
electronics

Review

Magnetically Coupled Resonance WPT: Review of
Compensation Topologies, Resonator Structures with
Misalignment, and EMI Diagnostics

Mohamad Abou Houran, Xu Yang and Wenjie Chen *

School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
eng.horan@yahoo.com (M.A.H.); yangxu@xjtu.edu.cn (X.Y.)
* Correspondence: cwj@xjtu.edu.cn; Tel.: +86-29-82665223

Received: 11 September 2018; Accepted: 22 October 2018; Published: 2 November 2018
����������
�������

Abstract: Magnetically coupled resonance wireless power transfer systems (MCR WPT) have been
developed in recent years. There are several key benefits of such systems, including dispensing
with power cords, being able to charge multiple devices simultaneously, and having a wide
power range. Hence, WPT systems have been used to supply the power for many applications,
such as electric vehicles (EVs), implantable medical devices (IMDs), consumer electronics, etc.
The literature has reported numerous topologies, many structures with misalignment effects, and
various standards related to WPT systems; they are usually confusing and difficult to follow.
To provide a clearer picture, this paper aims to provide comprehensive classifications for the recent
contributions to the current state of MCR WPT. This paper sets a benchmark in order to provide a
deep comparison between different WPT systems according to different criteria: (1) compensation
topologies; (2) resonator structures with misalignment effects; and, (3) electromagnetic field (EMF)
diagnostics and electromagnetic field interference (EMI), including the WPT-related standards and
EMI and EMF reduction methods. Finally, WPT systems are arranged according to the application
type. In addition, a WPT case study is proposed, an algorithm design is given, and experiments are
conducted to validate the results obtained by simulations.

Keywords: compensation topology; electromagnetic field (EMF); electromagnetic field interference
(EMI); misalignment; resonator structure; wireless power transfer (WPT); WPT standards

1. Introduction

Wireless power transfer (WPT) is a promising technology due to its advantages of being cordless,
safe during charging, and its ability to operate in a wet and harsh environment [1]. It has gained
global acceptance, and is used to supply the power for many applications in several fields, such as
electric vehicles (EVs) [2–14], online electric vehicles (OLEVs) [15–17], plug-in hybrid electric vehicle
(PHEVs) [18], superconducting magnetic levitation trains (maglev) [19], implantable medical devices
(IMDs) [20–31], and consumer electronics [32–34]. In addition, it has been used in the charging systems
of autonomous underwater vehicles (AUVs) [35], the rotary of a gas turbine [36], and Internet of
Things (IoT) applications [37–39].

According to the energy transfer mechanism, the WPT technology can be divided into two
categories. The first is far-field wireless transmission, which is also called electromagnetic radiation
WPT. It includes microwave power transfer (MPT) [40–42], laser power transfer (LPT) [43–45], and
solar power satellites (SPS) [46,47].

The second is near-field WPT (Figure 1), which can, in turn, be classified into two groups. Firstly,
there is inductive power transfer, including the inductive coupled power transfer (ICPT or IPT), and
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magnetically coupled resonance wireless power transfer (MCR WPT); as shown in Figure 1a, Tx is
the transmitting coil and Rx is the receiving coil. Secondly, there is capacitive power transfer (CPT),
as displayed in Figure 1b. Some IPT systems have presented high power transmission efficiency (PTE)
of larger than 90% for transmission distances of several centimeters; however, for longer distances,
efficiency will drop significantly [48–63]. Nevertheless, authors have presented an innovative IPT
system to transfer power a distance of 5 m using dipole coils [64]. Most of the presented CPT systems
are designed for low-power applications, including USB devices, lamps, and small robots [8,65–73],
where the transmitting distance is limited to the millimeter range. High efficiency is provided by MCR
WPT for a longer transferring distance [23,34,74–82].
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Figure 1. Near-field wireless power transfer (WPT): (a) Structure of inductive power transfer 
(IPT)/magnetically coupled wireless power transfer (MCR WPT); (b) Structure of capacitive power 
transfer (CPT). 
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Figure 1. Near-field wireless power transfer (WPT): (a) Structure of inductive power transfer
(IPT)/magnetically coupled wireless power transfer (MCR WPT); (b) Structure of capacitive power
transfer (CPT).

Due to its importance and rapid development, WPT has been widely used over the last few years,
offering a practical technique to transfer power wirelessly in many applications on a commercial scale.
Many studies have been conducted in this area, and the literature has reported much research related
to several aspects of MCR WPT, which is usually confusing and difficult to follow. To give a clear
picture, this paper aims to review the recent contributions to the current state of MCR WPT systems.
This paper sets a benchmark in order to provide comprehensive classifications with a deep comparison
between different WPT systems according to different criteria. They are as follows:

1. Compensation topologies: Basic and hybrid compensation topologies are reported, and some
commonly used topologies are compared based on application type.

2. Research work related to the resonator structure is discussed as follows:

• Coil geometry is discussed in detail, including many resonator shapes, such as planar coils,
three-dimensional (3D) structures, cavity structures, and coils with cores, etc., which are
compared based on set criteria.

• The differences between single-phase WPT and three-phase WPT systems are highlighted,
and some three-phase WPT projects are reported.

• Multi-coil systems, which are capable of charging multiple devices simultaneously, such as
LEDs, are addressed.

• Operating frequency effects on the design of coil structure.
• Inductance of several resonator structures.
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• Misalignment study: Several misalignment types are displayed and compared based on
their resonator structure and effects, in addition to their advantages and disadvantages.

3. Electromagnetic field interference (EMI) diagnostics, including WPT-related standards and
guidelines. In addition, EMI and EMF reduction methods are reported and compared. Moreover,
advantages and disadvantages of these methods are addressed.

4. Basic applications of WPT systems are given. Next, a WPT case study is proposed. In the proposed
winding method, a bio-inspired joint made of two spherical structures is given. The algorithm
design is provided, and experiments are conducted to validate the obtained results by simulation
and optimization.

The paper is organized as follows. In Section 2, a benchmark is set to present the major
categorizations of the WPT system. Section 3 discusses compensation topologies in detail. Section 4
classifies and reviews many resonator structures in detail. The misalignment study is presented in
Section 5. WPT-related standards, electromagnetic field (EMF) mitigation methods, and EMI mitigation
methods are given in Section 6. In Section 7, WPT applications are illustrated, an optimized design of a
WPT system is given, and a case study is proposed and discussed. Finally, the conclusion and further
areas for research are provided in Section 8.

2. Benchmark of the Research Work

In this paper, a benchmark is proposed (Figure 2) that provides various categorizations of
research works related to WPT. The benchmark classifies major research areas relating to WPT, which
include compensation topology, resonator structure, misalignment study, EMI and EMF diagnostics,
frequency-splitting issue, impedance matching, control strategy, and WPT optimization. In this paper, a
number of these issues related to WPT systems are discussed in detail. Other issues, such as impedance
matching (which will be discussed in brief in Section 3) and control methods [83,84], will not be
discussed for the sake of brevity.
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3. Compensation Topologies

There are some requirements for compensation, which are as follows. (1) The compensation
capacitor resonates with the primary and/or secondary inductance in order to provide reactive power,
which is required for the inductances to generate an adequate magnetic field. Therefore, the basic
function for the compensation of a primary coil is to minimize the volt-ampere (VA) rating of the
power supply. In the secondary coil, compensation cancels the inductance to maximize the power
transfer capability [85]. (2) Constant-voltage/constant-current output (CVO/CCO). (3) The maximum
efficiency of a WPT system can be determined by two parameters, the coupling coefficient and quality
factor [54]. (4) Bifurcation resistance, which refers to a condition where the frequency realizes a zero
phase angle (ZPA) [57,85].

3.1. Basic and Hybrid Compensation Topologies

Figure 3 shows the classifications of the compensation topology. They include two groups.
The first is of the four basic topologies, and the second comprises hybrid topologies, which are
combinations of series and parallel topologies.
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Figure 3. Classifications of the compensation topology.

