: δ← δ
2 .

14: end if
15: e = e′.
16: end while
17: Output: the polished mutual coupling matrix Ĉ, the polished DOD/DOA φ̂ and ψ̂, and the

polished sparse matrix X̂.

The gradient descent method based on the subgradients of objective function f (φ, ψ, XC),
which are given in Proposition 1.

Theorem 1. The subgradients of f (φ, ψ, X, C) are

∇φ f (φ, ψ, X, C) = 2R
{
[(IP ⊗ CD)x− r]H (IP ⊗ C)

∂(IP ⊗ D)x
∂φ

}
, (45)

∇ψ f (φ, ψ, X, C) = 2R
{
[(IP ⊗ CD)x− r]H (IP ⊗ C)

∂(IP ⊗ D)x
∂ψ

}
, (46)

∇x∗ f (φ, ψ, X, C) =
µ

2
xT

K−1

∑
q=0

(
P−1

∑
p=0

x2
q,p

)− 1
2

+ [(IP ⊗ CD)x− r]T (IP ⊗ CD)∗, (47)

∇c∗T
f (φ, ψ, X, C) = [(IP ⊗ CD)x− r]T

∂(IP ⊗ CD)∗x∗

∂c∗T
, (48)

∇c∗R
f (φ, ψ, X, C) = [(IP ⊗ CD)x− r]T

∂(IP ⊗ CD)∗x∗

∂c∗R
, (49)

where
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1. The k-th column of
∂(IP ⊗ D)x

∂φ
is

[
∂(IP ⊗ D)x

∂φ

]
k
=
(

IP ⊗
[
0MN×k, b(ψk)⊗

∂a(φk)
∂φk

, 0MN×(K−1−k)

])
x; (50)

2. The k-th column of
∂(IP ⊗ D)x

∂ψ
is

[
∂(IP ⊗ D)x

∂ψ

]
k
=
(

IP ⊗
[
0MN×k, ∂b(ψk)

∂ψk
⊗ a(φk), 0MN×(K−1−k)

])
x; (51)

3. The m-th column of
∂(IP ⊗ CD)∗x∗

∂c∗T
is

[
∂(IP ⊗ CD)∗x∗

∂c∗T

]
m
=

(
IP ⊗ C∗R ⊗

∂C∗T
∂c∗T,m

)
(IP ⊗ D∗) x∗; (52)

4. The n-th column of
∂(IP ⊗ CD)∗x∗

∂c∗R
is

[
∂(IP ⊗ CD)∗x∗

∂c∗R

]
n
=

(
IP ⊗

∂C∗R
∂c∗R,n

⊗ C∗T

)
(IP ⊗ D∗) x∗; (53)

5. The m-th entry of
∂a(φk)

∂φk
is

[
∂a(φk)

∂φk

]
m
= −j2π

md
λ

cos φke
−j2π

md
λ

sin φk
; (54)

6. The n-th entry of
∂b(ψk)

∂ψk
is

[
∂b(ψk)

∂ψk

]
n
= −j2π

nd
λ

cos ψke
−j2π

nd
λ

sin ψk
. (55)

Here, we will proof this proposition.

Proof. The derivations for vectors or matrices are given in Appendix A. By defining x , vec {X},
we can obtain

∇φ f (φ, ψ, X, C) =
∂‖r− (IP ⊗ CD)x‖2

2
∂φ

= −∂rH(IP ⊗ CD)x
∂φ

− ∂xH(IP ⊗ DHCH)r
∂φ

+
∂xH(IP ⊗ DHCH)(IP ⊗ CD)x

∂φ

= −rH ∂(IP ⊗ CD)x
∂φ

− rT ∂ [(IP ⊗ CD)x]∗

∂φ
+ [(IP ⊗ CD)x]T

∂([(IP ⊗ CD)x]∗)
∂φ

+ [(IP ⊗ CD)x]H
∂ [(IP ⊗ CD)x]

∂φ

= 2R
{
[(IP ⊗ CD)x− r]H (IP ⊗ C)

∂(IP ⊗ D)x
∂φ

}
.

