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Abstract: Optimal energy extraction under partial shading conditions from a photovoltaic (PV)
array is particularly challenging. Conventional techniques fail to achieve the global maximum
power point (GMPP) under such conditions, while soft computing techniques have provided better
results. The main contribution of this paper is to devise an algorithm to track the GMPP accurately
and efficiently. For this purpose, a ten check (TC) algorithm was proposed. The effectiveness of
this algorithm was tested with different shading patterns. Results were compared with the top
conventional algorithm perturb and observe (P&O) and the best soft computing technique flower
pollination algorithm (FPA). It was found that the proposed algorithm outperformed them. Analysis
demonstrated that the devised algorithm achieved the GMPP efficiently and accurately as compared
to the P&O and the FPA algorithms. Simulations were performed in MATLAB/Simulink.

Keywords: maximum power point (MPP); maximum power point tracking (MPPT); global maximum
power point (GMPP); partial shading condition (PSC); solar photovoltaic (SPV)

1. Introduction

The depletion of fossil fuels, continuously growing energy demands, greenhouse gas (GHG)
emissions, and swelling prices of fossil fuels have turned the world’s attention towards renewable and
sustainable energy resources, such as solar photovoltaics (SPV) [1,2].

Transforming solar irradiance into electrical energy is the job of SPV [3]. Due to nonlinear electrical
characteristics and dependence on weather conditions, the photovoltaic (PV) array cannot operate at its
maximum power point (MPP). To do so, electronic trackers termed as maximum power point trackers
(MPPTs) are used [4]. MPPTs are governed by different algorithms/techniques. As PV depends on
weather conditions, tracking becomes difficult with changing weather conditions, especially in partial
shading conditions (PSCs).

In uniform weather conditions (UWCs), all the cells of a PV array receive the same illumination,
and there is only one peak in the power-voltage (P-V) curve of a PV array. Partial shading occurs
when part of the PV array is shaded. This shaded part acts as a load to the unshaded part of the PV
array and creates hotspots. To secure the PV array from hotspots, parallel diodes are connected across
PV modules of the PV array called bypass diodes. When a PV module is shaded, it is automatically
bypassed by the bypass diodes. This reduces the effect of shading at the PV array output power
and prevents PV module hotspots. However, in partial shading, multiple power peaks are created
in the P-V curve of the PV array due to bypass diodes. These multiple peaks are known as the local
maximum power points (LMPP), except for the one with the highest power, which is called the global
maximum power point (GMPP). It is very difficult to find the GMPP out of multiple LMPPs.

Conventional and soft computing (SC) MPP tracking techniques are the existing solutions for
extracting maximum power from a PV array. Conventional MPPT algorithms include perturb and
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observe (P&O) [5], incremental conductance (InC) [6], fractional short circuit (FSC) [7], and fractional
open circuit (FOC) [8]. Conventional algorithms perform efficiently in UWCs and track the MPP but
with the drawbacks of oscillations of the operating power point (OPP) around the MPP and failure to
perform under PSCs by sticking to the nearest LMPP [9].

Furthermore, multiple improvements have been carried out in conventional MPPT algorithms,
such as the two-stage P&O [10] and direct search MPPT [11] techniques. In the first stage of the
two-stage P&O technique, the optimized zone is detected, and in the second stage, the GMPP is
located [10]. In the direct search MPPT technique [11], a two-mode operation is conducted. Initially,
GMPP tracking mode is activated and afterwards switches to the other mode of the conventional P&O
method. Improved conventional techniques are ineffective in PSCs. Overall, all of the conventional
and improved conventional techniques fail to track the GMPP in PSCs. To overcome these drawbacks,
researchers have considered SC techniques.

In SC techniques, the artificial neural network (ANN) [12], and fuzzy logic (FL) [13] have provided
good results. However, a separate sensor arrangement is required for ANN, which increases the
cost, and the FL technique needs prior system knowledge to track and requires complex fuzzy
rules. These failures of ANN and FL have turned the attention of researchers towards nature-based
SC techniques, such as the genetic algorithm (GA) [14], the particle swarm optimization (PSO)
algorithm [15], the differential evolution (DE) algorithm [16], the random search method (RSM) [17],
and the artificial bee colony (ABC) algorithm [18]. However, all of the nature-inspired SC techniques
mentioned above are complex and have high computation time and low convergence speed. Still,
the PSO algorithm has shown valuable improvement in tracking efficiency.