Many compensation topologies have been reported. As illustrated in Figure 4, there are four basic
compensation topologies: series-series (SS) [3,86–90], series-parallel (SP) [91], parallel-series (PS) [1],
and parallel-parallel (PP) [92]. In Figure 4, k is the coupling coefficient, M is the mutual inductance,
Ug is the input voltage on the primary side, U2 is the load voltage, and RL is the load. L1, L2, C1, and
C2 are the self-inductances and external compensation capacitors of the primary and secondary coils,
respectively. R1 and R2 are the resistances of the primary and secondary coils, respectively. On the
other hand, hybrid compensation topologies are investigated, such as LCC-P and LCL-P are reported
in [93], where LCC and LCL are on the transmitting side, and parallel (P) is on the receiving side.
Moreover, S-CLC [94], CCL-S [95], LCL-S [96], and LCC-LCC [18,97–99] are discussed. Double-sided
LCC-compensated WPT (multi-LCC on the transmitter side) is presented in [100], and LCL-LCL is
given in [101]. Some commonly used hybrid topologies in the research work are displayed in Figure 5.
Lp and LS are the primary and secondary inductances, respectively.
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3.2. Review of Different WPT Systems Based on Topology and Application Type

Table 1 gives a comparison between different WPT systems based on the compensation topologies
and application type (electric vehicles). The systems are easily compared considering some criteria,
such as transferred power, frequency, resonators’ dimensions, and transferring distance. In this table,
f 0 is the resonant frequency, k is the coupling coefficient, and RL is the load value. In addition, N1 and
N2 are the number of turns for primary coils and secondary coils, respectively. D1 and D2 are the
length (or diameter) and width (or diameter) of the transmitter and receiver coils, respectively. Finally,
Pout is the output power and Vout is the output voltage. Table 2 reviews the WPT systems that are used
in dynamic charging for EVs application.
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Table 1. Review of different WPT systems based on topology and application type (such as electric vehicles, or EVs). EMI: electromagnetic field interference.

Resonators
Reference and

Topology
f 0/k/RL

(kHz, Ω)
Pout, Vout Efficiency N1 Turn

N2 Turn
D1 mm Length,
Diameter mm

D2 mm width,
Diameter mm Gap mm Note

[14]
SS/LCC-LCC

f 0 = 85
k = 0.135

RL = 2, 3, 5

1 kW
50 V

95% for SS,
and 93% for

LCC

10
8 500 diameter 400 diameter 200

Based on EMI, LCC-LCC topology is
considered more robust to EMI
exposure.

[89]
SS/LCC-LCC f 0 = 79 7.7 kW max.

270~405 V For LCC: 96% - 800 600 200
The LCC-LCC topology has higher
efficiency when the mutual inductance
is at minimum.

[101]
SS/LCL-LCL

f 0 = 85
k = 0.1

RL = 10
3.3 kW 93.1% for SS,

89.5% for LCC
20 × 3 layers
17 × 2 layers 550 × 400 mm2 240 × 240 mm2 100 Compared to SS topology, the

LCL-LCL type has a high power factor.

[98] LCC-LCC
f 0 = 79

k = 0.18~0.32
RL = 10~200

7.5 kW
450 V 96% 1 800 600 200

Resonant frequency f 0 is independent
of the coupling coefficient and load
conditions.

[99] LCC-LCC f 0 = 95
k = 0.14–0.30

5.6 kW
300~450 V 95.36% - 600

200
600
200 150

The extra integration-induced
couplings give more space for
magnetic cores.

[87] LCC-LCC
f 0 = 85

k = 0.153
RL = 49.95

3.3 kW
405.7 V 92.6% 18

16 600 300 150

Energy storage has no relation to
topology type, but only with
transferred power level and coupling
coefficient.

600 × 450 × 4 mm3 400 × 300 × 4 mm3

640 × 496 × 8 mm3 480 × 352 × 8 mm3[97] LCC-LCC f 0 = 85
k = 0.1877

3 kW
300 V

95.5% -
711.2 × 558.8 × 2 mm3 508 × 406 × 2 mm3

150
The compensated resonator design
helps to eliminate or reduce the
extra-coupling effects to a tiny level.
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Table 2. Review of WPT systems that are used in dynamic charging for EVs and plug-in hybrid electric vehicles (PHEVs).

Reference and
Topology

f 0/k/RL
(kHz, Ω) Pout, Vout Efficiency Coils’ Dimensions and

Number of Turns Gap mm Note

[96] LCL-S
LCC-S

f 0 = 140
k = 0.18–0.32

Nominal power: 1 kW
80~90 V

Similar: LCC and
LCL: 93% Coil radius is 163 mm 100

The topology gives more robust power
transfer character against the variation
of k.

[100]
Double-sided

LCC

f 0 = 85
k = 0.13

1.4 kW
150 V 89.78%

9 turns for each transmitter, Tx
coil 6× (388 mm×400 mm),
and for Rx: 485 mm×400 mm

150
This paper presented a continuous
dynamic WPT system, which reduces
the power pulsations.

[102] LCL f 0 = 85
k = 3.7–5.4% 5 kW -

The secondary: 0.35 m × 0.7 m
N87 ferrite material (each 93
mm × 28 mm × 16 mm).

240
The system is designed to supply power
along the whole length of the track by
activating only one primary pad.

[103] SS f 0 = 85
k = 0.4 20 kW 80%

Transmitter dimensions are 10
cm × 75 cm, number of turns:
nine
Receiver: 25 cm × 20 cm,
number of turns: 12.

100 Downscale prototype operating at 85
kHz ± 2.5 kHz.

[104] SP f 0 = 23
RL = 2 2 kW -

Coils diameter: 330 mm. Turns:
seven turns for transmitter coil
and five turns for receiver coil.

100
This paper presented technical aspects
of in-motion WPTs for charging EVs and
PHEVs.

[105] SS f 0 = 85 -
97.6%

pads length ratio
is 1:1

Coil external width: 58 mm
Coil inner width 38
Wire diameter 5 mm
Number of turns: 8 turns.

200

Investigated the pad shape: influence of
the variation of the ratio between Tx and
Rx lengths with respect to the behavior
of the coupling.
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In PS-compensated WPT, the reactive current of the current-fed resonating converter circulates
inside the parallel resonant tank without going through the switching system. Therefore, the current
rating of the switching devices is reduced, and the conduction loss is reduced for a given power
level. This topology has a high voltage stress on the inverter switches, especially for high power
loads, and it becomes worse when the coupling coefficient is low. CCL-S is an example of hybrid
topologies; as shown in Figure 5c, it has an extra series capacitor on the primary side, which
leads to a lower switching loss compared to the parallel LC-S. Parallel LC-compensated WPT is
preferred for low voltage gain applications. However, for higher voltage gain, CCL is preferred.
S-CLC topology, which is shown in Figure 5a, provides an easier achievement of ZPA. In Figure 5k,
the double-sided LCC-compensated topology was illustrated, and a continuous dynamic WPT charging
system was introduced.

The output current and output voltage of SS, S-LCL, S-CLC, and SP compensation topologies are
inversely proportional to the mutual inductance, and the output power is inversely proportional to the
square of the mutual inductance. Regarding double-sided LCL, as well as double-sided LCC, LCL-S,
LCL-P, PS, and PP compensation topologies, the output current and output voltage are proportional to
the mutual inductance, and the output power is proportional to the square of the mutual inductance.
Based on that, the design method of these topologies can be determined. Consider two cases. The first
is an SS-compensated WPT system, which is designed to transfer a nominal power at the maximum
mutual inductance, and means perfectly aligned coils. At the maximum mutual inductance, the input
voltage and efficiency of the SS topology will be higher, and the current will be lower. The second is an
LCC-compensated WPT system, which is designed at the minimum mutual inductance, and means a
maximum misalignment between resonators.

Finally, at high-frequency circuits, there arises an impedance matching problem, where the circuit
components gain a non-resistive aspect. To achieve maximum power transfer efficiency, the circuit
must be impedance matched to minimize these effects [106,107]. Some impedance-matching methods
were proposed, such as employing the impedance inverter only at the receiver side [108], and using a
dual-band resistance compression network (RCN) as a matching network [109].

4. The Resonator Structure

Figure 6 shows the research work related to the resonator structure (geometry) including several
categories, such as planar coil, 3D structures, tracks/rail, coils with cores, and the type of used
materials, etc. In addition, the suitable application type for each structure is given, and the frequency
ranges for some of these geometries are provided.
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4.1. Shape of the Resonator

Different studies have been investigated based on the shape of resonators. They are classified as
follows:

• Flat/planar-shaped coils, such as rectangular-shaped structure [89,98,110,111], octagonal
resonator [101], and a double D coil (DD) [112]. In addition, defected ground structure (DGS)
is presented in [113,114]. DGS means a “defect” has been integrated on the ground plane of
a microwave planar circuit; this DGS technique is adopted to improve various parameters
of a microwave circuit, such as low gain and narrow bandwidth [115]. Moreover, circular
coils [116,117] and square coils [99,118,119] are discussed. There are planar printed spiral coils
(PSC) [120–123] as well, the WPT system in the printed circuit board (PCB) [124–127], pancake
coils [128], and planar shielded-loop resonators [129].