(56)
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The k-th column of ∂(IP⊗D)x
∂φ can be obtained as[

∂(IP ⊗ D)x
∂φ

]
k
=

∂(IP ⊗ D)

∂φk
x =

(
IP ⊗

∂D
∂φk

)
x

=
(

IP ⊗
[
0MN×k, b(ψk)⊗

∂a(φk)
∂φk

, 0MN×(K−1−k)

])
x,

(57)

where the m-th entry of
∂a(φk)

∂φk
is

[
∂a(φk)

∂φk

]
m
= −j2π

md
λ

cos φke−j2π md
λ sin φk . (58)

Using the same method, ∇ψ f (φ, ψ, X, C) can be also obtained. Additionally, we also have

∇x∗ f (φ, ψ, X, C) =
∂µ‖X‖2,1 + ‖r− (IP ⊗ CD)x‖2

2
∂x∗

, (59)

and
∂‖r− (IP ⊗ CD)x∗‖2

2
∂x∗

= −∂rH(IP ⊗ CD)x
∂x∗

− ∂xH(IP ⊗ DHCH)r
∂x∗

+
∂xH(IP ⊗ DHCH)(IP ⊗ CD)x

∂x∗

= −
[
(IP ⊗ DHCH)r

]T ∂x∗

∂x∗
+ [(IP ⊗ CD)x]T

∂([(IP ⊗ CD)x]∗)
∂x∗

= [(IP ⊗ CD)x− r]T [(IP ⊗ CD)]∗ ,

(60)

where the k-th entry of
∂‖X‖2,1

∂x∗
is

[
∂‖X‖2,1

∂x∗

]
k
=

∂‖X‖2,1

∂x∗k
=

∂ ∑K−1
q=0

√
∑P−1

p=0 x2
q,p

∂x∗k
=

K−1

∑
q=0

xk

2
√

∑P−1
p=0 x2

q,p

, (61)

so we have

∂‖X‖2,1

∂x∗
=

1
2

xT
K−1

∑
q=0

(
P−1

∑
p=0

x2
q,p

)− 1
2

. (62)

Therefore, we can obtain

∇x∗ f (φ, ψ, X, C) =
µ

2
xT

K−1

∑
q=0

(
P−1

∑
p=0

x2
q,p

)− 1
2

+ [(IP ⊗ CD)x− r]T (IP ⊗ CD)∗.
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we can also obtain ∇c∗T
f (φ, ψ, X, C) as

∇c∗T
f (φ, ψ, X, C) =

∂µ‖X‖2,1 + ‖r− (IP ⊗ CD)x‖2
2

∂c∗T

= −∂rH(IP ⊗ CD)x
∂c∗T

− ∂xH(IP ⊗ DHCH)r
∂c∗T

+
∂xH(IP ⊗ DHCH)(IP ⊗ CD)x

∂c∗T

= −rH ∂(IP ⊗ CD)x
∂c∗T

− rT ∂ [(IP ⊗ CD)x]∗

∂c∗T
+ [(IP ⊗ CD)x]T

∂([(IP ⊗ CD)x]∗)
∂c∗T

+ [(IP ⊗ CD)x]H
∂ [(IP ⊗ CD)x]

∂c∗T

= [(IP ⊗ CD)x− r]T
∂(IP ⊗ CD)∗x∗

∂c∗T
,

(63)

and the m-th column of
∂(IP ⊗ CD)∗x∗

∂c∗T
is

[
∂(IP ⊗ CD)∗x∗

∂c∗T

]
m
=

(
IP ⊗ C∗R ⊗

∂C∗T
∂c∗T,m

)
(IP ⊗ D∗) x∗. (64)

Using the same method, ∇c∗R
f (φ, ψ, X, C) can be also obtained.

