
electronics

Article

Stability Analysis of Linear Systems under
Time-Varying Samplings by a Non-Standard
Discretization Method

Xiefu Jiang *, Zongming Yin and Jinjing Wu

School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China;
yinzm@hdu.edu.cn (Z.Y.); 13575760842@163.com (J.W.)
* Correspondence: jiangxf@hdu.edu.cn

Received: 19 September 2018 ; Accepted: 17 October 2018; Published: 27 October 2018
����������
�������

Abstract: This paper is concerned with the stability of linear systems under time-varying sampling.
First, the closed-loop sampled-data system under study is represented by a discrete-time system
using a non-standard discretization method. Second, by introducing a new sampled-date-based
integral inequality, the sufficient condition on stability is formulated by using a simple Lyapunov
function. The stability criterion has lower computational complexity, while having less conservatism
compared with those obtained by a classical input delay approach. Third, when the system is
subject to parameter uncertainties, a robust stability criterion is derived for uncertain systems
under time-varying sampling. Finally, three examples are given to show the effectiveness of the
proposed method.
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1. Introduction

Recently, sampled-data systems have been widely applied in digital control systems and
networked control systems [1–5]. More and more attention has been focused on the stability
analysis and synthesis of sampled-data systems [6–14]. The sampled-data systems are often those
including continuous-time state and discrete-time control, simultaneously [15]. Consider the following
linear system: {

ẋ(t) = Ax(t) + Bu(t),
x(0) = x0

(1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state vector and input vector, respectively; x0 is the initial
condition of the system (1); A and B are known parameter matrices of appropriate dimensions.
The following sampled-data control law is assumed by a zero-order holder for the system (1):

u(t) = Kx(tk), t ∈ [tk, tk+1) (2)

where K is the given controller gain of (2) and tk are the sampling instants satisfying 0 = t0 < t1 <

· · · < tk < · · · . Let tk+1 − tk = h(k), k = 1, 2, · · · . x(tk) are the state vectors at the instants tk.
Substituting (2) into (1) yields: {

ẋ(t) = Ax(t) + A1x(tk),
x(0) = x0

(3)

for t ∈ [tk, tk+1), k = 1, 2, · · · , where A1 = BK.
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Recalling some existing results reported in the literature, there are mainly three approaches to
dealing with stability analysis and synthesis of the sampled-data system (3) based on linear matrix
inequality (LMI) techniques.

• The first approach is called an input delay approach [7]. The input delay approach is very
popular in the analysis of sampled-data systems. This approach has been applied by constructing
time-independent Lyapunov–Krasovskii functionals or Razumikhin-type functions to derive
stability criteria for linear sampled-data systems under constant/time-varying sampling. The idea
of the input delay approach is to represent x(tk) as x(tk) = x(t− (t− tk)). By introducing an
artificial delay τ(t) = t− tk for t ∈ [tk, tk+1), k = 1, 2, · · · , the system (3) is thus modeled as the
following time-delay system: {

ẋ(t) = Ax(t) + A1x(t− τ(t)),
x(0) = x0

(4)

Clearly, τ(t) is a piecewise function with its time-derivative being one, i.e., τ̇(t) = 1 for
t 6= tk. Notice that τ(t) = t − tk ≤ tk+1 − tk = h(k). Therefore, a stability criterion of (4)
can be obtained in terms of LMIs using the Razumikhin method or the Lyapunov–Krasovskii
functional method [16–18]. The input delay approach is developed by introducing time-dependent
Lyapunov–Krasovskii functionals [5].

• The second approach is the so-called impulsive model approach [5,19]. The impulsive model
approach is to model a sampled-data system as an impulsive system. By choosing a piecewise
time-dependent Lyapunov–Krasovskii functional or a discontinuous Lyapunov–Krasovskii
functional, less stability criteria can be derived [20].

It should be mentioned that, although some less conservative stability criteria can be derived
using the above two approaches, the chosen Lyapunov–Krasovskii functionals are commonly
complicated. Since the obtained LMIs require more scalar decision variables, the total numerical
complexity of the stability criteria is definitely much higher.