• Three-dimensional (3D) geometries are investigated, such as for instance, bowl-shaped transmitter
coils [28], which are used for charging hearing aids, cylindrical coils [80], helix loop resonators [130–
133], and conical coils [134]. In [135,136], the three-dimensional resonant cavity is presented,
which offers a good way of charging multiple devices simultaneously. An orthogonal winding is
discussed in [137], and a cylindrical cavity is given in [138]. In [139–142], the authors proposed an
omnidirectional WPT system, and in [143], the authors discussed a ball joint structure.

• Coils’ materials are discussed, for example, a receiver coil made of aluminum is used in [125].
In [144], the authors proposed a helical-type coil made of superconductors in order to increase
the quality factor of the coils. In [145], the authors applied an MCR WPT system (planar textile
resonators, or PTRs) to wearable consumer electronics by using flexible materials.

• Coils with cores are given, such as dipole-type coils [64], which presented a WPT prototype that
is capable of transferring the power up to a 5-m distance. For charging vehicles, buses, trams, and
trains, long-track transmitter and short-individual tracks are used [16,17,90]. Moreover, E-core
and U-core types are discussed [94,146].

Other structures were presented, for example, multiple-input multiple-output structures
(MIMO) [147,148], a wirelessly powered cage system [149], transparent electrode resonators [150],
domino-resonator systems [151–153], and dual-layer nested structures [154]. Moreover, the three-phase
system [16,35,155] found its way to the wireless charging technology through some real applications.
Finally, an L-shape transmitter was discussed in [156].

Most of the resonators are coreless, which means no iron losses (hysteresis loss, eddy current).
However, the quality factor, and thus the efficiency, will be low. To overcome this problem, there are
three options. The first is increasing the mutual inductance by changing the geometry or increasing the
number of turns and adding ferrites. However, in some cases, ferrite cannot be added due to cost and
space limitations. The second is increasing the frequency, but it could be limited by the switching speed
of the semiconductors, and it might cause more switching losses. The third is using multi-transmitter
WPT systems, but resonant inverters with different power rates are required.

Table 3 presents projects related to the defected ground structure (DGS). The defected ground
structure (DGS) can operate at high frequencies, for example, the spiral-strips DGS operates at 50 MHz,
which provides a high-quality factor and introduces a structure that mitigates the problem of a low
self-inductance that is given by H-shaped DGS. Compared to H-shaped DGS, the semi-H-shaped DGS
shows a better efficiency and greater transferring distance even if they have the same size. In Table 4,
the three-dimensional resonant structures are reported and compared. Cylindrical, helical, and cavity
structures are used to provide power for some applications, such as hearing aids, LEDs, and toys.

Table 5 displays studies related to flat structure, in which the power transferring distance is almost
twice the radius/width of the coil, and the power range is within several watts to several dozen watts
of power. Table 6 gives two cases of WPT systems using coils with cores. Several core types are used,
especially in EV charging applications. Table 7 reports research works on domino resonator systems
for low-power applications.
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Table 3. Research works related to defected ground structure (DGS).

Resonator Parameters

WPT System
Resonator Structure

Size of the
Coils/Number of

the Coils

N1/N2
Ratio D1 mm D2 mm Gap

mm
f 0/k Efficiency Note

[113] H-shaped DGS
Semi-H-shaped DGS

Symmetrical,
two-coil resonance

structure
1 20

21
20
21

13
25

300 kHz/k =
0.025 68%/73%

Semi H-shaped DGS resonator is more
robust to the coaxial orientation
misalignment.

[114] Spiral-strips DGS Symmetrical
Asymmetrical 1 50 × 50 mm2

50 × 50 mm2
50 × 50 mm2

50 × 30 mm2
50
40 50 MHz 84%/78%

Spiral-strips DGS provides a better
quality factor other than H-shaped or
semi-H-shaped DGS.

Table 4. Research work related to three-dimensional (3D) structure.

Resonators

WPT System
Resonator Structure

Size of the
Coils/Number of

Coils
Coils’ Dimensions and Number of Turns Gap

f 0, RLPout, Vout,
Efficiency % Note

150 mm Tx1

[80]

Structures: cylindrical
for Tx, Rx1, and

planar rectangular for
Rx2.

Asymmetrical/four-coil
resonator structure

The diameter of Tx is 350 mm, the thickness is 0.35 mm,
and the width is 29 mm besides a one-turn driving coil.
The radius of Rx1: 80 mm, the height: 50 mm, besides a
seven-turn coil that was used as the output coil. The area
of Rx2 is 20.5 × 20 mm2, and the thickness is 0.35 mm. 200 mm Tx2

7 MHz
LED loads

80%

Tx is simply printed on the internal or
external cover, or inserted in the
clothes.

[132] Helical coils Symmetrical/three-coil
resonator structure

The radius is 0.325 m, the pitch is 0.05 m, and the number
of turns is N = 5, d12 = 6 m 2–4 m 10 MHz

90%

Compared with a single-transmitter
WPT system, a higher power transfer
efficiency (PTE) was achieved stably
for the angular aligned and the
angular misaligned.

[29]

3D
structure/Bowl-shaped
transmitter coil and

spiral helical receiver
coils

Asymmetrical/three-coil
resonator structure

The Tx bowl-shaped, which is a combination of both a
spiral coil (s) and a conical-shaped coil (c) with a big
diameter of 58 mm, a thickness of 9.1 mm, and turns:
NS = Nc = 7 turns.
The volume of the receiver coils Rx (spiral s1+ helical h) is
10.5 × 6.5 × 2.46 mm3 with Ns1 = Nh = 8 turns

Within 3D
cavity

6.78 MHz
2.5 to 4.3 V

60%

The proposed system can uniformly
charge a pouch-type LIB of a hearing
aid in spite of its position or
arrangement.

3D structure: WPT systems operating at higher frequencies:

[131] 3D structure/Helical
coils

Symmetrical/system
with Relay resonator

Symmetrical relay resonator with multi load transfer and
number of turns is 12 -

193 MHz 0.1~2.0 Ω
Several dozen watts

of power, 30~40%

The WPT system transfers the same
power to multiple loads over a range
of distances.

[136]
The Tx is a cavity

resonator and the Rx
is a square coil

Asymmetrical/multi-coil
structure

The dimensions of the cavity resonator are a = 1.52 m, b =
1.42 m, and d = 1.83 m.
Rx square coil has one turn 7.62 cm. (multi receivers)

91 cm

191.65 MHz
50-Ω

8-W LED
50%

The system is able to deliver power to
many devices simultaneously, such as
LEDs and toys in a box.

[138]
3D

structure/Cylindrical
cavity resonator

Asymmetrical/two-coil
structure

The radius of the Tx coil is 30 cm, and the height is 25.4 cm;
the volume of the cavity is 0.072 m3. The radius of Rx is 2.5
mm, and the volume of the receiver coil is 13.75 mm3.

10 cm
375.32 MHz

50 Ω
33%

PTE of the optimal
impedance-matching (IM) system can
achieve 33.88%, which is four times
the 7.68% that can be achieved without
an optimal IM system.
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Table 5. Research work related to flat structures for low-power applications.

Resonator Parameters
WPT System Resonator

Structure
Coils/Number of

the Coils
Coils’ Dimensions and

Number of Turns Gap
f 0/k/RL

Pout,
Efficiency % Note

[116]

Flat
structure/Circular
coils (44-mm inner
diameter)

Symmetrical/three-coil
resonance
structure

Two 76-mm diameter
circular coils and a source
coil with 36-mm diameter.

62 mm 684 kHz
20 Ω

12.9 W
43%

At 40 mm

The maximum efficiency of
the three-coil system shows a
significant advantage over
that of the two-coil system.

[117]
Flat
structure/Circular
spiral coils

Asymmetrical/four-coil
resonance
structure

Six turns for each coil.
Outer diameter for Tx is
590 mm; for Rx, it is 280
mm, and the drive loop
diameter is 280 mm

700 m 7.65 MHz
k = 0.1376

12 W
Laptop

50%

Presented a WPT that
maximizes the quality factor
of the coils; by proper loading
of the drive and load loops,
efficiency will be better.

[122]

Double-layer
printed spiral coil
PSC (square spiral
coil)

Symmetrical/four-coil
resonance
structure

Double-layered for each
layer: 3.875 turns. Width:
288 mm, Substrate: 300
mm × 300 mm

500 mm 4.03 MHz 150 W
50%

The printed spiral coil (PSC)
has high precision, high
stability, easy to design, and
manufacture.

Table 6. Research work related to coil with cores structure.