4. Cramér–Rao Lower Bound

The CRLB is adopted to show the lower bound on the variance of the estimated parameters
including DOD/DOA (φ and ψ), scattering coefficients (α), and mutual coupling coefficients c.
CRLB can be obtained from the Fisher information matrix (FIM)

eCRLB = ‖d‖2
2, (65)

where d is a vector with the diagonal entries of I−1(θ). I(θ) can be calculated as

I(θ) , E
{(

∂ ln p
∂θ

)H (∂ ln p
∂θ

)}
, (66)

where

∂ ln p
∂θ

=

[
∂ ln p

∂φ
,

∂ ln p
∂ψ

,
∂ ln p

∂α
,

∂ ln p
∂α∗

,
∂ ln p

∂c
,

∂ ln p
∂c∗

]
,

p , f (r|φ, ψ, α, c) =
1

πMNP det(σ2
n I)

e−σ−2
n (r−(I⊗CA)α)H(r−(I⊗CA)α),

c ,
[
cT

T , cT
R

]T
.

The subgradients of ln p are calculated as follows:

1.
∂ ln p

∂φ
is obtained as

∂ ln p
∂φ

= −σ−2
n

∂(r− (I ⊗ CA)α)H(r− (I ⊗ CA)α)

∂φ

= σ−2
n

[
[r− (I ⊗ CA)α]T

∂(I ⊗ CA)∗α∗

∂φ
+ [r− (I ⊗ CA)α]H

∂(I ⊗ CA)α

∂φ

]

= 2σ−2
n R

{
[r− (I ⊗ CA)α]H

∂(I ⊗ CA)α

∂φ

}
,

(67)
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where the k-th column of
∂(I ⊗ CA)α

∂φ
is

[
∂(I ⊗ CA)α

∂φ

]
k
=

(
I ⊗ C

∂A
∂φk

)
α, (68)

and

∂A
∂φk

=

[
0MN×k, b(ψk)⊗

∂a(φk)

∂φk
, 0MN×(K−1−k)

]
. (69)

With the same method, we can obtain
∂ ln p

∂ψ
.

2.
∂ ln p

∂α
is obtained as

∂ ln p
∂α

= −σ−2
n

∂(r− (I ⊗ CA)α)H(r− (I ⊗ CA)α)

∂α

= σ−2
n [r− (I ⊗ CA)α]H (I ⊗ CA),

(70)

and we have
∂ ln p
∂α∗

=

(
∂ ln p

∂α

)∗
.

3.
∂ ln p

∂c
is obtained as

∂ ln p
∂c

= −σ−2
n

∂(r− (I ⊗ CA)α)H(r− (I ⊗ CA)α)

∂c

= σ−2
n

[
[r− (I ⊗ CA)α]T

∂([(I ⊗ CA)α]∗)
∂c

+ [r− (I ⊗ CA)α]H
∂(I ⊗ CA)α

∂c

]

= σ−2
n [r− (I ⊗ CA)α]H

∂(I ⊗ CA)α

∂c
,

(71)

where the n-th column of
∂(I ⊗ CA)α

∂c
is

[
∂(I ⊗ CA)α

∂c

]
n
=

(
IP ⊗

∂C
∂cn

A
)

α. (72)

4.
∂ ln p
∂c∗

is obtained as

∂ ln p
∂c∗

= σ−2
n

[
[r− (I ⊗ CA)α]T

∂([(I ⊗ CA)α]∗)
∂c∗

+ [r− (I ⊗ CA)α]H
∂(I ⊗ CA)α

∂c∗

]

= σ−2
n [r− (I ⊗ CA)α]T

∂(I ⊗ C∗A∗)α∗

∂c∗
,

(73)

where the n-th column of ∂(I⊗C∗A∗)α∗
∂c∗ is[

∂(I ⊗ C∗A∗)α∗

∂c∗

]
n
=

(
I ⊗ ∂C∗

∂c∗n
A∗
)

α∗. (74)
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Finally, the FIM is obtained as

E
{(

∂ ln p
∂θ

)H (∂ ln p
∂θ

)}

= σ−2
n



2R
{

ΩH
φ Ωφ

}
, 2R

{
ΩH

φ Ωψ

}
, ΩH

φ G, ΩT
φ G∗, ΩH

φ Ωc, ΩT
φ Ω∗c

2R
{

ΩH
ψ Ωφ

}
, 2R

{
ΩH

ψ Ωψ

}
, ΩH

ψ G, ΩT
ψG∗, ΩH

ψ Ωc, ΩT
ψΩ∗c

GHΩφ, GHΩψ, GHG, 0, GHΩc, 0
GTΩ∗φ, GTΩ∗ψ, 0, GTG∗, 0, GTΩ∗c
ΩH

c Ωφ, ΩH
c Ωψ, ΩH

c G, 0, ΩH
c Ωc, 0

ΩT
c Ω∗φ, ΩT

c Ω∗ψ, 0, ΩT
c G∗, 0, ΩT

c Ω∗c


,

(75)

where G , IP ⊗ CA, Ωφ , ∂Gα
∂φ , Ωψ , ∂Gα

∂ψ , Ωc , ∂Gα
∂c . Then, with FIM, the corresponding CRLB can

be obtained.