• The third approach is a discrete-time approach [3,21–25], by which a sampled-data system is
equivalently transformed into a finite-dimensional discrete-time system, where inter-sampling
information of the systems can be maintained. The discrete-time approach assumes the sampling
period to be a constant, i.e., h(k) = h, where h is a positive constant. Under such an assumption,
the system (3) is often represented as the following form by using a standard discretization
technique [3,24–26]:

x(tk+1) = G(h)x(tk), (5)

where G(h) = eAh +
∫ h

0 eAr A1dr. In this situation, one can draw a conclusion that the system (3)
is asymptotically stable if and only if there exists a real matrix P > 0 such that:

GT(h)PG(h)− P < 0. (6)

Thus, a maximum allowable constant sampling hmax of h can been obtained such that (6) holds.
However, if the above assumption is not satisfied, that is the sampling is not uniform, the standard
discretization approach can hardly be utilized to represent the system (3) as (5) [25,26]. As a result,
the discrete-time approach based on a standard discretization technique may not be applicable in
this case.

This paper focuses on the stability of sampled-data systems under time-varying sampling.
Different from the three aforementioned approaches, a non-standard discretization method
is introduced to model the system (3) as a discrete-time system. By establishing a new
sampled-data-based integral inequality, the sufficient conditions on the stability and robust stability
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of sampled-data systems under time-varying sampling are proposed, which are of much lower
computational complexity. Finally, the effectiveness of the proposed method is demonstrated by three
numerical examples.

2. Main Results

In this section, we introduce a non-standard discretization method to model the system (3) under
time-varying sampling as a discrete-time system. Notice that the asymptotical stability of (3) is
equivalent to that of the following discrete-time system:{

x(tk+1) = x(tk) +
∫ tk+1

tk
[Ax(s) + A1x(tk)]ds,

x(0) = x0
(7)

which can be rewritten as:{
x(tk+1) = (I + h(k)A1)x(tk) +

∫ tk+1
tk

Ax(s)ds,
x(0) = x0

(8)

Clearly, inter-sampling information of the system (3) is maintained by (8).

Remark 1. It is clear that the discrete-time system (8) is different from the one in (5). In fact, the system (5) is
obtained by a standard discretization technique, while the system (8) is not. Thus, we refer to the discretization
technique used in (8) as a non-standard discretization method. It should be pointed out that the discrete-time
system (8) allows the sampling to be non-uniform, while only uniform sampling applies in the system (5).

Replacing tk+1 and tk with t in (7), respectively, one has:

x(t) = x(tk) +
∫ t

tk

X(s)ds = x(tk+1)−
∫ tk+1

t
X(s)ds

for t ∈ [tk, tk+1), k = 1, 2, · · · , where X(s) = Ax(s) + A1x(tk).

2.1. A New Sampled-Data-Based Integral Inequality

In the following, we first introduce a new sampled-data-based integral inequality, which is useful
in the derivative of our main results.

Lemma 1. For a given matrix Q > 0 of appropriate dimension, we have:

1
h(k)

∫ tk+1

tk

[x(s)− x(tk)]
TQ[x(s)− x(tk)]ds +

1
h(k)

∫ tk+1

tk

[x(tk+1)− x(s)]TQ[x(tk+1)− x(s)]ds

≤ 3
4

h(k)
∫ tk+1

tk

XT(u)QX(u)du

Proof.

1
h(k)

∫ tk+1

tk

[x(s)− x(tk)]
TQ[x(s)− x(tk)]ds +

1
h(k)

∫ tk+1

tk

[x(tk+1)− x(s)]TQ[x(tk+1)− x(s)]ds

=
1

h(k)

∫ tk+1

tk

[
∫ s

tk

X(u)du]TQ[
∫ s

tk

X(u)du]ds +
1

h(k)

∫ tk+1

tk

[
∫ tk+1

s
X(u)du]TQ[

∫ tk+1

s
X(u)du]ds

≤ 1
h(k)

∫ tk+1

tk

{
(s− tk)