A recently introduced nature-inspired algorithm is the flower pollination algorithm (FPA) [19].
The FPA beat the most popular PSO and P&O algorithms and proved to be the top-performing
technique for tracking GMPP in PSCs in [19]. The FPA shows improvement in convergence speed and
efficiency. The weaknesses of FPA are its: (1) procedural complexity, (2) difficulty in parameter tuning,
and (3) high computation time. FPA has fewer parameters such as switching probability and scaling
factor. Nevertheless, fine tuning the switching probability is important in balancing global and local
searches. Usually, the value of the switching probability has been fixed at 0.8, although this does not
ensure the fine balance between the two types of searches. Such a drawback presents difficulty in
GMPP tracking [20].

Research gaps in conventional techniques include: (1) removing the oscillation of the operating
power point around the MPP and (2) tracking GMPP in PSCs.

Research gaps in soft computing techniques include: (1) reducing computation time, (2) increasing
convergence speed, (3) reducing complexity, (4) increasing efficiency, and (5) increasing accuracy.

After considering these drawbacks, we proposed a novel method called the ten check (TC) for
GMPP tracking of a PV system in PSCs. The TC algorithm has numerous notable qualities that any
other conventional or soft computing technique does not have, such as: (1) parameter tuning is not
required, (2) GMPP tracking is faster than any existing technique, (3) zero oscillations around MPP,
and (4) GMPP is accurately and efficiently tracked.

Different patterns covering diverse weather states were tested through simulation. The results
of the proposed algorithm were compared with the state-of-the-art P&O and FPA techniques.
Comparisons based on tracking speed, efficiency, accuracy, parameter tuning, steady state oscillations
around MPP, procedural complexity, computational complexity, and performance under PSC were
made between P&O, FPA, and the proposed TC algorithm.

The TC algorithm has numerous notable qualities, which any other conventional or soft computing
technique does not have, such as:

(1) no parameter tuning is required,
(2) track GMPP faster than any existing technique/algorithm,
(3) zero oscillations around MPP,
(4) track GMPP accurately and efficiently.
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The rest of the paper is ordered as follows. Section 2 explains the partial shading effects and the
TC technique, Section 3 presents the simulation and results, Section 4 shows the comparison, Section 5
presents additional configuration tests, and Section 6 offers the conclusions.

2. Ten Check Algorithm

2.1. Effects of Partial Shading Weather Conditions

PV cells are connected in a parallel-series arrangement to form a PV module, and in the same
way, the arrangement of PV modules forms the PV array [21–26]. Under UWCs, the P-V curve of
a PV array has one single MPP; however, PSCs create multiple MPPs in the P-V curve. Out of all
those LMPPs, there is only one GMPP. The source of partial shading can be trees, construction, smoke,
moving clouds, and bird droppings [27,28]. A PV Array of four modules with three different shaded
patterns, no shading, weak partial shading, and strong partial shading is revealed in Figure 1 [29].
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Figure 1. Photovoltaic (PV) array with separate test cases. Case-1: zero partial shading; Case-2: weak
partial shading; Case-3: strong partial shading.

In case-1 of Figure 1, there was a condition of zero shading [29]. In case-2, 50% of the PV array
was shaded. Two out of four PV modules (half of the PV array) experienced the shading effect of same
level (300 W/m2). This created two MPPs in the P-V curve of the PV array, one due to the top two
unshaded panels and one due to the two equally shaded panels. In case-3, 75% of the PV array was
shaded. Three of the four PV modules received different illuminations (1000, 600, and 300 W/m2),
which created three MPPs in the P-V curve of the PV array and formed a more complex situation of
GMPP tracking. Bypass diodes were used to avoid “hotspots” [30], and blocking diodes were used to
stop the “reverse flow of current” [17]. One single peak was generated in the P-V curve in a uniform
illumination condition and multiple peaks were generated in the P-V curve due to the number of peaks
depending upon the strength of shading.