5. Computational Complexity

In Algorithm 1, to estimate the DOD/DOA using the SOMP method, the computational
complexity is O(PMN + Q3 + Q2MN + Q(MN)2). In Algorithm 2 to estimate the mutual
coupling matrix, the computational complexity is O(MNPQ + (MN)2Q). Additionally,
in Algorithm 3, the estimation results are polished, and the computational complexity is O(MNPQ +

(MN)2Q). Therefore, the computational complexity of the proposed method to estimate DOD/DOA
and the mutual coupling matrix can be roughly expressed as O(Q3 + MNQ2 + (MN)2Q + MNPQ).
Usually, we have MN ≤ Q, so the roughly computational complexity can be simplified as
O(Q3 + PQ2).

6. Simulation Results

In this section, the simulation results are given to show the performance of the proposed algorithm.
The simulation parameters are given in Table 1. First, the reconstruction performance for the received
signal is shown in Figure 4. The reconstruction error is defined as

er =
‖r− r̂‖2

2

‖r‖2
2

, (76)

where r is the received signal defined in (29), and r̂ is the reconstruction signal with the estimated
parameters including DOD/DOA, scattering coefficients and mutual coupling matrices. As shown
in Figure 4, the proposed method polishes the estimated DOD/DOA and mutual coupling matrices
iteratively, where Algorithm 2 is adopted to estimate mutual coupling matrices and Algorithm 3 is
used to polished the estimated DOD/DOA and mutual coupling matrices. The relative reconstruction
error is decreasing with increasing the number of iterations. Additionally, as shown in this figure,
Algorithm 3 is more significant in improving the estimation performance than Algorithm 2. Therefore,
it is efficient to polish the estimated results in the off-grid problem after the rough on-grid estimation.
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Table 1. Simulation parameters.

Parameter Value

Carrier frequency fc 1 GHz

Speed of waveform c 3× 108 m/s

Wavelength λ 0.3 m

Pulse number P 100

Antenna space d 0.15 m

Antenna number in transmitter M 20

Antenna number in receiver N 20

Dictionary resolution |φD,z1 − φD,z1+1| 0.035

Detection angle range 30◦∼60◦

Iteration number 8× 103

Target number K 2

Iterative index (× 10
3
)
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Algorithm 2

Algorithm 3

Figure 4. The reconstruction performance with the proposed Algorithms 2 and 3.

Figure 5 shows the estimated DOD/DOA using different methods, where # denotes the
DOD/DOA of the target, × denotes the estimated DOD/DOA with the proposed method, and 4
denotes the estimated DOD/DOA with the on-grid SOMP method [32]. As shown in this figure,
when only the on-grid SOMP method is used to estimate the target DOD/DOA, the estimation error is
larger than that using the proposed method. In the proposed method, we adopt the proposed off-grid
method to further improve the on-grid result, so the proposed method can outperform the traditional
on-grid method.
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Figure 5. The estimated DOD/DOA using different methods.

Figure 6 shows the reconstruction performance with the proposed method where the
signal-to-noise ratios (SNRs) are 5 dB, 10 dB and 20 dB. With different SNRs, the same waveforms are
adopted, so the correlation between waveforms are the same. As shown in this figure, with increasing
the SNR of the received signal, better reconstruction performance can be achieved. Additional,
when SNR = 20 dB, the reconstruction performance is almost the same as the one without noise.
After about 8× 103 iterations, the reconstruction performance is convergence, so we can adopt 8× 103

as the maximum number of iterations in the following simulations. In Figure 7, we also compare
the estimated results with the CRLB derived in this paper. As shown in this figure, the proposed
estimation method can approach the CRLB, so the estimation method is efficient.
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Figure 6. The iterative results for different SNRs.
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Figure 7. The CRLB and the simulation MSE of the proposed method.