Resonators
WPT System Resonator

Structure
Size of the

Coils/Number of Coils
Coils’ Dimensions and Number

of Turns Gap
f 0/k/RL

Pout, Vout,
Efficiency % Note

3 m 1403 W
29%

4 m 471 W
16%[64]

Coil with a
core/Dipoles
with cores

Symmetrical/two-coil
resonance structure

Number of turns for Rx: 22.
Number of turns for Tx: 86. The
length of the core is 3 m, and the
length of the coil is 1 m. 5 m

20 kHz
k: (0.68%,0.39%,

0.26%)
40 Ω 209 W

8%

Coils with ferrite cores will
minimize parasitic effects.
The optimum-stepped core
structure can reduce the core
loss.

For roadway-powered moving electric vehicles (high power)

[146]

Coil with a
core/Resonator
with EE, UU
core-type

Asymmetrical/multi-coil
structure

Power line modules in addition
to UU, EE cores. Pick up coils for
EE: five coils total, center: 64
turns, left and right: 28 turns
each.

26 cm 20 kHz
100 kW
620 V
80%

The implementation cost of
the power receiver unit/kW
was about $89/kW.



Electronics 2018, 7, 296 13 of 45

Table 7. Domino resonator systems.

Resonator parameters
WPT System

Resonator Structure Coils’ Dimensions and Number of Turns
f 0/RL Pout, Efficiency % Note

[151,152] Symmetrical/circular
coils/domino structure/

The WPT has eight resonators, which have a
radius of path r of 300/235 mm for
three-resonator and four-resonator systems,
respectively. The number of turns is 11.

520 kHz
(11.57~16.94)

Ω
14 W, 70.68~83%

The optimized operating
frequency of this system is not
the resonant frequency of the
resonators.
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The circular, spiral circular, square, and rectangular geometries are widely used due to their
simple design and low manufacturing cost. To give a clearer picture of the circular and rectangular
coils, new classifications (concluded from the above-mentioned tables) are presented in Tables 8 and 9,
respectively. Comparing the size of the coils, the transferring distance, and the operating frequency,
the systems will show approximate results.

Table 8. Research work on circular structures.

Case 1 2 3 4 6
A/S/iC A/2C S/2C S/2C A/2C S/2C

Topology SS LCL-S LCC-S SP LCC-LCC SS
Size D1/D2

mm 500/400 226/226 500/500 600/300 220/220

Gap mm 200 100 200 150 240
Frequency 85 kHz 140 kHz 20 kHz 85 kHz 200 kHz
Efficiency 95% 93% 93% 92.6% 85%

Note: A: asymmetrical system; S: symmetrical system; C: coil; i: number of coils.

Table 9. Research work on rectangular structures.

Case 1 2 4
A/S S A S

Topology LCC-LCC LCC-LCC S-SP

Size mm2 800 × 600 600 × 450
400 × 300 500 × 600

Gap mm 200 150 100
Frequency kHz 79 85 40

Efficiency 96% 95.5% 95.2%

In EV charging application and due to space limitations, some structures, such as the helix,
omnidirectional, cavity, or conical, cannot be used. However, the resonators are designed as spiral
or planar coils. These geometries are printable and easy to implement at a low cost. Moreover,
the dynamic charging systems are used, and according to the track length, they can be divided into two
categories. The first is the long-track transmitter, which can charge multiple vehicles simultaneously.
This system is simple and has a low number of components. The online electric vehicle (OLEV) with a
maximum charging power up to 100 kW is one example. However, this design has a low efficiency
of 74%. The second is the short-individual transmitter, where the length of the transmitter is usually
within 1 m. In this system, each transmitter has a compensation circuit. Therefore, multiple short
transmitters are arranged in an array to make a tracking lane, and the transmitters can be excited based
on the location of the receiver. This structure is considered flexible, but requires a large number of
circuit components and converters.

There are other architectures used in EVs; for example, in [104], the Oak Ridge National Laboratory
(ORNL) presented an in-motion charging system for EVs/PHEVs, which transfers the power to a
moving receiver coil as it passes over two transmitting coils connected in series. In this system, the coil
design depends on jacketed Litz cable coils over a structure of soft ferrite. The Research Centre for
Energy Resources and Consumption (CIRCE) in Spain proposed a receiver, which is longer than the
transmitter [157]. In [105], the influence of the difference of the ratio between the receiver length and
the transmitter length is investigated. The structure is a couple of unipolar square-shaped pads made
of a copper coil, and a metallic plate, which represents the floor of the vehicle chassis, was placed
25 cm above the transmitter. In [158], the authors presented an overview of the current studies related
to automotive applications, such as Korea Advanced Institute of Science and Technology (KAIST)
projects on an OLEV bus, HalolPT, which developed IPT solutions in a power range of 3.3–20 kW,
and WiTricity (MIT), which proposed a 3.3-kW system that has been proven. In addition, Plugless
Power is a 3.3-kW IPT stationary charger, which was developed by Evatran and Bosch.
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Based on the number of phases, WPT systems can be divided into two sections: single-phase
systems and three-phase systems. The three-phase WPT systems that operate at symmetrical
conditions and similar phase currents have two essential benefits compared to the single-phase
systems: they have higher power level and better far-field EMC performance due to the three magnetic
fields’ superposition. In addition, they have very small power ripples on the DC output [159].
The three-phase WPT system found its way to some practical applications, for example, in [16],
authors proposed a three-phase WPT system, which has six overlaid power lines and ended in
two Y-points; each power line is symmetrical from its center, as a result, it can reduce the leakage
magnetic field. In [35], the authors proposed a three-phase WPT, which can be used in recharging
AUVs. A continuous charging system without onboard batteries was proposed [49]. In this system,
charging the batteries along roadways is not required. Therefore, there was no need for complicated
pickup structures. For heavy-duty applications, a tuning approach for the three-phase WPT with
a long track is presented [160]. There are some high power three-phase WPT systems in operation,
such as the Brunswick and Berlin buses with a maximum power of 200 kW based on Bombardier
PRIMOVE technology.

4.2. Size and Number of the Resonators

Comparing the transmitter and receiver coils according to their size, they can be either symmetrical
or asymmetrical. The first one is the symmetrical coils, where the transmitter and the receiver coils
have the same size [94,110,117]. However, in the asymmetrical coils, the transmitter and receiver coils
have a different size [80,118,136]. WPT systems can be categorized according to the number of coils, as
shown in Figure 7, where they can be classified as follows: two-coil structure (2C) [64,113], three-coil
structure (3C) [116,132], four-coil structure (4C) [119,122], and multi-coil structure (MC) [136,151,152].
The strongly coupled magnetic resonance (SCMR), which is a 4C system, is classified into four
systems [161]: a standard SCMR system, a conformal SCMR (CSCMR system), a 3D SCMR, and a
hybrid SCMR (HSCMR). Generally, the two-coil system saves more space than the other systems.
However, the three-coil or four-coil systems allow transferring higher power for a longer distance.
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Figure 7. MCR WPT structure based on the number of the coils: (a) Four-coil MCR WPT; (b) Three-coil
MCR WPT.

The multi-coil system is capable of charging multiple devices simultaneously. A WPT system
that consists of a single transmitter and multiple receivers is investigated [32], and considered the
influence of load and mutual inductance (the position of receivers) on the efficiency. A multi-coil
transmitter array is employed to boost the power gain, which in turn allowed the application of very
small receivers at a quite far distance [77]. A power transfer from a single source coil to multiple
receivers through MCR WPT was demonstrated [162]. In addition, a WPT system based on the resonant
cavity is proposed [136], and provided an efficient power delivery to many receivers simultaneously
in an enclosed 3D volume of space (charging multiple toys that are placed randomly in a box or
charging multiple LEDs). WPT systems based on the resonant cavity have the potential to enable a
wide variety of new applications in many medical and industrial fields. However, this system has
a problem in distributing the power uniformly to many receivers, especially in wearable devices or
IMDs. To overcome this issue, a selective technique for smart power delivery to multiple receivers
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is presented [163]. The method allows transferring the power to one receiver coil among multiple
receivers by separating the resonant frequencies of the receivers, and isolating the cross-coupling
effects between the coils.

4.3. Loop Inductance

Table 10 provides the self-inductance formula for some resonator shapes, such as square,
rectangular, circular, and so on [164,165]. Table 11 gives layout dependent factors (xi) for on-chip spiral
inductors, such as square, hexagonal, octagonal, and circular [124].

Table 10. The inductance of different coreless loops.

Resonator Type Inductance Comments

Straight conductor µ0
2π

[(
ln 2l

a

)
− 3

4

] l: Length, a: radius of the
conductor.

Square loop 2N2 µ0µrw
π

[(
ln w

a
)
− 0.774

]
Where

N: The number of turns.

µr: Relative permeability.
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Table 11. Layout dependent factors.