2.2. Problem Formulation

Due to the existence of multiple power peaks in the P-V curve of the PV array, an appropriate
algorithm which can accurately and efficiently access the GMPP is desired. The effectiveness of the
applied algorithm will affect the overall efficiency of the PV system. Bearing in mind all the above
facts, the novel TC algorithm was proposed for tacking the GMPP under all weather conditions.
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2.3. Ten Check Algorithm

The proposed TC algorithm smartly tackles the tracking process in 10 simple steps. Initially,
10 random samples (duty cycles) are generated in the given range of variables “A and B” (0–0.1)
in the first iteration using MATLAB command rand (1, 1). (This generates uniformly distributed
pseudorandom numbers drawn from the standard uniform distribution on the open interval (0, 1)).
Power against each sample is calculated. The sample with highest power is saved as the “1st best”
solution. In the second iteration, variables “A and B” are incremented to (0.1–0.2). The same process is
repeated for the new range of variables “A and B” to get the “2nd best”. This process repeats until the
number of sets reach their defined threshold value of “TEN” with variables “A and B” at “0.9–1.0”,
respectively, and an array of the top 10 solutions (one solution at the end of each iteration) is obtained.
The proposed TC algorithm picks the best solution from the solution array. The TC algorithm then stays
with the best achieved solution and starts checking for changing weather conditions using Equations
(1) and (2) [26,30]. The reinitialization of tracking process depends on the detection of changing
weather. When a change is sensed, the parameters will reset automatically, and the tracking process
will start again. This simple technique is equally effective in UWCs and PSCs. The TC technique is
more accurate, efficient, and effective than any other existing MPPT technique. A flowchart of the TC
algorithm is displayed in Figure 2.

Avoiding complex procedures of generating random numbers and time-wasting comparisons at
each step, the TC algorithm enhances GMPP tracking speed and accuracy.

The characteristics of the PV array directly depend on weather conditions. The GMPP changes
with the change in illumination and temperature; therefore, the detection of weather changes is
obligatory. This change can be detected by the amount of change in voltage or current. The threshold
values for the change in voltage (dV) and change in current (dI) set by the experimental trials performed
in [26–30] are “0.2-V and 0.1 A”, respectively. These conditions are sensitive for the change of 50 W/m2.
The present operating values of voltage and current are compared with their values obtained at the
end of tracking process.

dV =
Vpv(t)− Vpv(t − 1)

Vpv(t)
≥ 0.2 (1)

dI =
Ipv(t)− Ipv(t − 1)

Ipv(t)
≥ 0.1 (2)

Vpv(t) is the voltage of a PV array at the t-th iteration and Vpv(t − 1) is the voltage of array at the
preceding iteration. Ipv(t) is the current of a PV array at the t-th iteration and Ipv(t − 1) is the current
of a PV array at the preceding iteration.
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Figure 2. Flowchart of the ten check (TC) algorithm.

3. Simulation and Results

The performance evaluation and comparison of the TC algorithm with the P&O and FPA
algorithms was performed in MATLAB/Simulink. The three different shading patterns discussed in
Figure 1 were used for the evaluation. The system’s configuration at which the algorithms were tested
was 64-bit Operating System, intel i3 Processor, and 4.00 GB RAM. The structure of the PV system with
the MPPT controller is displayed in Figure 3. The TC algorithm was coded in the MATLAB/Simulink’s
function block, displayed in light blue color of Figure 3. The algorithm generated a number in the range
0–1, which was injected as a duty cycle input to the DC-DC converter to change the DC voltage level.
The sample time among inputs (duty cycles) was set as 0.03 s for the FPA algorithm, as mentioned
in [29]. The parameter values for the P&O, FPA, and TC algorithms are presented in Table 1.
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Table 1. Parameters of the perturb and observe (P&O), flower pollination (FPA), and TC algorithms.