∫ s

tk

XT(u)QX(u)du
}

ds +
1

h(k)

∫ tk+1

tk

{
(tk+1 − s)

∫ tk+1

s
XT(u)QX(u)du

}
ds
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From the integral region of the above two integrals, which are given in Figure 1, we can obtain that:

1
h(k)

∫ tk+1

tk

[x(s)− x(tk)]
TQ[x(s)− x(tk)]ds +

1
h(k)

∫ tk+1

tk

[x(tk+1)− x(s)]TQ[x(tk+1)− x(s)]ds

≤ 1
h(k)

∫ tk+1

tk

{
(s− tk)

∫ s

tk

XT(u)QX(u)du
}

ds +
1

h(k)

∫ tk+1

tk

{
(tk+1 − s)

∫ tk+1

s
XT(u)QX(u)du

}
ds

=
1

h(k)

∫ tk+1

tk

{∫ tk+1

u
(s− tk)XT(u)QX(u)ds

}
du +

1
h(k)

∫ tk+1

tk

{∫ u

tk

(tk+1 − s)XT(u)QX(u)ds
}

du

=
1

2h(k)

∫ tk+1

tk

[h2(k)− (u− tk)
2]XT(u)QX(u)du +

1
2h(k)

∫ tk+1

tk

[h2(k)− (tk+1 − u)2]XT(u)QX(u)du

=
1

2h(k)

∫ tk+1

tk

[2h2(k)− (u− tk)
2 − (tk+1 − u)2]XT(u)QX(u)du

≤ 3
4

h(k)
∫ tk+1

tk

XT(u)QX(u)du

In the process of the above enlargements, we use the following fact:

−(u− tk)
2 − (tk+1 − u)2 = −2(u− tk + tk+1

2
)2 − 1

2
(tk+1 − tk)

2 ≤ −1
2

h2(k).

Thus, the proof is completed.   
s  u  

su =  
k
t  1+kt  k

t  1+kt  
O   

Figure 1. The integral regions.

Lemma 1 presents an integral inequality for the sum of two integral terms. Since these integral
terms are related to sample-data information, Lemma 1 is called a sampled-data-based integral
inequality, which plays an important role in the proof of the main results.
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2.2. A Stability Criterion

Then, based on Lemma 1, we state the following result.

Proposition 1. For given scalars hM ≥ hm > 0, the system (3) is asymptotically stable if there exist some
matrices P > 0, Q > 0, M1, M2 of appropriate dimensions such that the following LMI holds for h(k) = hM
and h(k) = hm, simultaneously.

Ξ =


Ξ11 Ξ12 Ξ13 h(k)AT

1 Q
ΞT

12 Ξ22 Ξ23 0
ΞT

13 ΞT
23 −2Q h(k)ATQ

h(k)QA1 0 h(k)QA − 4
3 Q

 < 0 (9)

where:

Ξ11 = −P−Q−MT
1 (I + h(k)A1)− (I + h(k)A1)

T M1

Ξ12 = MT
1 − (I + h(k)A1)

T M2

Ξ13 = Q− h(k)MT
1 A

Ξ22 = P−Q + MT
2 + M2

Ξ23 = Q− h(k)MT
2 A

Proof. Choose the Lyapunov function candidate V(tk) for (8) as V(tk) = xT(tk)Px(tk), where P > 0.
The forward difference of V(tk) can be calculated as:

∆V(tk)

= xT(tk+1)Px(tk+1)− xT(tk)Px(tk)

= xT(tk+1)Px(tk+1)− xT(tk)Px(tk)

+
1

h(k)

∫ tk+1

tk

[x(s)− x(tk)]
TQ[x(s)− x(tk)]ds +

1
h(k)

∫ tk+1

tk

[x(tk+1)− x(s)]TQ[x(tk+1)− x(s)]ds

− 1
h(k)

∫ tk+1

tk

[x(s)− x(tk)]
TQ[x(s)− x(tk)]ds− 1

h(k)

∫ tk+1

tk

[x(tk+1)− x(s)]TQ[x(tk+1)− x(s)]ds

where Q > 0. By Lemma 1, we have:

∆V(tk) ≤ xT(tk+1)Px(tk+1)− xT(tk)Px(tk) +
3
4 h(k)

∫ tk+1
tk

XT(u)QX(u)du

− 1
h(k)

∫ tk+1
tk

[x(s)− x(tk)]
TQ[x(s)− x(tk)]ds− 1

h(k)

∫ tk+1
tk

[x(tk+1)− x(s)]TQ[x(tk+1)− x(s)]ds

= xT(tk+1)Px(tk+1)− xT(tk)Px(tk) +
3
4 h(k)

∫ tk+1
tk

XT(s)QX(s)ds

− 1
h(k)

∫ tk+1
tk

[x(s)− x(tk)]
TQ[x(s)− x(tk)]ds− 1

h(k)

∫ tk+1
tk

[x(tk+1)− x(s)]TQ[x(tk+1)− x(s)]ds

+2
[
xT(tk)MT

1 + xT(tk+1)MT
2
] [

x(tk+1)− (I + h(k)A1)x(tk)−
∫ tk+1

tk
Ax(s)ds

]
= 1

h(k)

∫ tk+1
tk

[
xT(tk) xT(tk+1) xT(s)

]
Ξ̂

 x(tk)

x(tk+1)

x(s)

 ds

(10)

where M1 and M2 are two free-weighting n× n matrices,

Ξ̂ =

 Ξ̂11 Ξ̂12 Ξ̂13

Ξ̂T
12 Ξ̂22 Ξ̂23

Ξ̂T
13 Ξ̂T

23 Ξ̂33
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with:

Ξ̂11 = −P−Q +
3
4

h2(k)AT
1 QA1 −MT

1 (I + h(k)A1)− (I + h(k)A1)
T M1

Ξ̂12 = MT
1 − (I + h(k)A1)

T M2

Ξ̂13 =
3
4

h2(k)AT
1 QA + Q− h(k)MT

1 A

Ξ̂22 = P−Q + MT
2 + M2

Ξ̂23 = Q− h(k)MT
2 A

Ξ̂33 =
3
4

h2(k)ATQA− 2Q

If the inequality (9) holds for h(k) = hM and h(k) = hm, simultaneously, then by the Schur
complement, one has Ξ̂ < 0, which means that there exists a constant λ > 0 such that ∆V(tk) ≤
−λxT(tk)x(tk). Therefore, the system (8) is asymptotically stable. This completes the proof.

Remark 2. Proposition 1 is obtained based on a simple Lyapunov function rather than a complicated
Lyapunov–Krasovskii functional involved if using the input delay approach and the impulsive model approach.
Moreover, from (10), one can find that two free-weighting n× n matrices M1 and M2 are introduced to build
the relationship among x(tk), x(tk+1) and x(s).

Remark 3. For Proposition 1, the total number of scalar decision variables is M = 2× n(n+1)
2 + 2n2 =

3n2 + n, and the total row size of the LMIs is L = 5n. The numerical complexity of Proposition 1 is proportional
to LM3 [27]. From Table 1, one can find that the stability criterion provided by Proposition 1 requires less
scalar decision variables and a lesser row size of the LMIs compared with some existing stability criteria.

Table 1. The total number of scalar decision variables and the total row size of LMIs.

Method [19] [5] [12] [9] [28] Proposition 1

M 4n2 + n 8n2 + n 5n2 + 2n 5n2 + 2n 10.5n2 + 3.5n 3n2 + n
L 7n 10n 11n 7n 9n 5n
LM3 7n(4n2 + n)3 10n(8n2 + n)3 11n(5n2 + 2n)3 7n(5n2 + 2n)3 9n(10.5n2 + 3.5n)3 5n(3n2 + n)3

2.3. A Robust Stability Criterion

If there exist time-varying norm-bounded parameter uncertainties in (1), then (1) becomes:{
ẋ(t) = (A + ∆A(t))x(t) + (B + ∆B(t))u(t),
x(0) = x0

(11)

where ∆A(t) and ∆B(t) represent norm-bounded parameter uncertainties of the form:

