
electronics

Article

Open Circuit Fault Diagnosis and Fault Tolerance of
Three-Phase Bridgeless Rectifier

Hong Cheng, Wenbo Chen *, Cong Wang and Jiaqing Deng

School of Mechanical Electronic & Information Engineering, China University of Mining and Technology Beijing,
Ding No. 11 Xueyuan Road, Haidian District, Beijing 100083, China; chengh@cumtb.edu.cn (H.C.);
wangc@cumtb.edu.cn (C.W.); dengjiaqingrae@163.com (J.D.)
* Correspondence: sglm.chen@gmail.com; Tel.: +86-176-0013-1007

Received: 5 October 2018; Accepted: 30 October 2018; Published: 1 November 2018
����������
�������

Abstract: Bridgeless rectifiers are widely used in many applications due to a unity power factor,
lower conduction loss and high efficiency, which does not need bidirectional energy transmission.
In this case, the potential failures are threatening the reliability of these converters in critical
applications such as power supply and electric motor driver. In this paper, open circuit fault is
analyzed, taking a three-phase bridgeless as an example. Interference on both the input and output
side are considered. Then, the fault diagnosis method including detection and location, and fault
tolerance through additional switches are proposed. At last, simulation and experiments based
on the hardware in loop technology are used to validate the feasibility of fault diagnosis and fault
tolerance methodology.
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1. Introduction

Multilevel converters have been widely used in middle- and high-voltage application fields in the
past decades, such as renewable energy, adjustable speed drive, power transmission network, electric
vehicle [1] etc. Topologies of these converters including H Bridge-based, neutral point clamping-based
and bridgeless-based are most popular in literatures. Recently, bridgeless-based topologies have drawn
increasing attention from industry and academia due to its high efficiency, low loss and simplification
control strategy [2–6]. Compared with H Bridge-based converters, these bridgeless-based converters
cannot work as inverters. However, considering that the applications are mostly pumps, fans and
compressors which only need the power flowing unidirectionally [7], H-bridge-based converter has
gradually been substituted by bridgeless-based converters as a pulse width modulation (PWM) rectifier
in these fields. The bridgeless-based converter as a rectifier provides a sinusoidal input current at unity
power factor and a controllable dc output voltage.

With the growing power switch numbers and power density, reliability of power electronic
converters is increasingly important because the malfunctions are unacceptable and cause serious
losses (e.g., nonscheduled downtime) in the critical applications. As a kind of electric energy
conversion device, three-phase bridgeless converter (3-BLC) also endures high frequency voltage shock,
over temperature impact, overload and improper driving signal. Semi-conductor devices, especially
power switches, will fail more easily than other components. As discussed in Reference [8], the power
switches contribute to 31% of failures, which are the most fragile components among capacitors, gate
drivers, resistors and inductors. Power switches faults are usually caused by bond-wire lift-off or
solder cracking, which will lead to an open circuit or short circuit of converters. The faults are named
open circuit faults (OCF) and short circuit faults (SCF) respectively. An SCF will cause a large current
and result in system shutdown, so hardware-based approaches such as fast fuses or breakers to transfer
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an SCF to an OCF are generally used. An OCF will not shutdown a system immediately but it degrades
the performance inconspicuously. These may, in turn, cause secondary faults. Therefore, it is necessary
to study a fault diagnosis and tolerance method for power switches OCF of the rectifier in this article.

In the past decade, numerous fault diagnosis and tolerance methods have been proposed for
power electronic converters in the literature [9–16]. However, there are a few research works for
ac-dc rectifiers, especially bridgeless rectifiers. For example, a diagnosis method based on a mixed
logical dynamic model and residual generation was applied to a single-phase rectifier in a railway
electrical traction drive system [17]. This method was fast, simple and stable, but it does not suit
three-phase systems. For three-phase conditions, a current waveforms-based similarity analysis
method for a three-phase PWM rectifier was proposed in Reference [18]; current waveforms were
analyzed pairwise to diagnose an open circuit fault. There was a critical drawback of this method that
it ignored the three-phase voltage imbalance, which is often seen for grid. In Reference [19], a fault
tolerance control with additional devices for three-phase soft-switching mode rectifier is proposed.
The circuit configuration had two extra center-tapped autotransformers and three more toggle switches
compared with the traditional system. This method was more suitable for new design, but more
retrofit cost was demanded for the existing systems. Considering the dc voltage decrease by OCF,
Reference [20] proposed a fault tolerant method for the three-level rectifier in a wind turbine system,
which was implemented by adding a compensation value to the reference voltages. The proposed
method preserved the power factor under faulty conditions utilizing the redundancy of the switching
devices, where the 3-BLC does not have such ability.