P&O FPA TC

D = 0.75 P = 0.8 -
∆D = 3 × 10−4
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= 1.5 -

3.1. Case-1: Zero Shading

In this case, where all the modules in the PV array received the same illumination and temperature,
there was only one peak power point in the P-V curve. Achieving MPP here was an easy task for the
P&O, FPA, and TC algorithms. The P-V and current-voltage (I-V) characteristic curves of the PV array
for the zero shading condition are displayed in Figure 4.
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The values of the three variables—voltage (V), current (I), and power (P)—at MPP in P-V and
I-V characteristic curves displayed in Figure 4 were 40 V, 3 A, and 120 W, respectively. It can be
seen in Figure 5 that the TC algorithm achieved the target of 119.7 W with 99.75% efficiency and
zero oscillations, P&O extracted the full power of 120 W with 100% efficiency but with oscillations
around the MPP, and FPA was successful in extracting 119.2 W with the efficiency of 99.33% and
without oscillations.
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Discussion of Figure 5

The extracted power and MPP tracking time of the FPA, P&O, and TC algorithms were 119.2 W
in 0.75 s with an efficiency of 99.33%, 120 W in 0.09 s with an efficiency of 100%, and 119.7 W in 0.4972
s with an efficiency of 99.75%, respectively, in a uniform or zero shading condition, as displayed in
Figure 5a–c. The P&O algorithm performed better but with a drawback of oscillation around MPP.
The TC algorithm outperformed the FPA algorithm in all aspects and beat the P&O algorithm with
zero oscillations. So, the proposed TC algorithm was the best choice, with a 99.75% efficiency and
zero oscillations.

3.2. Case-2: Weak Partial Shading

In case-2 of Figure 1, weak partial shading was introduced. This created two power peaks in the
P-V curve of the PV array. The P-V and I-V characteristic curves of PV array for this case are displayed
in Figure 6.
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Figure 6. Global I-V and P-V characteristics of the PV array in the weak partial shading condition.

The values of the three variables voltage (V), current (I), and power (P) at MPP in P-V and I-V
characteristic curves displayed in Figure 6 were 18.71 V, 2.983 A, and 55.81 W, respectively.

Discussion of Figure 7

The extracted power and tracking time of the FPA and the TC algorithms were 55.25 W in 0.78 s
with an efficiency of 98.99% and 55.78 W in 0.497 s with an efficiency of 99.95%, respectively, in the
weak partial shading condition, as displayed in Figure 7a,d. The P&O failed at tracking the GMPP
because of its dependence at the starting value of the duty cycle, so it stuck to the nearest LMPP,
as displayed in Figure 7b,c. It achieved 55.79 W in 0.045 s (when tracking started with duty cycle = 0.75)
and achieved 42.56 W in 0.092 s (when tracking started with duty cycle = 0.25). It is evident from the
results revealed in Figure 7 that the TC algorithm outperformed both the FPA and P&O algorithms in
tracking time, tracking accuracy, and efficiency in the weak partial shading condition.



Electronics 2018, 7, 327 10 of 29
Electronics 2018, 7, x FOR PEER REVIEW  10 of 29 

 

 
(a) 

 

(b) 

Figure 7. Cont.



Electronics 2018, 7, 327 11 of 29
Electronics 2018, 7, x FOR PEER REVIEW  11 of 29 

 

 

(c) 

 
(d) 

Figure 7. Results of FPA, P&O, and TC algorithms in the weak shading condition. (a) FPA; (b) P&O 
(start at 0.75 duty cycle); (c) P&O (start at 0.25 duty cycle); (d) TC (tracking time and power). 

3.3. Case-3: Strong Shading 

In case-3, strong partial shading was applied at the PV array. This created three power peaks in 
the P-V curve. The P-V and I-V characteristic curves of a PV array under this strong PSC are displayed 
in Figure 8. It is very difficult to track the GMPP in this condition. 

Figure 7. Results of FPA, P&O, and TC algorithms in the weak shading condition. (a) FPA; (b) P&O
(start at 0.75 duty cycle); (c) P&O (start at 0.25 duty cycle); (d) TC (tracking time and power).

