
electronics

Article

Path Planning for Mobile Agents Using a Genetic
Algorithm with a Direction Guided Factor

Hyeok-Yeon Lee, Hyunwoo Shin and Junjae Chae *

School of Air Transport, Transportation and Logistics, Korea Aerospace University, 76, Hanggongdaehak-ro,
Deogyang-gu, Goyang-si, Gyeonggi-do 10540, Korea; hyl1031@gmail.com (H.-Y.L.); hyunwoo4171@kau.kr (H.S.)
* Correspondence: jchae@kau.ac.kr; Tel.: +82-2-300-0372

Received: 11 August 2018; Accepted: 20 September 2018; Published: 22 September 2018
����������
�������

Abstract: This paper suggests a novel methodology in collision-free shortest path planning (CFSPP)
problems for mobile agents (MAs) using a method that combines a genetic algorithm (GA) and
a direction factor toward a target point. In the CFSPP problem, MAs find the shortest path from
the starting point to the target point while avoiding certain obstacles. The paper proposes an
obstacle-based search methodology that identifies critical collision-free points adjacent to given
obstacles. When critical obstacles are found via CFSPP, this study suggests favorable paths in
2-dimensional space found using the obstacle-based GA (OBGA). The OBGA has four advantages.
First, it effectively narrows the search spaces compared to free space-based methodologies. It
also determines shorter collision-free paths, and it only requires a short amount of time. Finally,
convergence occurs more quickly than in previous studies. The proposed method also works properly
in larger and more complex environments, indicating that it can be applied to more practical problems.

Keywords: motion planning; collision-free shortest path planning; genetic algorithm

1. Introduction

Mobile agents (MAs), including autonomous robots, automated guided vehicles (AGVs), and
unmanned aerial vehicles (UAVs), automatically move and operate according to assigned tasks. MAs
have attracted great interest because they can increase productivity and convenience. They have
already been used in various industrial fields, including warehouse management [1] and delivery
services [2].

Effective path planning is essential for MA operation. Path planning problems for MAs include
vehicle routing problems (VRPs), coverage path planning (CPP), and shortest path planning (SPP).
In this paper, collision-free shortest path planning (CFSPP) is studied. In CFSPP problems, a map or
environment of a targeted region, including obstacles, is given, and an MA needs to find the shortest
path from the start point to the target point without colliding with any obstacles.

An environment in CFSPP problems is static or dynamic [3]. In a static environment, obstacles are
fixed, and every part of the environment is known entirely. A dynamic environment (Appendix A),
on the other hand, includes moving obstacles or unknown hindrances. The environment can change
over time. As the environment changes, the re-planning of paths is necessary. CFSPP with dynamic
environments is more realistic and practical, but also more challenging, because it is necessary to
consider extra variables, such as the velocities of moving obstacles [4]. For solving the problem
with dynamic environment, various methodologies are suggested by numerous studies [5]. A static
environment is also practical in that most of the structures in the floor space are fixed, and the MA
needs to deliver the material while avoiding given hindrances in the facility. Many researchers have
used static rather than dynamic environments, to obtain results with greater simplicity and clarity. The
present paper assumes that all environments are static, with 2-dimensional space for path planning.

Electronics 2018, 7, 212; doi:10.3390/electronics7100212 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3986-2199
https://orcid.org/0000-0002-2657-047X
http://www.mdpi.com/2079-9292/7/10/212?type=check_update&version=1
http://dx.doi.org/10.3390/electronics7100212
http://www.mdpi.com/journal/electronics

Electronics 2018, 7, 212 2 of 20

This study proposes a novel methodology and combines it with a genetic algorithm (GA) for
CFSPP problems. Many previous studies applying GAs to CFSPP problems used the free space-based
methodology. They selected points from the free space randomly, and then generated paths by
connecting the points. In the free space-based methodology, the scope of the search space of the GA is
very large because there are so many points in the free space. A large search space prevents the GA
from finding good solutions rapidly. Moreover, many initial chromosomes are infeasible (i.e., the MA
collides with obstacles), and it takes a significant amount of time to modify infeasible paths until they
become feasible. On the other hand, this study effectively narrows the scope of the search space, and it
avoids generating infeasible initial paths with an obstacle-based methodology. In the obstacle-based
GA (OBGA), effective collision-free points adjacent to obstacles are selected, and obstacles that actually
collide with MAs are found. Short collision-free paths are generated by finding colliding obstacles
and connecting free points adjacent to those obstacles. Practical examples demonstrate the detailed
OBGA process. The results show that the OBGA generates shorter paths with greater rapidity than in
previous research. Additional experiments also show that it performs well in larger and more complex
environments, regardless of obstacle shape.

The rest of this paper is organized as follows. In Section 2, previous studies on CFSPP are
reviewed. In Section 3, the definition of CFSPP problems is determined. In Section 4, the concept of
the proposed methodology is introduced, and the OBGA is demonstrated, in detail, with practical
examples in Section 5. In Section 6, the performance of the OBGA is shown. In the final section, a
conclusion and future work are presented.

2. Literature Review

When dealing with CFSPP problems, many studies have represented given environments as
grid-based spaces. In other words, the given environments are divided into squared cells. Restrictions
apply to MAs because they always move to the center of the neighboring eight cells (up, down, right,
left, and the 4 diagonal directions). This is done for simplification in a number of studies [6–8], as
shown in Figure 1, but it is hard to determine real CFSPP under this limitation [9], as shown in
Figure 2a. Therefore, many studies have assumed that MAs can move to any free cells without the
limitation of moving to neighbors [10–15], as in Figure 2b.