This study aims for an OCF diagnosis and tolerance method for bridgeless-based rectifiers [21–23],
especially the 3-BLC. The contribution of this paper is to propose a fault feature extraction method for
3-BLC, and a fault tolerant method based on an extra two switches. The fault features were extracted
from the three-phase currents. Load sudden change, source voltage imbalance or fluctuation and
harmonic interference have been considered to prevent the impact on the proposed method. After that,
the OCF is identified by a mixed logical model-based algorithm. When a fault was diagnosed, the drive
signals of the faulty phase were redistributed artificially by the additional switches. Thus, it will
maintain the current path in failure condition and make the 3-BLC still work as normal.

The rest of this paper is organized as follows. In Section 2, the mathematical model of single and
three-phase bridgeless converters are analyzed. In Section 3, the fault diagnosis with an improvable
feature extraction method is proposed. Section 4 details the fault tolerant implementation through
additional devices. System validation using simulation and experiment data is provided in Section 5.
Finally, conclusions are drawn in Section 6.

2. Basic Principles of Three-Phase Bridgeless Converters

2.1. Structure and Operation of 3-BLC

A three-phase bridgeless converter (3-BLC) is shown in Figure 1a. As can be seen, this three-phase
converter is expanded from a single-phase dual-boost bridgeless structure, which has additional
slow-recovery diodes D5 & D6 and two boost inductors L1 & L2 to reduce common mode
noise [24,25]. Compared to the H bridge structure, bridgeless structure reduces 50% of fully controlled
switches. Therefore, the control circuits, gate drivers, as well as protection units are greatly reduced,
thus decreasing the system complexity and switching losses drastically [26]. The equivalent ac side
circuit is depicted in Figure 1b and the mathematical model of 3-BLC can be expressed as

L disA
dt = usA − uacA − uNO

L disB
dt = usB − uacB − uNO

L disC
dt = usC − uacC − uNO

(1)

where uacA, uacB, uacC are the ac voltages of phase A, B and C; uNO is the neutral point voltage; L is the
inductance of L1 and L2.
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Figure 1. Three-phase bridgeless converter topology and equivalent ac side circuit. (a) Circuit topology;
(b) the equivalent ac side circuit.

In order to clarify the analysis process, in this study, the slow-recovery diodes are temporarily
substituted by the body diodes and the boost inductors are equivalent to an inductor L. Therefore,
taking a single-phase bridgeless rectifier as an example, Figure 2 shows its principles on four operating
modes. In this study, the power switches S1 and S2 are synchronously turned ON and OFF, which is
named synchronous control scheme. Define S as a switch function of this converter. When S = 1,
S1 and S2 are both turned ON, the power is transferred to power storage inductor L as shown in
Figure 2a,c. When S = 0, S1 and S2 are both turned OFF, the power stored in inductor L is transferred
to the load side as shown in Figure 2b,d. Then, a bulky electrolytic capacitor C is employed to buffer
the power and, hence, smooth the output voltage. Thus, the steady-state mathematic model can be
yielded by applying KVL and KCL as following.{

L diL
dt = us − (1− S)uC

C duC
dt = (1− S)iL − uC

RL

(2)

where L is the inductance of the power storage inductor, C is the capacitance of the output capacitor,
RL is the resistance of load, iL is the input current, uC is the capacitor voltage, us is the ac voltage,
and S∗ = 1− S.