3.3. Case-3: Strong Shading

In case-3, strong partial shading was applied at the PV array. This created three power peaks in
the P-V curve. The P-V and I-V characteristic curves of a PV array under this strong PSC are displayed
in Figure 8. It is very difficult to track the GMPP in this condition.
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The values of the three variables voltage (V), current (I), and power (P) at the GMPP in a P-V
characteristic curve displayed in Figure 8 were 43.91 V, 0.96 A, and 42.16 W, respectively.

Discussion of Figure 9

The extracted power and tracking time of the FPA and TC algorithms were 42.05 W in 0.79 s
with an efficiency of 99.74% and 42.16 W in 0.497 s with an efficiency of 100%, respectively, without
oscillations in strong PSCs, as displayed in Figure 9a,d. The P&O failed at tracking the GMPP because
of its dependency at the starting value of the duty cycle. It stuck to the nearest LMPP, as displayed in
Figure 9b–d. It stuck to 23.71 W in 0.049 s (when tracking started with duty cycle = 0.75), it stuck to
37.69 W in 0.043 s (when tracking started with duty cycle = 0.5), and it stuck to 42.16 W in 0.32 s (when
tracking started with duty cycle = 0.25). It is evident from the results presented in Figure 9 that the
TC algorithm outperformed both the FPA and P&O algorithms in tracking time, tracking accuracy,
and efficiency in strong PSCs.
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Figure 9. Results of FPA, P&O, and TC algorithms in the strong shading condition. (a) FPA; (b) P&O
(start at 0.75 duty cycle); (c) P&O (start at 0.5 duty cycle); (d) P&O (start at 0.25 duty cycle); (e) TC
(tracking power confirmation).

4. Comparison

The results of the P&O, FPA, and TC algorithms for zero, partial weak, and partial strong
shadings are summarized in Table 2, and the performance assessment of the TC algorithm with all the
well-known algorithms published in the reputable journals is presented in Table 3.

From the summary presented in Table 2, it can be concluded that the P&O algorithm was the best
choice for tracking MPP in zero shading but could not be adopted due to its failure in weak and strong
partial shading conditions.

The TC algorithm beat the FPA algorithm in efficiency and tracking speed for MPP and GMPP
tracking in zero, weak, and strong PSCs. Based on the performances of the TC, P&O, and FPA
algorithms shown in Table 2, the TC algorithm seems to be the best choice to track MPP and GMPP in
all weather conditions.

Table 2. Quantitative comparison between TC, FPA, and P&O algorithms.

Shading Patterns Algorithms PMPP (w) Rated
Power (W) Efficiency (%) Tracking Time (s) Best Algorithm

for the Case

Case-1 (Zero
Shading)

TC 119.7
120

99.75 0.497
TC & P&OFPA 119.2 99.3 0.75

P&O 120 100 0.09

Case-2 (Weak
Shading)

TC 55.78
55.81

99.95 0.497
TCFPA 55.25 98.99 0.78

P&O Failed Zero “0” Failed

Case-3 (Strong
Shading)

TC 42.16
42.16

100 0.497
TCFPA 42.05 99.74 0.79

P&O Failed Zero “0” Failed



Electronics 2018, 7, 327 16 of 29

Table 3. Performance assessment of the TC algorithm with well-known maximum power point tracker
(MPPT) algorithms.

Sr. No. Parameter Perturb and Observe [5] Fuzzy [13] PSO [15] RSM [17] FPA [29] TC

1 Steady State
Oscillations Huge Less Nil Nil Nil NIL

2 Speed of Tracking Slow Reasonable Reasonable Fast Fast FASTEST

3 Complications Few Reasonable Huge Few Reasonable NO

4 Procedural
Complications Few Reasonable Reasonable Few Reasonable NO

5 Memorizing
Necessity Few Large Few Few Few FEW

6 Computational
Complications Few Large Reasonable Few Reasonable FEW

7 Performance Under
PSC Fail Few Reasonable Good Good EXCELLENT

8 Execution Time High Reasonable Reasonable Low Low VERY LOW

9 Array Dependent Yes Yes No No No N0

10 Steps 2 4 4 3 2 1

11 Parameters Tuning Yes Yes Yes Yes Yes NO

12 Efficiency Lower in PSC Low in
PSC Average Average Average HIGH

13 Simple and Short Yes No No No No YES

4.1. Analysis of TC for Partial Shading

The performance of the TC algorithm was checked for zero, weak, and strong PSCs, separately.
Figure 10 shows the performance assessment of the TC algorithm undergoing case-1 to case-2 and then
case-3 together. The rise and fall in illumination due to different actions, such as clouds, birds, falling
leaves, etc., was considered and simulated, and the results are presented in Figure 10.
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Discussion of Figure 10