Layout x1 x2 x3 x4
Square 1.27 2.07 0.18 0.13

Hexagonal 1.09 2.23 0 0.17
Octagonal 1.07 2.29 0 0.19
Circular 1 2.46 0 0.2

Coil design is a basic step in WPT systems, since it determines the level of power transfer,
efficiency, and the overall performance [104]. Therefore, the inductance is considered one of the most
significant factors in the WPT system. The inductance depends on the coil geometry, which includes
the size of the resonator, cross-sectional area, length, and number of turns, in addition to the separation
between turns and thickness or width of copper.

4.4. Operating Frequency Effects on the Design of Coil Structure

An ideal inductor can be modeled as an inductance with no resistance, capacitance, or energy
dissipation. On the other hand, for real inductors, as shown in Figure 8, the above-mentioned
components are inevitable. The wire has a resistance (Rac) and losses in the core materials. In addition,
there are parasitic capacitances (Cself) caused by the electric field between the turns. The parasitic
capacitance with the self-inductance can determine the self-resonant frequency (SRF) of the coil.
At high frequencies, the effect of these factors will be obvious, and the AC resistance value will increase
due to the skin effect. Therefore, the quality factor of the coils will drop. Due to high frequency,
the current will be concentrated near the surface of the copper conductor, and as a result, the power
loss will increase and cannot be ignored [166].
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Figure 8. Equivalent circuit of the real inductor.

The inductance and skin effect are given as follows [162]: R = r.N/dσδ, δ = 1/
√

πσµ f (m),
respectively. In the previous equations, r is the radius of the coil, d is the radius of the wire, and σ is the
conductivity; for copper, σ = 5.8 × 107 (S/m) and µ0 = 4π × 10−7 (H/m). Figure 9 presents a copper
conductor with a 0.5-mm radius. When the frequency increases, the skin effect will be clearer. In order
to reduce the AC resistance and power losses, Litz wires (multi-strand wires) are used to wind the
coils. Based on the operating frequency range, the required diameter, and the number of wire gauge of
the Litz wire can be determined [146]. In addition, superconducting materials were used to decrease
the resistance and achieve a high-quality factor [144].
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Finally, the frequency-splitting issue is a key point of an MCR WPT system. When moving
the resonators toward each other gradually, the coupling between them becomes stronger, and if
they are close enough, the resonant frequency will change. As a result, the transferred power drops
sharply [167]. To clarify this case, Figure 10 shows two spherical structures for a WPT system, where the
transmitting coil Tx is in blue, and the receiving coil Rx is in orange (the spherical joint structure
for a WPT will be discussed in the seventh section). The coil windings are wound in different ways.
In Figure 10a, Tx and Rx are located opposite to each other, and the coupling coefficient will be k = 0.089.
Figure 10b displays the efficiency at the resonant frequency (500 kHz). In Figure 10c, Tx and Rx coils
are wound in the same direction as the hemispherical structures. As a result, this model will have a
short transferring distance, and the coupling coefficient will be high k = 0.54. Figure 10d illustrates the
efficiency at the resonant frequency (500 kHz).
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To deal with the frequency-splitting issue and power transfer degradation, several methods are
presented, such as an adaptive frequency tracking method, which changes the frequency in the strongly
coupled region [168]. Instead, the frequency-splitting issue is suppressed by switchable configurations,
such as for example, a switchable capacitor array [169], alternative multiple loops [170,171], and
various load resistances [172].

5. Misalignment Study

In order to get a higher power transfer efficiency (PTE), the alignment between the WPT resonators
should be perfect. However, the coils are usually misaligned [119]. There are several types of
misalignment between the coils, which include the following. (1) In lateral (horizontal) misalignment,
the coils are located in parallel planes, but they are offset by distance ∆x. (2) In angular misalignment,
the receiver coil is moved by an angle ϑ while the centers of the transmitter and receiver coils are well
aligned [173]. (3) In vertical variation, the receiving coil moves vertically. (4) In planar misalignment,
Tx and Rx are in parallel, and Rx rotates around the center point, but keeps the same transferring
distance. (5) In angular azimuth misalignment, the transmitter is fixed, and the receiver rotates around
the z-axis in the x-y plane from ϕ = 0◦ to ϕ = 360◦. (6) In angular elevation misalignment, the receiver
rotates around the x-axis in the y-z plane from θ = 0◦ to θ = 360◦, and the transmitter is fixed [161].

Figure 11 displays different types of misalignment. This figure has shown a circular resonator to
present misalignment types. However, the same misalignments apply to other structures as well, such
as rectangular, square, and hexagon.
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Table 12 compares between different misalignments considering the coil structure and
misalignment effect; some notes related to each type are given in comments.

The misalignment differs randomly under different situations and different application types. As a
result, several parameters may change during the process, such as the mutual inductance, the efficiency,
and output power. During the EV’s charging, if there is imperfect parking, the transmitter and receiver
coils will be misaligned. The transmitter coil is fixed on/under the ground, and the receiver is mounted
on the bottom of the vehicle. In IMDs applications, if the patient breathes, the air gap of the WPT
will change. Therefore, it is important to predict the misalignment tolerance of the WPT system in
different applications. In addition, the system needs good controllability and optimization to deal with
its parameter variations.
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Table 12. Misalignment types: a review. SCMR: strongly coupled magnetic resonance. HSCMR: hybrid
SCMR. CSCMR: conformal SCMR.

Case The Resonator
Structure

Misalignment
Type The Effect of Misalignments Comments

[173] Circular spiral coil Lateral/Angular The values of output voltage
decrease with the misalignment.

According to the test, even if the
lateral and angular misalignments
happen. The efficiency at a 5 cm
distance is up to 50%.

[161] Circular
Lateral/Angular
azimuth/Angular
elevation

The proposed structures: 3D
SCMR, HSCMR, and CSCMR are
less sensitive to the misalignments
than the standard SCMR system.

The system achieves an efficiency
of 40% for the entire range of 360◦

in case of the angular
misalignment.

[1] Helical
Lateral/Angular
general (angular
horizontal)

M = x (∆, α). N2: M is the mutual
inductance, which increases
linearly depending on the square
of the coil turns.

x (∆, α) is a variable coefficient
that depends on the lateral
misalignment ∆, and the angular
misalignment α.
The average value of the slope is
(0−10 cm, 0~50◦).

[99] Double D (DD)
bipolar pads Horizontal

The efficiency is higher than 90%,
even at a large misalignment in
the x-direction.

For EV application, the
x-misalignment is door-to-door,
and the y-misalignment is front to
rear.

[95] UU type Horizontal/Vertical

The self-inductance of the pads
changes slowly with the
misalignment of the coils, but the
mutual inductance changes fast.

The current-fed compensation
topology is a practical solution for
WPT.

[132] Helical coils Angular

Compared to the
single-transmitter WPT system,
the proposed system gives a
higher power transfer efficiency
during the angular aligned and in
case of the angular misaligned.

The paper proposed a
multiple-transmitter WPT, which
provides a power transfer
diversity.

[113] H-shaped DGS and
semi-H-shaped

Horizontal
shift/Coaxial
orientation

Compared to H-shaped DGS, the
semi-H-shaped DGS is more
robust to misalignments.

These features boost the usage of
the semi-H-shaped DGS in WPT
applications.

[117] Circular spiral coil Angular

The case of a fixed frequency
undergoes the same trend of
process from the over coupled to
critically coupled, and then under
coupled system.

The receiver unit is placed on the
axis at a fixed transferring
distance of 50 cm.

[110] Rectangular Forward direction

Compared with SP-compensated
WPT, the S/SP-compensated WPT
is more robust to the
misalignment.

The range of the output voltage of
the SP-compensated WPT is
almost double that of the
S/SP-compensated WPT,

6. EMI and EMF Diagnostics in the WPT System

The electromagnetic spectrum includes two sectors. They are as follows. The first is the
non-ionizing area, which means the energy of the waves is too low to ionize tissues. The second is the
ionizing radiation area. MCR WPT products use electromagnetic waves within the non-ionizing area
of the electromagnetic spectrum.

6.1. WPT-Related Standards, Including the Safety Issues

Regarding safety issues linked to WPT usage, there are two serious issues. The first is that
long-term exposures to time-varying EMFs can harm the human body. Therefore, the International
Commission on Non-Ionizing Radiation Protection (ICNIRP), expert groups, and the World Health
Organization (WHO) have documented and issued some guidelines to ensure the safety of the human
body. The second is a wide range of harmonics generated by inverters, which in turn create EMI issues
on the other electronic devices’ operations. Therefore, it is important to suppress EMF and EMI in the
WPT system [174].