Applying the volt-second balance and ampere-second balance principles to Equation (2) derives{
iL = us

RL(1−d)2

uC = us
1−d

(3)

where d is the duty cycle.Electronics 2018, 7, x FOR PEER REVIEW  4 of 15 
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Figure 2. Basic bridgeless PFC rectifier topology and operating mode. (a) Mode 1 in positive ac cycle;
(b) Mode 2 in positive ac cycle l; (c) Mode 3 in negative ac cycle; (d) Mode 4 in negative ac cycle.
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2.2. Open Circuit Fault Analysis

As described above, there are four operating modes which generate through the ac voltage polarity
and the switching states. When a switch fails due to physical damage or improperly driving signal,
the corresponding operating mode no longer exists. This will cause changes on the related signals,
which is called fault features, and is the theoretical foundation of fault detection and location. In the
rest of this section, fault features of S1 OCF were analyzed as an example. Because power switches
are the most fragile component and an SCF can be converted to an OCF by fast fuses immediately,
the current and voltage waveforms shown in this section were acquired by simulations. The fault
times were set in the positive and negative ac cycle of the input voltage respectively.

When an OCF occurs on switch S1, the power storage path as shown in Figure 2a is disconnected.
Therefore, the converter works only in power discharging mode as shown in Figure 2b. However,
in the negative ac cycle, the converter works properly because S1 is not in both a power charging and
discharging path. The waveform of the input current and capacitor voltage during S1 open circuit fault
at different half cycles are shown in Figure 3. Because it is a non-resonant circuit, the large impedance
makes the input current fell into nearly zero after S1 failed in negative ac cycle, but it seems normal in
positive ac cycles. The capacitor voltage resembles the input current which double frequency ripple
disappears obviously after 0.5446 s, but it seems no change after 0.5346s until a positive ac cycle.
The features of input current and capacitor voltage before and after switch S2 fails are just like S1.
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Figure 3. Input current and capacitor voltage waveforms at the time of S1 fault in positive and
negative cycles.

The dynamic details of the input current inside the red frame of Figure 3 are also shown in
Figure 4. According to Equation (3), the duty cycle of one switch will mutate to zero when it occurred
an OCF. Since the switching period no longer existed, the assumption that the input voltage is constant
during the switching cycle was no longer valid. Due to the impedance of the inductor to the low
frequency signal, the input current became zero after the energy in the inductor was released. The load
voltage was maintained by the DC capacitor until another ac cycle which was not affected by the fault.
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Figure 4. Dynamic details of input current and capacitor voltage waveforms at the time of S2 fault.

2.3. Input Side Interferences

Voltage fluctuations and harmonic pollution are unavoidable on the input side. They will affect
the characteristics of current and voltage signals which have an impact on the diagnosis of the fault.
Thus, this study discusses the features of input current and capacitor voltage under input voltage
fluctuation and harmonic pollution, which are shown in Figure 5. About 7% harmonic was injected
to input voltage at 0.3176 s, consequently, the THD of the input current increased from 4% to 8% but
the impact on the capacitor voltage was limited. Still, from this figure, the input voltage fluctuated
about 10% higher at 0.7273 s. The input current decreased a little and the capacitor voltage jittered
rapidly at the same time. Different from the failure conditions, these varieties recovered in a short time.
The features are significantly different from those failures discussed in the previous paragraphs.
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2.4. Load Side Interferences7

During the operation of the converters, the power on the load side was not always constant.
The load sudden changed sometimes and the reference dc voltage also changed when transmitting
different powers on the three-phase imbalance condition. This will lead to failure of fault diagnosis.
In this study, output power variations due to reference voltage changed and load sudden change were
also involved.

As shown in Figure 6, the reference output voltage increased from 300 V to 380 V at 0.5346 s,
then the magnitude of the input current and capacitor voltage rose rapidly and became stable in two
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ac cycles. The output power saw a 60% growth from 400 W to 640 W. Still, in this figure, the load
became heavier abruptly at the same time, which resulted in output power rising up to 1000 W with a
56% increment. The input current increased smoothly and rapidly, meanwhile the capacitor voltage
decreased a little but restored fast with a higher ripple.
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Figure 6. Input current and capacitor voltage during the time of load sudden change and reference
voltage change.

In summary, an OCF will result in input current falling to about zero and increasing ripple
of the capacitor voltage. The intensity of current oscillation depended on the values of L and C.
The features of input or load side interferences were essentially similar, and did not affect the sinusoidal
characteristic of the input current and capacitor voltage signals. It has to be noticed that in these
analyses, when switch S1 failed in a negative ac cycle, the converter maintained regular operation until
a positive ac cycle, and vice versa for switch S2. The duration of this condition lasted up to a half ac
cycle, which is related to the time of failures.