The success of TC can be clearly seen in Figure 10. It started with zero partial shading (case-1);
after 1 s, the PV array underwent weak partial shading (case-2), and after 2 s, the PV array experienced
strong partial shading (case-3). In all the three cases, the TC algorithm retained its performance in
terms of tracking time, tracking accuracy, and stability (zero oscillations). The performance analysis of
the TC algorithm undergoing these three cases is summarized in Table 4.
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Table 4. Performance analysis of the TC algorithm undergoing three cases.

Cases PMPP (W) Rated Power (W) Efficiency (%)

Case-1 119.7 120 99.75
Case-2 55.8 55.81 99.98
Case-3 42.13 42.16 99.93

4.2. Uniform Shading Test

Figure 11 shows the performance assessment of the TC algorithm in UWCs. The rise and fall in
illumination due to different actions, such as clouds, birds, falling leaves, etc., was considered and
simulated, and the results are presented in Figure 11.

Discussion of Figure 11

Figure 11 shows the simulation of the uniform shading effects. It started with zero shading, which
lasted for 1 s. The TC algorithm extracted the maximum power of 119.7 W. Strong uniform shading
occurred with 250 W/m2 at time 1 s, and the extracted power in this condition was 31.61 W. This fall
remained for a period of 1 s and uniform shading became weak at time 2.0 s to 750 W/m2. Power of
92.45 W was tracked in this uniform weak shading. The P-V and I-V characteristic curves of the PV
array for the conditions presented in Figure 11 are displayed in Figure 12.
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Figure 12. I-V and P-V curves for (a) 250 and (b) 750 W/m2.

Figure 12 shows that the MPPs of the PV array at 250 and 750 W/m2 were at 32 and 92.47 W,
respectively, as displayed in Figure 12a,b. Also, it is clearly displayed in Figure 4 that the MPP was at
120 W for zero shading.

The TC algorithm has achieved a power of 119.7 W in 1000 W/m2 with 99.75% efficiency, 31.61 W
in 250 W/m2 with 99.78% efficiency, and 92.47 W in 750 W/m2 with 99.98% efficiency. The detailed
performance analysis of the TC algorithm for uniform shading is summarized in Table 5.

Table 5. Performance analysis the TC algorithm in the uniform shading condition.

Illumination (W/m2) PMPP (W) Rated Power (W) Efficiency (%)

1000 119.7 120 99.75
250 31.61 32 99.78
750 92.45 92.47 99.98

5. More Configurations Test

Two PV arrays in parallel with each array having four PV modules in series (4S2P) is the
configuration presented in cases “a” and “b” of Figure 13 for two different shading conditions. The PV
arrays with six modules in series (6S) is the configuration presented in cases “c” and “d” of Figure 13
for two different shading conditions. These weather conditions were adopted from [19].
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Characteristic curves for all the configurations of Figure 13 are presented in Figure 14. The values
of the three variables voltage (V), current (I), and power (P) at the GMPP in the P-V and I-V
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characteristic curves of case-(a) are displayed in Figure 14a, which are 31.55 V, 3.87 A, and
122.1 W, respectively.
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The values of the three variables voltage (V), current (I), and power (P) at the GMPP in P-V and I-V
characteristic curves of case-b displayed in Figure 14b were 18.71 V, 5.967 A, and 111.6 W, respectively.
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The values of the three variables voltage (V), current (I), and power (P) at the GMPP in P-V and I-V
characteristic curves of case-c displayed in Figure 14c were 42.04 V, 1.58 A, and 66.45 W, respectively.
The values of the three variables voltage (V), current (I), and power (P) at the GMPP in the P-V and I-V
characteristic curves of case-d displayed in Figure 14d were 41.64 V, 1.671 A, and 69.58 W, respectively.