Based on the obvious risks that are caused by using the WPT charging systems, it is necessary to
regulate the usage of the WPT systems. Therefore, many recommendations, standards, and guidelines
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were issued. Table 13 provides a comprehensive review of WPT-related standards and guidelines that
were issued by different international organization around the world. For example, in order to protect
against any known health effects, the ICNIRP has published guidelines for maximum exposure limits.
They consist of the publications from 1998 (0 Hz–300 GHz) and 2010 (0 Hz–100 kHz).

Table 14 presents the near-field WPT systems, including the frequency and power ranges under
study in non-ISM bands for Japan and South Korea.

It is inevitable for the electrical circuits and the human body that are close to the WPT system
to be under the influence of EMI emissions or exposure to EMFs. Therefore, it is essential to regulate
the deployment of the WPT system to ensure the safety of the consumers and electrical components.
The standards differ from one country to another. Therefore, the WPT system can be categorized based
on the frequency, power, transferring distance, and application type. As a result, the WPT system is
handled as normal equipment that follows specific restrictions, or it is considered an important case
that follows tighter restrictions.
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Table 13. Comprehensive review of WPT-related standards and guidelines. EMF: electromagnetic field, EU: European Union, ICPT: inductive coupled power transfer,
USA: United States.

Standards Substandard Country Frequency/Power Application/Comments

Federal Communications
Commission (FCC)

KDB 680106
Part 15B and part 18

Above 9 kHz are considered intentional
radiators.

Radio frequency (RF) exposure wireless charging apps
(wireless chargers, inductive chargers, and wireless
charging pads).

Society of Automotive
Engineers (SAE)

SAE J2954/J2836/6™
J2847/6-J2931/6

USA J2954™ EVs and PHEVs use 85 kHz band. Wireless charging task force, specific use cases, and
specific protocols.

CISPR SC-B Household appliances, ignition systems, and
fluorescent lamps.

The International Special
Committee on Radiofrequency
Interference (CISPR)

CISPR 11:2015 From 9 kHz upwards, CISPR 11 range is 150 kHz
up to 1 GHz.

Power electronics in the industrial, scientific and
medical frequency band (ISM band): RF equipment
used in WPT.

International Electrotechnical
Commission (IEC)

IEC 61980-1:2015, IEC 62827-2:2017,
IEC PAS 63095-1:2017(E)

For IEC PAS 63095-1:2017(E) baseline power
profiles are (≤5 W) and extended power profile
is (≤15 W).

n IEC 61980-1:2015: General requirements for
EV WPT.

n IEC 62827-1:2016: justifies various functions of
WPT system.

n IEC 62827-2:2017: Control management of
multiple-device WPT.

n IEC PAS 63095-1:2017(E): Qi WPT and
interface definitions.

International Organization for
Standardization (ISO)

ISO PAS 19363, 2017-1-1, (ISO/NP
19363 under development)

Close synchronization with IEC 61980 and SAE
J2954.

n Magnetic field WPT, safety, and
interoperability requirements.

International Commission on
Non-Ionizing Radiation
Protection (ICNIRP)

ICNIRP 1998
ICNIRP 2009
ICNIRP 2010

International

EM Field: (1 Hz–100 kHz)/2010 (1 Hz–300 kHz)
1998.

n Guideline for limiting the exposure to electric
fields and magnetic fields, which vary by time.

n ICNIRP 2010 replaces the low-frequency part of
the 1998 guidelines.

European Telecommunication
Standards Institute (ETSI) ETSI EN 303 417 V1.1.0 (2017-9). EU

For WPT systems that use frequency other than
RF beam, and it has investigated ranges:
[19–21 kHz, 59–61 kHz, 79–90 kHz, 100–300 kHz,
and 6765–6795 kHz].

Harmonized standard, which covers the essential
requirements of article 3.2 of Directive 2014/53/EU.

CCSA TC9 EMF evaluation methods for WPT and EMC limit and
measurements.China Communication

Standard Association (CCSA) YD/T 2654-2013 China

Part1: General; part2: Tightly coupled (ICPT);
and part3: Resonance wireless power transfer
(MCR WPT).

Requirements and test methods of EMC of WPT
equipment.
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Table 13. Cont.

Standards Substandard Country Frequency/Power Application/Comments

ARIB STD-T113 (2015)

6.78 MHz-band MCR WPT for mobile,
400 kHz–band for CPT. EV/PHEV WPT
spectrum:
(42 kHz~48 kHz, 52 kHz~58 kHz, 79~90 kHz,
and 140.91~148.5 kHz). Power: 3 kW and
7.7 kW.

Study for WPT spectrum for all the applications and
technologies.

n CPT system.
n MCR WPT using 6.78 MHz for mobile and

portable devices.
n Magnetic induction WPT for home appliances

and office equipment.
n WPT for EV/PHEV.

Association of Radio
Industries and Businesses
(ARIB); Broadband Wireless
Forum (BWF)

BWF TR-02 Edition 1.0/2016

Japan

100 kHz, 100–500 kHz, and 6.78 MHz. n Assessment on EMI due to WPT systems.

Telecommunication
Technology Association (TTA) TTAR-06.162 (19/11/2015) Korea

For EV in 2011, OLEV (19 kHz~21 kHz and 59
kHz~61 kHz).Normal Power: 100
kW.Frequency: 13.56 MHz band is used for 3D
glasses WPT.

n Efficiency measuring methods for WPT and
heavy duty EVs.

n MCR WPT (magnetic resonance).
n WPT (magnetic induction).

Alliance for Wireless Power
(A4WP) A4WP standards Established in 2012 (Samsung,

Qualcomm and others)
6.78 MHz for power transfer and 2.4 GHz for
the control signals.

n Magnetic resonance WPT.
n A4WP and PMA have merged to form

industry-leading organization for wireless
charging standards.

Wireless Power Consortium
Qi (WPC)

Qi standards Version
1.0.Version 1.1. Industry group, since 2008

Range: 110 kHz–205 kHz.Low power in the
range of (0–5) W. Medium power is up to 120
W.

n Details and specifics about the Qi
WPC standards.

n ICPT system.
n Used in cell phone, music players, Bluetooth, etc.

Power Matters Alliance (PMA) PMA standard Founded by Procter, Gamble
and Powermat in 2012. 277 kHz–357 kHz and up to 5–10 W.

n Magnetic induction technique.
n Mobile device ecosystem.

Additional standards for electromagnetic compatibility EMC, immunity tests and measurements:
Radiated and conducted emissions—CISPR 11.
Compliance testing of wireless power transfer products ASNI C63.30.
Radiated EM immunity—ISO 11451-2:2015-06 (E).
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Table 14. Current and ongoing study frequency and power range for WPT in Japan and Korea. PCs: personal computers.

WPT System Country Frequency Range under
Consideration

Power Range under
Considerations Application

Inductive coupling (IPT):
low power Already in Japan, Korea Japan: 110 kHz–205 kHz.

Korea:100 kHz–205 kHz. -
Mobile devices, portable

devices, consumer electronics
(CE), and industrial fields.

Inductive coupling (IPT):
high power Japan

Japan: 20.05 kHz–38 kHz, 42
kHz–58 kHz, and 62 kHz–100

kHz.

Japan: Several watts up to 1.5
kW.

Home appliances operating
with high power, and office

equipment.

Magnetically coupling resonant
(MCR WPT) Japan, Korea Japan and Korea in the range of:

(6.765–6.795) MHz.

Japan: Up to 100 W.
Korea: Unlimited in-band

emission limit

Mobile devices, tablets,
note-PCs, and home appliances,
which operate with low power.

Capacitive coupling (CPT) Japan Japan: 425 kHz–524 kHz. Japan: Up to 100 W Portable devices, tablets, and
home appliances.
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6.2. EMF and EMI Mitigation Methods

Some WPT charging applications have a large air gap, such as EVs, where it can reach 10–30 cm.
This creates high levels of a stray field in the coils’ vicinities, thus arises an issue regarding the
exposure to magnetic fields for people who approach the vehicle or passengers during the charging
process [175]. In [175], the authors presented a pulsed magnetic fields methodology (developed
according to the requirements of the International Commission on Non-Ionizing Radiation Protection
(ICNIRP) guidelines), the results for the assessment applied to a 20-kW IPT system for dynamic
charging of EV at the frequency of 85 kHz. The charging is performed by using several independent
transmitters (each one: 1.5 m long and 0.5 m wide). When the vehicle is above them, they will be
activated. In this direction, the authors investigated the human exposure to the EMFs by using a
computational modeling applied to a 7-kW WPT charging system at the frequency of 85 kHz [176].
In [177], two-step scaled frequency finite-difference time-domain (SF-FDTD) methods are used to
calculate the internally induced electric fields in the human body.