3. Fault Diagnosis Technique

Fault diagnosis is the basis of fault tolerant control and consisted of fault detection and fault
location [27]. It is important to detect and locate a malfunction switch rapidly, taking into account the
fault features. In addition, the performance within fault tolerant behavior, such as redundancy control,
is not only affected by fault diagnosing time directly, but also fault diagnosing accuracy including
misdiagnosis and missed diagnosis [28]. Therefore, the fault diagnosis algorithm needs to be simple
and effective.

3.1. Fault Features Extraction

As aforementioned, the sinusoidal characteristic of input current is damaged when an OCF occurs,
but is reserved under other interferences. Therefore, it is feasible to select the input current as the
characteristic signal of fault diagnosis. Generally, it is straightforward to utilize frequency domain
characteristics as fault features [29]. However, most of the frequency domain methods require Fast
Fourier Transform (FFT), which costs large amounts of computation. In order to improve the diagnostic
efficiency and reduce the computational cost, this study used a direct time domain analysis method.
Considering a three-phase converter, an abc− αβ transformation, named Concordia transformation,
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is applied to analyze conveniently in a two-phase stationary coordinate system. This transformation
can be expressed as [

iα

iβ

]
=

 √
2
3 − 1√

6
− 1√

6
0 1√

2
− 1√

2


 iA

iB
iC

 (4)

Transformed input current signals are shown in Figure 7, which took iα as the abscissa and iβ as
the ordinate. The gradient of color represented the increase of time; therefore, the characteristics of iα

and iβ before and after failure were revealed in these figures. Single switch failures of each switch were
shown in Figure 7, as well as normal and load side interference conditions. Input side interference was
similar with the load side.
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Figure 7. Input current features in a two-phase coordinate system under eight conditions.

3.2. Fault Detection and Location Method

According to the features shown in the above figure, iα and iβ constitute a circular trajectory
under normal and interference conditions. However, an OCF will change the trajectory and different
fault location will result in different trajectories. In other words, vectors from (0, 0) to (iα, iβ) contain
distinguished features of OCFs. Define R as the length of this vector, an interval increment-based fault
detection method was proposed and can be expressed as

S =
∫ t

t−ts
|R0 − R(t)|dt

i f S− Sth > res, then an OCF occurred
(5)

where S is the accumulative bias of R, Sth is a reference value for detecting an OCF, res is the threshold
of residual for decision, and ts is the length of the interval. R0 = 1

T
∫ t−T

t−2T R(t)dt is the reference of R
which lags one ac cycle to increase the sensitivity, and T is the power frequency cycle.

Review the angle between this vector and the positive direction of the abscissa axis. It can be
found that the abnormal R occurred at a specific angular interval corresponding to different fault
locations. The central values of these intervals, defined as θth, are ideally taken as

(
0, π, 2π

3 , 5π
3 , 4π

3 , π
3

)
corresponding to SA1, SA2, SB1, SB2, SC1, SC2 OCFs one by one. Then, a fault location method after
fault detection was proposed based on this vector. It selected the minus central value between the
angle when a fault was detected and θth as the location judgment, which can be expressed as

min
i
|θth(i)− θd| θ ∈ [0, 2π] (6)
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where i = 1, 2, · · · , 6, which represents SA1, SA2, SB1, SB2, SC1, and SC2 respectively. θd is the angle
when an OCF was detected.

The flow chart including fault detection and fault location algorithm are shown in Figure 8.
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Figure 8. Fault detection and location algorithm flow chart based on current residual.

4. Fault Tolerance Method

An OCF will not cause the converter to shutdown immediately, but it slowly degrades the
performance and reliability. Actually, a converter is desired to have the capability to operate in a
quasi-normal condition in the post-failure period. Therefore, a fault tolerance method includes two
aspects: fault tolerant topology with an extra two switches and a corresponding fault tolerant control
method were proposed.