5.1. Case-(a), Shading of 4S2P

The results of the FPA and TC algorithms for case-(a) shading 4S2P are presented in Figure 15.
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The results proved that the TC algorithm performed far better than the FPA algorithm in case-a.
The FPA attained 101.9 W in 0.75 s, whereas the TC algorithm extracted 122.1 W in 0.49 s, as displayed
in Figure 15a,b. The TC algorithm performed better in terms of time and tracked power.

5.2. Case-(b), Shading of 4S2P

The results of the FPA and TC algorithms for case-(b) shading 4S2P are presented in Figure 16.
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The results show that the TC algorithm extracted the same power as the FPA algorithm in case-b.
Both algorithms were successful in tracking the GMPP. The FPA attained 110.8 W in 0.760 s, whereas
the TC algorithm extracted 110.8 W in 0.5016 s, as displayed in Figure 16a,b. The TC algorithm
performed better in terms of tracking time.

5.3. Case-(c), Shading of 6S

The results of the FPA and TC algorithms for case-(c) shading 6S are presented in Figure 17.
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Figure 17. Results of the FPA and TC algorithms for case-c. (a) FPA; (b) TC algorithm.

The results show that the TC algorithm outperformed the FPA algorithm in case-c. The FPA
attained 66.05 W in 0.75 s, whereas the TC algorithm extracted 66.31 W in 0.4962 s, as displayed in
Figure 17a,b. The TC algorithm performed better in terms of extracted power and tracking time.

5.4. Case-(d), Shading of 6S

The results of the FPA and TC algorithms for case-(d) shading 6S are presented in Figure 18.
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The results show that the TC algorithm extracted the same power as the FPA algorithm in case-d.
Both algorithms were successful in tracking the GMPP. The FPA attained 69.58 W in 0.751 s, whereas
the TC algorithm extracted 69.58 W in 0.48 s, as displayed in Figure 18a,b. The TC algorithm performed
better in terms of tracking time.

The performance of the FPA and TC algorithms for four new configurations, introduced in
Figure 13, is summarized in Table 6.

Table 6. Performance comparison between TC, FPA, and P&O algorithms.

Shading Patterns Algorithms PMPP (w) Rated
Power (W) Efficiency (%) Efficiency

Improvement (%)
Tracking
Time (s)

Tracking Time
Improvement (s)

Case (a) (4S2P)
TC 122.1

122.1
100

16.54
0.4976

0.258 s 34%FPA 101.9 83.46 0.7556
P&O Failed Zero “0” Failed

Case (b) (4S2P)
TC 110.8

111.6
99.28

Same
0.5016

0.2586 s 34%FPA 110.8 99.28 0.7602
P&O Failed Zero “0” Failed

Case (c) (6S)
TC 66.31

66.45
99.8

0.4
0.4962

0.2564 s 34.1%FPA 66.05 99.4 0.7526
P&O Failed Zero “0” Failed

Case (d) (6S)
TC 69.58

69.58
100

Same
0.4829

0.2681 s 35.7%FPA 69.58 100 0.751
P&O Failed Zero “0” Failed

The performance comparison of the FPA and TC algorithms for the four new configurations
introduced in Figure 13 is summarized in Table 6. For the case-a “4S2P”, the TC algorithm tracked
the GMPP with 100% efficiency, while the performance of the FPA algorithm was limited to 83.46%.
It could not be wrong to state that the FPA algorithm failed for this condition. In terms of tracking
time, the TC algorithm performed 34% faster than the FPA algorithm. For case-b of “4S2P”, the TC and
FPA algorithms tracked the GMPP with 99.28% efficiency, whereas in terms of tracking time, the TC
algorithm performed 34% faster than the FPA algorithm, thus making it most suitable for GMPP
tracking in PSCs.