[∆A(t) ∆B(t)] = DF(t)[E Eb] (12)

where D, E and Eb are known real constant matrices with compatible dimensions; the unknown
time-varying matrix F(t) ∈ Ri1×i2 satisfies:

FT(t)F(t) ≤ I for all t ≥ 0. (13)

Similar to (3), the closed-loop system of (11) is given by:{
ẋ(t) = (A + ∆A(t))x(t) + (A1 + ∆A1(t))x(tk),
x(0) = x0

(14)
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where ∆A1(t) = ∆B(t)K.
Extending Proposition 1 to the uncertain system (14) gives the following robust stability criterion.

Proposition 2. For given scalars hM ≥ hm > 0, the system (14) is robustly stable if there exist some matrices
P > 0, Q > 0, R > 0, M1, M2 of appropriate dimensions such that the following LMI holds for h(k) = hm and
h(k) = hM, simultaneously.

Ψ =


Ψ11 Ψ12 Ψ13 h(k)AT

1 Q −h(k)MT
1 D

ΨT
12 Ψ22 Ψ23 0 Ψ25

ΨT
13 ΨT

23 Ψ33 h(k)ATQ 0
h(k)QA1 0 h(k)QA − 4

3 Q h(k)QD
−h(k)DT M1 ΨT

25 0 h(k)DTQ −h(k)R

 < 0 (15)

where:

Ψ11 = −P−Q−MT
1 (I + h(k)A1)− (I + h(k)A1)

T M1 + h(k)ET
b REb

Ψ12 = MT
1 − (I + h(k)A1)

T M2

Ψ22 = P−Q + MT
2 + M2

Ψ13 = Q− h(k)MT
1 A + h(k)ET

b RE

Ψ23 = Q− h(k)MT
2 A

Ψ25 = −h(k)MT
2 D

Ψ33 = −2Q + h(k)ET RE

Proof. Replacing A and A1 in Proposition 1 with A + ∆A(t) and A1 + ∆A1(t), respectively, one can
see that the system (14) is robustly stable if the following inequality holds:

Ξ + h(k)ΥT
1 F(t)Υ2 + h(k)ΥT

2 FT(t)Υ1 < 0

where:

Υ1 = [−DT M1 − DT M2 0 DTQT ], Υ2 = [Eb 0 E 0].

Then, the above matrix inequality is inferred by:

Ξ + h(k)ΥT
1 R−1Υ1 + h(k)ΥT

2 RΥ2 < 0 (16)

for any matrix R > 0 of appropriate dimensions. By the Schur complement, (16) is equivalent to
LMI (15). Thus, if the inequality (15) is satisfied, then so is (16), leading to robust stability of the
system (14), which completes the proof.

3. Numerical Examples

Example 1. Consider the following much-studied problem [29]:

ẋ(t) = −x(tk), tk ≤ t < tk+1, k = 0, 1, 2, · · · (17)

The system (17) remains stable for all constant samplings less than two and becomes unstable for samplings
greater than two [5]. By Proposition 1 in [5] and Proposition 1 in this paper, hmax = 2 is found, but less scalar
decision variables are needed by Proposition 1 in this paper from Table 1.
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Example 2. To illustrate the proposed stability criterion of linear systems with a constant/time-varying
sampling, we consider a sampled-data system as follows: [30]

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0

0.1

]
Kx(tk) (18)

where K = −
[

3.75 11.5
]
. If we transfer the above system to the following system with an input delay:

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0

0.1

]
Kx(t− τ(t)) (19)

where τ(t) = t− tk, then the system (19) becomes unstable for τ(t) > 1.167144. This is because the analytical
delay limit for the stability of (19) can be calculated as τanalytical = 1.167144 for constant delay τ(t) = τ.
Therefore, if we transfer (18) to a delay system (19), then we cannot guarantee the stability for samplings greater
than 1.167144. Figure 2 shows the trajectories of states of (19) with constant delay τ = 1.167144. Moreover,
it was found by applying an eigenvalue-based analysis that the system (18) remains stable for all constant
samplings less than 1.729 and becomes unstable for samplings greater than 1.729 [28].