EMF safety can be achieved through the magnetic field level reduction in the near-field area.
Therefore, several reduction methods were presented, such as using ferrite materials [14], metallic
materials (aluminum) [178,179], and metamaterials (MM) [180–183]. Changing the pulse width of the
inverter to decrease the harmonics of the leakage electric field was presented [184]. In [185], the authors
presented three active methods that include the independent self-EMF cancelation (ISEC), the 3-dB
dominant EMF cancel method (3DEC), and the linkage-free EMF cancel method (LFEC). In addition,
the authors have reported other techniques, such as separating pickup rectifiers and magnetic mirror
methods. In [7], the authors presented a resonant reactive shield with one coil and a capacitor. In [186],
a resonant reactive shield with two coils and four capacitors was discussed. Figure 12 illustrates
the above-mentioned EMF mitigation methods. On the other hand, some EMI mitigation methods
are reported, for example, the spread spectrum clock technology (SSC) [187]. In [174], the authors
investigated an isolation inductor scheme to reduce EMI in an automotive tightly coupled handheld
resonant charging system. Moreover, EMI can be suppressed by optimizing the rise and fall times of
the output voltage in high-frequency soft-switching converters [188].
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Table 15 compares between different EMI and EMF mitigation methods, in addition to their
advantages and disadvantages.
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Table 15. EMF and EMI reduction methods: advantages and disadvantages. 3DEC: 3-dB dominant EMF cancel method, ISEC: independent self-EMF cancelation,
LFEC: linkage-free EMF cancel method.

Case Reduction Method Advantages Disadvantages Notes

[14] Using ferrite bars Ferrite acts as a partial magnetic core for coupled coils, and
it improves the system performance.

Ferrite bars experience hysteresis losses and have
extra costs. In addition, some applications do not
have enough space.

LCC-compensated topology is more effective than
SS-compensated topology, and it produces a lower
magnetic field in the near-field area.

Ferrimagnetic material It can confine and guide the magnetic flux by providing a
path close to magnetic field sources.

Using the ferrimagnetic material could be limited for
some applications due to its cost, occupied space, and
weight.

[178] Metallic shielding
(Aluminum), same case in
[179]

The metallic shielding induces eddy currents, which result
in magnetic fields cancelation. Therefore, the total magnetic
field near the material is reduced.

Ferrite and metallic shields block a wide band of
electromagnetic spectrum. Consequently, they have a
lower power transfer efficiency, in addition to the
thermal stress caused by eddy currents.

The EMF noise that is produced by CSPR topology is
higher and worse than that of the CSSR noise.
CSPR means constant current source CCO, series
resonance for Tx, parallel resonance for Rx, and a
resistive load (R). CSSR: constant current source
(CCO), SS topology, and a resistive load (R).

[180] Near-field metamaterial
zero-permeability shield

It does not cause significant extra losses, and it blocks the
near-field radiation only at an exact frequency.

If the metamaterial is not placed between the coils, it
will work as a shield, so it does not enhance the
coupling.

The selective frequency technique blocks specific
frequencies and allows other fields to pass.
Consequently, this method could be used for human
safety.

[16] Three-phase power line to
reduce the leakage EMF

The current circulates in two wires for each phase.
Therefore, the side and center parts of the power lines
cancel each other.

The three-phase system has a higher input current
compared to the single-phase system.

This system uses six overlaid power lines (three in the
center and three to the side); they are ended to two
y-connections.

ISEC
3DEC[185] Active shielding
LFEC

It generates counter magnetic fields from the EMF cancel
coil. In addition, it is suitable for high-power application,
such as EVs, PHEVs, and road-powered type EVs.

Requires extra components, extra coils, and a power
supply.

The linear time-invariant steady-state system, which
means that the cores are unsaturated and the circuit
parameters are constant.

[7,186,
189]

Reactive resonant (with
one or two shielding coils)

The cancelation magnetic field is generated from the
original magnetic field noise. Therefore, it does not require
any power source.

Requires shielding coils and capacitors.

The shielding coils are connected to each other so that
the primary shield coil can supply enough shield
current for the second shield coil. Consequently, the
leakage magnetic field is reduced.

EMI mitigation methods

[187] Spread spectrum clock
technology (SSC)

This method reduces the current spectrum, and as a result,
the EMI is suppressed.

It requires a power supply, which occupies more space
and weight. In addition, it is not simple to design.

Triangular modulation; the peak deviation ±1% and
the modulation frequency is 156.25 Hz.

[174] The isolation inductor
scheme to reduce EMI

The magnitude of the input impedance is increased at
higher frequencies. At the resonant frequency, no change at
the magnitude of the input impedance.

DC–DC and coil-to-coil efficiencies are decreased due
to the coil and core losses of the isolation inductor.

Isolation inductors of Tx and Rx are made of
shell-type ferrite cores’ coils.
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7. WPT Applications: An Optimized Case Study

Figure 13 summarizes many applications of a WPT charging system, and shows that the WPT
became an important part of some basic fields. First, in transportation, wireless power transfer for
electric vehicles is a promising technology. Secondly, in the implantable medical devices (IMDs),
it gives a convenient, reliable, and safe way to supply the power wirelessly without any pain to
patients. Thirdly, in the field of consumer electronic applications, WPT is used in LED TVs, charging
portable devices, such as cell phones, tablets, and other smart building appliances, where the WPT
technology reflects the development of this kind of buildings. Moreover, the WPT system is used in
IoT applications. Finally, WPT systems are used in LED lights, underwater detection, military defense
systems, space applications, etc.
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To give a clear picture about the design method for a certain application, a 3D structured WPT that
transfers the power wirelessly in a robotic application is proposed. The system is a bio-inspired joint
for the WPT system. The joint consists of a movable spherical structure that rotates inside a big sphere
using a mechanical stud (0◦–85◦). The transmitter coil (Tx) is wound on a hemispherical structure,
as shown in Figure 14a, or wound on a spherical structure (with a slot), as shown in Figure 14c. In this
case, the mechanical stud can rotate the small sphere up to 45◦. The receiver coil (Rx) is wound on
the small sphere structure. α is the displacement angle (degrees) between the vertical axes of the
joint structures.
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Figure 14. Joint-WPT: (a) Displacement angle (0◦–85◦); (b) An example of winding Tx and Rx coils; (c)
Spherical model (0◦–45◦).

To design the WPT system, Figure 15 is illustrated. Considering the transferred power, frequency,
structure, and other parameters, the purpose of the WPT system should be determined. The application
type has two types of constraints, which include the structure and electrical constraints. The structure
constraints include the size, volume, and gap. The electrical constraints comprise the compensation
topology and its parameters, the required power to be transferred, and the operating frequency. On the
other hand, several variables are parameterized to optimize the WPT, such as for example, the mutual
inductance M, the output power, and the efficiency. WPT optimization is achieved by simulation
and calculation, and experiments are put forward to validate the obtained results. Other factors can
be considered during the design, such as suitable EMI and EMF mitigation methods (based on the
application type).
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7.1. Optimization Method

The power transfer efficiency (PTE) is a key design factor of the WPT system while operating over
the resonance frequency. PTE optimization depends on the mutual inductance (M). M is proportional
to the square root of the transmitter and receiver inductances L1 and L2, respectively. Therefore,
the WPT system is optimized by changing the shape of the winding coils to maximize the mutual
inductance (SS-compensated WPT) and reduce its fluctuation during the angular displacement. Several
variables are considered to parameterize the coils, such as the number of turns, space between turns,
and variation in the z-axis position.

Figure 16 presents the joint-WPT system in the y-z plane. The transmitter coil has N1 turns, and
the receiver coil has N2 turns. ri is the radius of each horizontal turn of the transmitter coil at a zi
(z-position). rj is the radius of each horizontal turn of the receiver coil at zj (z-position). The radius of
the transmitter coil is already given by rs = 3.85 cm, and the radius of the receiver coil is given by rb =
2.85 cm.
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The algorithm design is written as follows:

1. The size constraints: 0 ≤ zi ≤ rs; the turns cover the whole space of the hemisphere of the
transmitter structure, which means: 0 ≤ θ ≤ (π/2). On the other hand, 10 ≤ zj ≤ 2 rb; the turns
cover the whole space of the small sphere, which means: 0 ≤ β ≤ (π). The pitch between turns is
set to P = 0.5 mm.
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2. Initialize zi, β, and θ as 0. Initialize zj = 10 mm (start z-position for Rx), N1 = 0, N2 = 0, m = 0, and
n = 0.

3. Enter the radius of the transmitter coil rs = 38.5 mm, the radius of the receiver coil rb = 28.5 mm,
and the pitch between turns P.