In Figure 8, we show the effect of mutual coupling on the estimation performance. As shown
in this figure, better estimation performance can be achieved by improving the SNR of the received
signal. The curves “with perfect information” are the simulation results with the perfect information of
mutual coupling effect. The best estimation performance can be achieved by the methods with perfect
information. Moreover, the mutual coupling has great effect on the estimation performance, so better
reconstruction performance can be achieved by estimating the mutual coupling matrices during the
DOD/DOA estimation. With different target numbers, Figure 9 shows the reconstruction estimation
performance. The targets are uniformly distributed in the angle range from 30◦ to 60◦. When the
target number is increasing, the reconstruction performance will be worse with the high correlation
between the echoed waveforms from different targets. However, with better SNR, more targets can be
estimated with the same reconstruction performance.
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Figure 8. The reconstruction performance with and without coupling estimation.
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Figure 9. The reconstruction performance with different numbers of targets.

7. Conclusions

In the bistatic MIMO radar, the DOD/DOA estimation problem with mutual coupling effect
between antennas has been addressed. After formulating the system model, the iterative method
based on CS has been proposed to exploit the sparsity of targets in the detection area, where the
estimation for DOD/DOA and mutual coupling has been polished by solving the off-grid problem.
Then, the corresponding CRLBs for the parameters including DOD/DOA, mutual coupling matrices,
and scattering coefficients, have been derived. Simulation results show that the proposed estimation
method can approach the CRLB and achieve the better estimation performance than the traditional
methods. Further work will focus on the estimation of moving targets in the MIMO radar system with
mutual coupling.
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Appendix A. The Derivations of Complex Vector and Matrix

Lemma A1. With both the complex vectors (u ∈ CP×1, v ∈ CP×1) and the complex matrix A ∈ CM×P being
the function of a complex vector x ∈ CN×1, the following derivations can be obtained [33]

∂uHv
∂x

= vT ∂(u∗)
∂x

+ uH ∂v
∂x

, (A1)

∂Au
∂x

=

[
∂A
∂x0

u + A
∂u
∂x0

, . . . ,
∂A
∂xn

u + A
∂u
∂xn

, . . .
]

. (A2)
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Proof.
∂uHv

∂x
=

[
∂uHv
∂x0

,
∂uHv
∂x1

, . . . ,
∂uHv
∂xN−1

]
=

[
∂ ∑M−1

m=0 u∗mvm

∂x0
, . . . ,

∂ ∑M−1
m=0 u∗mvm

∂xn
, . . .

]
=

[
. . . , ∑M−1

m=0
∂u∗m
∂xn

vm + u∗m
∂vm

∂xn
, . . .

]
=

[
. . . ,

(
∂u∗

∂xn

)T
v + uH ∂v

∂xn
, . . .

]
= vT

[
∂u∗

∂x0
, . . . ,

∂u∗

∂xn
, . . .

]
+ uH

[
∂v
∂x0

, . . . ,
∂v
∂xn

, . . .
]

= vTd
∂(u∗)

∂x
+ uH ∂v

∂x
.

(A3)

With A and u being the function of x, we can obtain the entry in m-th row and n-th column of
∂Au
∂x

as

∂ [Au]m
∂xn

=
∂ ∑P−1

p=0 Am,pup

∂xn

=
P−1

∑
p=0

∂Am,p

∂xn
up + Am,p

∂up

∂xn

= uT ∂[AT ]m
∂xn

+ [AT ]Tm
∂u
∂xn

=

[
∂A
∂xn

u + A
∂u
∂xn

]
m

,

(A4)

so the n-th column of
∂Au
∂x

is

[
∂Au
∂x

]
n
=

∂A
∂xn

u + A
∂u
∂xn

, (A5)

and

∂Au
∂x

=

[
∂A
∂x0

u + A
∂u
∂x0

, . . . ,
∂A
∂xn

u + A
∂u
∂xn

, . . .
]

. (A6)
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