To show the effectiveness of the proposed method, we now consider two cases of sampling.
Under Case I, the sampling is a constant. Applying Proposition 1, the maximum allowable sampling

period can be obtained as hmax = 1.6962, which means that the system (18) is asymptotically stable for the
constant sampling h = 1.6962, which is demonstrated by Figure 3. To further show the effectiveness of the
proposed method, we make a comparison with some existing results. The obtained maximum allowable sampling
periods h by some existing methods in [5,12,19,31] are listed in Table 2. Moreover, the total numbers of scalar
decision variablesM and the total row size L of the corresponding LMIs are also given in this table. From this
table, one can see that Proposition 1 outperforms [5,19,31] from both the maximum allowable period h and the
computational complexity. Although the obtained maximum h by Proposition 1 is smaller than that by [12,28],
the computational complexity of Proposition 1 is less than that in [12,28]. Therefore, as a tradeoff between the
maximum sampling period h and the complexity, Proposition 1 is more effective than [12,28].

Under Case II, the sampling is time-varying. Then, by Proposition 1, we calculate the maximum allowable
sampling interval that retains the stability of the system (18). For different hm, the obtained results are listed in
Table 3. However, these results cannot be derived using the standard discretization method [3,24–26].

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. The trajectories of states x1 and x2 of (19) with constant delay h = 1.167144.
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Table 2. h,M and L of LMIs.

Method [19] [5] [12] [31] [28] Proposition 1

h 1.3277 1.69 1.723 1.69 1.72 1.6962
M 18 34 24 24 49 14
L 14 20 22 14 18 10
LM3 81,648 786,080 304,128 193,536 2,117,682 27,440

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. The trajectories of states x1 and x2 of (18) with constant sampling 1.6962.

Table 3. Maximum bounds of hM for different hm by Proposition 1.

hm 0.001 0.01 0.1 0.5 1.0 1.5 1.69

hM 1.6066 1.6180 1.6507 1.6868 1.6937 1.6957 1.6962

Example 3. Let us consider the uncertain sampled-data system (11) with matrices:

A =



0 1 0 0 0 0
−3.3235 −0.0212 0.0184 0.0030 −5.3449 −0.8819

0 0 0 1 0 0
0.0184 0.0030 −118.1385 −0.11188 5.3465 0.8822

0 0 0 0 0 1
−0.0114 −0.0019 0.0114 0.0019 −3.3501 −0.5454


,

B =
[

0 0.003445 0 −0.00344628 0 0.00213
]T

,

D =



0 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0 0
0 0 0 0 0 0.1


, E =



0.2 0 0 0 0 0
0 0.2 0 0 0 0
0 0 0.2 0 0 0
0 0 0 0.2 0 0
0 0 0 0 0.2 0
0 0 0 0 0 0.2


,

Eb =
[

0 0 0 0 0 0
]

,

K =
[
−10, 100 5034 −3634 22, 432 5426 −7681

]
,
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borrowed from the offshore steel jacket platforms [32]. We then apply Proposition 2 to obtain upper bounds hM
for different lower bounds hm of samplings. The results are given in Table 4, which show the effectiveness of the
given robust stability criterion for uncertain sampled-data systems.

Table 4. Maximum bounds of hM for different hm by Proposition 2.

hm 0.1 0.11 0.12 0.13 0.14

hM 0.1293 0.1408 0.1467 0.1493 0.1499

4. Conclusions

The stability problem has been studied in this paper for linear systems under time-varying
sampling. First, by using a non-standard discretization method, the sampled-data system has been
represented by a linear discrete-time system. Then, by introducing a new sampled-data-based integral
inequality, several sufficient conditions on stability and robust stability for sampled-data systems and
the uncertain sampled-data systems, respectively, have been provided in terms of LMIs. These criteria
are of lower computational complexity since less scalar decision variables and smaller row sizes of the
LMIs are required. Finally, the effectiveness of the proposed criteria has been demonstrated by three
numerical examples.
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