4. Enter β and θ. // Measured in radian.
5. Count: θ = θ + (1/36) π, β = β + (1/36) π, N1 = N1 + 1, N2 = N2 + 1, zim = zim + P, and zjn = zjn + P,

n addition to m = m + 1 and n = n + 1. // Increment angles to determine the z-position and r for
each turn of the transmitter and receiver coils. ((1/36) π is the assumed step). Increment N1 and
N2 to find the number of turns for both coils. Move the turns in the z-direction with the pitch
between coils equal to 0.5 mm. The number of turns can be calculated by N1 = zim/P and N2 =
zjm/P.

6. Calculate rim = rs sin (θ), rjn = rb sin (β), zim = rs (1 − cos (θ)), and zjn = rb (1 − cos (β)). // mm
(based on angles).

7. Calculate L1 and L2: the self-inductances of the transmitter coil and receiver coil, respectively.
Calculate and maximize the mutual inductance M and the coefficient coupling k, and determine
the required capacitors C1, C2. // In order to maximize the mutual inductance, the inductances
will be adjusted based on the number of turns and the space between turns (pitch). The
transferring distance between Tx and Rx will determine the coupling coefficient, which should be
less than a certain value ks.

8. With the available values of the frequency and coil resistance, calculate the quality factor,
transferred power, and efficiency.

9. Sweep the frequency and mutual inductance to maximize the efficiency and transferred power.
10. Is k < ks, if yes, go to 11, or else go to step 13. The coupling coefficient should stay within a certain

range to avoid cases with very low values or cases with very high coupling between Tx and Rx.
11. Is θ < π/2, if yes, go to step 12, or else go to step 13.
12. Is β < π, if yes, go to step 3, or else proceed to step 13.
13. End.

Figure 17 illustrates a flowchart that represents the algorithm design.
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7.2. Simulations  

The simulation of the joint WPT system is conducted by ANSYS electronics 19.0.0, USA, 2018. 
The optimization process has resulted in cases with high coupling coefficient values and others with 
low values. As shown in Figure 18, two cases are considered. The first is the hemisphere winding 
with a high coupling coefficient (k = 0.54). The second is the optimized model with k = 0.089. The 
obtained parameters are given in Table 16.  

Figure 19 shows that the mutual inductance and coupling coefficient for the 
hemisphere-winding drop rapidly with the angular misalignment, which can, in turn, lead to low 
efficiency. However, with the optimized solution, the fluctuation of M and k is reduced, and the 
performance of the WPT system is improved. Therefore, the receiver can rotate inside the transmitter 
from zero degrees (perfectly aligned coils) up to 90 degrees (practically 85°) while keeping high 
efficiency. Figure 20 shows the relation between the efficiency, load, and resonant frequency.  
For the hemispherical winding at a load of RL = 20 Ω, the efficiency was up to 96% at α = 0°. 
However, at α = 85°, the efficiency dropped to lower than 10%. On the other hand, for the optimized 
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7.2. Simulations

The simulation of the joint WPT system is conducted by ANSYS electronics 19.0.0, USA, 2018.
The optimization process has resulted in cases with high coupling coefficient values and others with
low values. As shown in Figure 18, two cases are considered. The first is the hemisphere winding with
a high coupling coefficient (k = 0.54). The second is the optimized model with k = 0.089. The obtained
parameters are given in Table 16.
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Figure 18. Two case studies: (a) Hemisphere winding at 0◦; (b) Hemisphere winding at 90◦; (c)
Optimized design at 0◦; (d) Optimized design at 90◦.

Table 16. Parameters of case studies.

WPT f 0 N1/N2 L1/L2 (µH) Resistances:
R1, R2 (Ω)

Mutual
Inductance M

Coupling
Coefficient k C1/C2 (nF)

Hemisphere (a) 21/16 21.14/7.8156 0.23/0.13 7.478 µH 0.54 4.79/12.96
Optimized
model (b)

500
kHz 34/22 50.699/31.83 0.19/0.1 3.6117 µH 0.089 2/3.18

Figure 19 shows that the mutual inductance and coupling coefficient for the hemisphere-winding
drop rapidly with the angular misalignment, which can, in turn, lead to low efficiency. However,
with the optimized solution, the fluctuation of M and k is reduced, and the performance of the
WPT system is improved. Therefore, the receiver can rotate inside the transmitter from zero degrees
(perfectly aligned coils) up to 90 degrees (practically 85◦) while keeping high efficiency. Figure 20 shows
the relation between the efficiency, load, and resonant frequency. For the hemispherical winding at a
load of RL = 20 Ω, the efficiency was up to 96% at α = 0◦. However, at α = 85◦, the efficiency dropped
to lower than 10%. On the other hand, for the optimized WPT with the same load, the efficiency was
up to 95.75% at α = 0◦ and 96% at α = 85◦ (the mutual inductance at 85◦ is higher than that at 0◦).
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Figure 21 presents the magnetic field density for the optimized and hemisphere models.
The magnetic field density is given by B = µH, where H is the magnetic field strength (intensity)
measured by (A/m). In Figure 21a, at α = 0◦, the yellow area (within 12-cm diameter) shows that B
is around 86 µT, which is higher than the allowed level by ICNIRP 2010 (should not exceed 27 µT).
In Figure 21b, the magnetic field density is concentrated in the close area around the coils. These cases
require attention if the WPT is deployed close to the human body or other sensitive circuits. EMI and
EMF mitigation methods can be selected based on the cost, weight, and size constraints of the joint.
For instant, choosing ferrites is not a good choice, since it will put more pressure on the robotic arm.
Based on the simulation results, a thin light sheet of aluminum can reduce the magnetic field density
around the joint WPT to a safe level.
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7.3. Experiments of the Proposed WPT and Measurements

The WPT system is fabricated to validate the calculated and simulated results. Figure 22 presents
the experimental setup, where a multi-strand Litz wire was used to wind the coils. Radio frequency
(RF) Mica-type capacitors CDE (CD15FA102JO3F) and a half-bridge inverter were used. The system is
SS-compensated WPT, and the experiments included two models, as presented in Table 16.Electronics 2018, 11, x FOR PEER REVIEW  31 of 41 
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Figure 22. Experimental setup: (a) Circuits; (b) Hemisphere windings; (c) Optimized design at α = 0◦;
(d) Optimized design at α = 90◦.

Figure 23 shows the input and output voltages at the resonant frequency (496 kHz) for the
hemisphere-winding in Figure 23a, and the optimized model in Figure 23b.
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Figure 23. (a) Pulse-width modulation (PWM) signal; (b) Input/output voltages for the hemisphere
case; (c) Input/output voltages for the optimized model.

The angular misalignment effects on the input and output voltages are given in Figures 24 and 25.
In this structure, the receiver coil can rotate up to 85◦. At α = 85◦, for the hemisphere-winding, the
output voltage will drop to values close to zero. However, for the optimized model, even at α = 85◦,
the output voltage keeps a high value.
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7.4. Cost Assessment of WPT Systems

The cost assessment of the WPT system can be done by considering the number of required
components, such as inverter switches, diodes, Litz wires, resistors, capacitances, etc. In general,
compared to hybrid topologies, the SS, SP, PS, and PP compensation topologies require fewer
components. At kHz-range frequencies, high output power could be needed, and the power converters
are added. As a result, the total cost is increased, such as EV charging applications that operate at
20 kHz and 85 kHz. At high frequencies, the output power could be very low, and the system does not
require additional components such as IMDs that use the ISM band (2.2 MHz and 6.78 MHz).

8. Conclusions and Future Research

This paper has comprehensively reviewed the recent progress of the MCR WPT system including
several aspects, such as compensation topologies, resonator structures, and misalignment analysis.
In addition, EMI and EMF diagnostics were discussed, and the WPT-related standards were reviewed.
Moreover, several EMI and EMF mitigation methods were reported and compared. Furthermore,
a wide range of WPT applications was presented. Finally, a WPT case study was proposed. In the
proposed winding method, a bio-inspired joint made of two spherical structures was given. The design
process and algorithm design were provided, and experiments were conducted to validate the obtained
results by simulation.

As shown in Figure 26, to work toward an optimum design of WPT, there are some factors
that have an impact on the design process and thus should be considered during the design and
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manufacturing process. The application type is determined by considering the size or volume,
the transferring distance, the required power to be transferred, and the operating frequency. After that,
inductances, resistances, quality factors, and mutual inductance are obtained. Choosing a proper
compensation topology is another basic step. Other factors are considered, such as suitable EMI and
EMF mitigation methods. Therefore, a good combination of the above-mentioned factors has to be
considered. Even though many studies have been investigated, research related to new topologies,
novel structures, new materials, and mitigation methods, in addition to system stability under
misalignments, impedance matching, control strategy, and cost-effective assessment should be done.Electronics 2018, 11, x FOR PEER REVIEW  33 of 41 
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