Also in the case of a single phase, the converter consists of two fast recovery diodes and two
power switches with body diodes [25]. A current loop is broken due to an open circuit fault. Therefore,
in order to obtain fault tolerant capability, additional devices must be added to restore the original
current loop in the fault state. A fault tolerant topology with an additional two power switch which
connected in parallel across the two fast recovery diodes is shown in Figure 9a. As aforementioned,
more than two-thirds of ac-dc rectifiers in motor drives of industry only require a single direction for
energy transmission. Therefore, considering the efficiency, loss, and control algorithms, this topology
still operates as a bridgeless converter in the normal state, although it is similar to the H-bridge
structure. The fault tolerant control diagram with drive signal distribution is shown in Figure 9b.
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Figure 9. Fault tolerant control topology and control method. (a) Proposed fault tolerant topology with
two additional switches; (b) block diagram of the fault tolerant control method with signal distribution.

The control method diagram includes two control loops: an inner current loop and an outer
voltage loop. The role of the inner loop is to realize a unity power factor, and the role of the outer loop
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is to provide a controllable output DC voltage. The voltage controller Gvc and current controller Gcc

are obtained as
Gvc =

KPvs+KIv
s

Gcc =
KPis+KIi

s
(7)

The output of the double PI loop was compared with the carrier. Hence, in turn, the PWM signal
was generated for signal distribution. At the same time, constant zero which means low level driving
signal, was also generated.

The converter achieved fault tolerance through dynamic structure reconfiguration [30,31].
According to the location of the faulty device, there are three substructure types after an OCF. Each of
them has a corresponding drive signal distribution rule to maintain the normal operation of the
converter. The circuit reconfigurations are shown in Figure 10.
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Figure 10. Circuit type reconfigurations. (a) Totem pole bridgeless; (b) Symmetry totem pole bridgeless;
(c) Symmetry boost bridgeless.

In normal operation, both S3 and S4 are driven off by the low level, and S1 and S2 are driven
by the PWM signal p in a synchronous drive mode. When it is detected that an open circuit fault
occurs in S2, S3 will be driven by −p which means S1 and S3 are driven by complementary signals.
At this point, the circuit topology is converted into a totem pole bridgeless structure, as shown in
Figure 10a. When an open circuit fault occurs in S1, the drive signal of S4 will also be replaced by −p,
and S2 and S4 will continue to operate in a complementary signal drive mode. At this point, the circuit
topology is converted to a symmetry totem pole bridgeless structure, as shown in Figure 10b. If an open
circuit fault occurs in both S1 and S2, the circuit will be converted into a symmetry boost bridgeless
structure consisting of S3 and S4, which will be driven by p synchronously. This situation is shown
in Figure 10c. The current path for the different topologies is also shown in Figure 10, with orange
representing the path for the positive ac cycle and blue for the negative. The drive signal distribution
table corresponding to each fault state is shown in Table 1.

Table 1. Drive signal distribution of different fault switch.

Faulty Switch
Drive Signal

S1 S2 S3 S4

None p p 0 0
S1 / p 0 −p
S2 p / −p 0

S1&S2 / / p p

“0” respects low level, “p” respects the PWM signal, “/” respects an OCF.

5. Simulation and Experiment Results

It is essential to demonstrate the proposed fault diagnosis and tolerant control method function as
expected in a real converter. However, failures of a real device will lead to uncontrollable consequences
such as burning or explosion. Therefore, hardware in loop (HIL) simulation technology is suitable
for device failure experiments. In this study, simulation and experiment-based MATLAB/Simulink
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and NI platform were realized, as can be seen in Figure 11a; and the details concerning the equipment
used in this setup are shown in Figure 11b.
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The simulation model of the three-phase bridgeless converter was built in MATLAB/Simulink
and used to verify the proposed fault diagnosis and tolerant control method. Then HIL simulation
based on NI-PXI platform was employed to emulate physical experiment, which is widely recognized
and adopted in the field of power electronic device failure researches [32]. The power system model
was set up as shown in Figure 1, and the parameters are presented in Table 2. The simulation and
experiment results are revealed in two aspects: fault diagnosis results and fault tolerant control results.
It is noticed that there was no real fault and all the OCFs were emulated by focusing the low level
drive signal of specific switches.

Table 2. Specification of Simulation and Experiment.