For case-c “6S”, the TC algorithm tracked the GMPP with 99.8% efficiency, while the FPA algorithm
tracked the GMPP with 99.4% efficiency. The TC algorithm’s efficiency was 0.4% improved compared
with the FPA algorithm. In terms of tracking time, the TC algorithm performed 34.1% faster than
the FPA algorithm. For the case-d of “6S”, the TC and FPA algorithms tracked the GMPP with 100%
efficiency. In terms of tracking time, the TC algorithm performed 35.7% faster than the FPA algorithm,
which makes it the most suitable for GMPP tracking in PSCs.

The threshold values for the change in voltage (dV) and change in current (dI) set by the
experimental trials were 0.1 V and 0.1 A and are displayed in Equations (3) and (4), respectively,
for the configuration of 4S2P. The values are 0.25 V and 0.1 A and are displayed in Equations (5) and (6),
respectively, for the configuration of 6S. These conditions were sensitive for the change of 50 W/m2.

dV =
Vpv(t)− Vpv(t − 1)

Vpv(t)
≥ 0.1 (3)

dI =
Ipv(t)− Ipv(t − 1)

Ipv(t)
≥ 0.1 (4)

dV =
Vpv(t)− Vpv(t − 1)

Vpv(t)
≥ 0.25 (5)

dI =
Ipv(t)− Ipv(t − 1)

Ipv(t)
≥ 0.1 (6)
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6. Conclusions

A novel TC algorithm was proposed for GMPP tracking. Various cases of zero, uniform, and
partial shading were simulated. These simulations and comparisons have shown the following results.

1. The structure of the TC algorithm is simple and does not allow the changing weather conditions
to affect its performance.

2. Unlike the FPA algorithm, the TC algorithm avoids complex procedures for generating
random numbers.

3. Unlike the P&O algorithm, the TC algorithm does not waste time in comparing current power
with the previous power at each step. These plus points have increased the tracking speed and
accuracy of the TC algorithm.

4. The TC algorithm achieved GMPP accurately and efficiently in all weather conditions and in
record time.
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Appendix A Modeling and Characteristics of Photovoltaic Cell

Mainly, two modeling approaches exist: (1) the one/single-diode model [21] and (2) the
two/double-diode model [22]. The two-diode model is more accurate, but the one-diode model
is mostly used because of its simplicity [23,24]. The one/single-diode model of a PV cell is displayed
in Figure A1.
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After applying kirchhoff’s current law, in Figure A1, the current at the output of the PV cell is:

I = Ipv − ID −
(

V + IRs
Rsh

)
. (A1)

This single-diode model has following five parameters: Ipv, ID, Rs, Rsh, and α, where Ipv = current
of the PV cell, ID = diode current, Rs = resistance in series, Rsh = parallel resistance, and α = diode
ideality factor VD.

The diode current can be expressed as in Equation (A2):

ID = Io ∗
[

exp
(

VD
α ∗ VT

)
− 1

]
(A2)
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where VD = diode voltage, IO = reverse saturation current, and VT = thermal voltage.
The thermal voltage formula is expressed in Equation (A3):

VT =
NskT

q
(A3)

where k = Boltzmann constant = 1.3805 × 10−23, Ns = number of series connected cells, T = temperature
at standard test condition (STC), and q = electron charge = 1.9 × 10−19 ◦C.

The PV array’s current can be calculated using Equation (A4):

I = Npp ∗
(

Ipv − Io ∗
[

exp
(

V + IRs
α ∗ VTNss

)
− 1

])
−

(
V + IRs

Rp

)
(A4)

where Npp = number of parallel connected cells, Nss = number of series connected cells, I = array
current, and Ipv = array current.

The power-voltage (P-V) and current-voltage (I-V) characteristic curve is displayed in Figure A2.
It can be clearly seen how the change in voltage affects the power of the PV cell. This voltage level
was changed by changing the duty cycle of the DC-DC converter using MPPTs, which were governed
by algorithms.
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Figure A2a shows that the power increases for a positive change in voltage until the MPP is
reached; this happens because value of the current remains constant for a changing voltage. This is
a characteristic curve for a uniform illumination condition or zero shading condition. Characteristic
curves for changing illumination and temperature are also presented in Figure A2b.
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