Parameter Value

Input ac voltage 220 V 50 Hz
Reference dc voltage 380 V

Boost inductor 5 mH
dc capacitor 330 µF

Normal power 2000 W
Switching frequency 10 kHz
Sampling frequency 10 kHz

KPv, KIv 0.021, 0.55
KPi, KIi 10.1, 200

For the diagnostic algorithm proposed in this paper, the selection of ts has a direct impact on
diagnostic resolution and diagnostic performance. Figure 12 shows the value of S when ts is equal
to 3 ms and 6 ms, plotted in red and green, respectively. Obviously, the diagnostic frequency (or
resolution) of the proposed online real-time fault diagnosis is positively correlated with ts. In the
normal state, the value of S was about zero. When a fault occurred, S began to fluctuate greatly.
The amplitude was also positively correlated with ts. That is to say, a larger ts meaning larger
diagnostic interval or lower diagnostic frequency can make it easier to identify a fault trigger, reduce
misdiagnosis or missed diagnosis.
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Figure 12. Plot of S with two different ts until fault detection.

In order to make the method proposed in this study applicable with different system parameters,
both iα and iβ were normalized in the actual process. Furthermore, Figure 13 shows the results of
200 samples with different ts from 2 to 6 ms, where the average detection time is connected in green and
the average accuracy rates in red. In this figure, the influence of different Sth are also shown, in which
the solid line represents Sth = 0.2 and the dashed dotted line represents Sth = 0.4. When Sth = 0.2,
as can be seen, the fault detection time increased as ts grew because it slowed down the diagnostic
frequency, and the accuracy rates were maintained at around 98%. When Sth = 0.4, the detection time
generally increased by about 20 ms, but there was greater decline in accuracy rates with ts growing.
The reason is that longer integration time makes the value of S closer to zero, and the larger threshold
is gradually more unsuitable, resulting in a drop in the accuracy rate.
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After selecting the appropriate parameters, the current signal iA and corresponding trigger signals
collected by the oscilloscope were as shown in Figure 14.Electronics 2018, 7, x FOR PEER REVIEW  12 of 15 
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After a fault was detected, the fault location algorithm needed to be employed to locate the fault.
Since the detected time td was not the actual time t f at which a failure occurred. The θd calculated
using iα(td) and iβ(td) was disorderly, and therefore, it was impossible to locate the failure in practice.
In this study, this problem was solved by sacrificing a certain fault tolerant time that the value of θd
was taking as the time minimizing R within a power cycle after td. It can be expressed as

θd = θ(tmin)

tmin = min
t

R(t), t ∈ [td, td + T] (8)

Figure 15 shows the scatter plots of iα(td) and iβ(td) for each of the 30 samples. The pink auxiliary
line identifies the angles corresponding to each fault under ideal conditions. The data points generated
by original θd were scattered and could not be used for fault location. The optimized data points were
concentrated in the vicinity of the ideal values which could be used for accurate fault location.
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Under the condition of ts = 5 ms, Sth = 0.5, 30 fault tolerance experiments were implemented
where the faulty switch was randomly selected. The times from fault occurrence to fault tolerant
control execution are shown in Figure 16. It can be found that the fault tolerance time increased by
20 ms relative to the detection time from Figure 13, where the delay of one ac cycle is caused by
Equation (8).Electronics 2018, 7, x FOR PEER REVIEW  13 of 15 
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An example of fault diagnosis and tolerant control is shown in Figure 17. The signals were
monitored by the host computer of the system built in this study.
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In summary, the proposed fault diagnosis and fault tolerant control method were verified in
simulation and experimentation. An OCF will be detected within at least 20 ms in general conditions,
and tolerated with a 20 ms delay. Various interferences have limited impact on this algorithm.
The accuracy of fault diagnosis was over 98%, and the error rate of the fault location and fault
tolerance was zero.

6. Conclusions

Reliability is one of the primary concerns for the three-phase bridgeless converter. This paper
presented an open circuit fault diagnosis and tolerant control method to maintain the converter running.
As the basis for fault tolerance, the open circuit fault is detected and located accurately within a few
milliseconds, thus, the abnormal operation time is reduced. Only two additional switches are needed
to maintain the normal operation by structure reconfiguration. A lookup table is built for switch
drive signals reconfiguration. Finally, the feasibility and effect of the proposed method on reliability
promotion was verified by simulations and experiments. Furthermore, the interference analysis in
this paper is still insufficient that the proposed method is not robust enough in practice. This requires
further work.
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