To solve CFSPP problems, many methodologies, including the A star algorithm [16], fuzzy
theory [17], simulated annealing [18], artificial potential field (APF) [19], Dubin’s theorem [20], Voronoi
diagram, evolutionary algorithm (EA), visibility graph [21,22], rapidly exploring random tree [23–26],
and nature inspired algorithms [27–29], have been used.

The visibility graph was proposed to avoid collisions with obstacles in 1979, and it has been
modified as a concept utilizing the configuration space approach [21]. Rashid et al. [22] used a visibility
graph in their research, and the MAs and obstacles were assumed to have cycloid shapes. They selected
the edges of each obstacle as nodes. They made visibility trees by arraying linked nodes until the trees
included the goal node.

Figure 1. Restricted moving directions.

Electronics 2018, 7, 212 3 of 20

Figure 2. Shortest path with different direction limitations (a) under direction limitation; (b) without
direction limitation.

In 1986, Khatib introduced the artificial potential field (APF) [19]. In the APF, the goal point
has attractive forces, and obstacles have repulsive forces. The repulsive forces affect locally, and the
attractive forces affect globally. These forces enable the MAs to reach the goal point while avoiding
obstacles. In the APF, however, there is concern that the MAs are “trapped”. In some cases, the
repulsive and attractive forces equal one another and immobilize the MAs [30], hence the “trapped”
term. In those cases, the APF is unable to find solutions.

Rapidly-exploring random tree (RRT) is one of the major methodologies when the environment
is dynamic. Karaman and Frazzoli [31] present use of RRT and probabilistic roadmap (PRM) and
proposed new algorithms, PRM * and RRT *, which are variants of PRM and RRT, to have the
solution that is close to optimal or probably asymptotically optimal. These methods generate a
quality solution for the path planning in dynamic environment. For analyzing the performance in
variation of the RRT algorithm and improving robust performance, CFSPP solvers based on RRT were
analyzed for autonomy and energy efficiency of robot’s navigation [26]. One of the recent researches,
Janson et al. [23], present the possibility of making deterministic sampling-based motion planning, and
demonstrate its benefit, such as superior practical performance and reducing computational complexity
per given number of samples, while in another recent study, Wei and Ren [25] improve path planning
performance, speed, and efficiency, in a dynamic environment, using an RRT-based algorithm.

Various heuristics are used to search the efficient paths of MA in the deterministic environment,
and are often assumed to search the path when the obstacles are in a fixed location. In this environment,
the nature-inspired algorithm gains its reputation for great performance. Ant colony optimization
(ACO) and Cuckoo search (CS) are major algorithms for solving CFSPP. Wang et al. [29] presented a
comparison on ACO and particle swarm optimization (PSO) for welding robot control as for CFSPP
with 3D environment modeling. Englot and Hover [28] compared ACO and lazy minimum spanning
tree (lazy MST). Mohanty and Parhi [27] presented the use of CS algorithms. The method for making a
feasible link from start point to goal point was suggested. When the link is blocked, CS finds a detour.

Genetic algorithms (GAs), a type of evolutionary algorithm (EA), have been widely used to
solve many optimization problems. Roberge et al. [32] compared the performances of a GA and
PSO in CFSPP problems, and their results showed that the GA performed well in CFSPP problems.
They solved various CFSPP problems using both the GA and PSO, and they concluded that the GA
performed better than the PSO under time constraints.

Many studies using GAs to solve CFSPP problems have generated initial chromosomes via
random selection. Hu & Yang [10] presented a random selection method in which the initial
chromosomes had lengths of 2 to Nmax, and Sedighi et al. [14] used a path-flag that determined
whether a free cell would be selected via row-wise or column-wise instructions to create chromosomes.
In their selection, the lengths of the chromosomes were known and static. Karami & Hasanzadeh [12]
randomly selected free cells and generated initial chromosomes using Dijkstra’s algorithm. Since most

Electronics 2018, 7, 212 4 of 20

of these random selections generated many infeasible chromosomes, many studies that used random
selection added penalties for infeasible paths to the path lengths.

Many studies on CFSPP problems are difficult to directly apply in real-world cases because they
simplify certain MA limitations such as speed, acceleration, and turning radius. Some studies have
attempted to make more realistic paths via smoothing, which transforms linear paths into curved
paths [32–34].

Scheuer and Fraichard [34] found smoothed trajectories for car-like vehicles that continued to
move forward. The vehicles had four wheels; the front two wheels were directional, and the other two
were fixed. The motions of the vehicles were constrained to turning radii (lower bound) and curvature
derivatives (upper bound). Tsai et al. [35] generated curved paths with a B-spline. A B-spline is a
method of interpolation to approximate curves with discrete points. They used Cox-deBoor recursion
formulas, aptly explained in [36,37].

As the usage of UAVs has expanded, CFSPP for UAVs has also seen increased attention [32,38].
In CFSPP problems for UAVs, more variables and constraints must be taken into account because
UAVs travel in 3-dimesional space. Roberge et al. [32] considered the altitude, danger, power, fuel,
and smoothing, as well as the length and feasibility of paths, to evaluate the fitness value. Jia and
Vagners [38] also considered fuel consumption, UAV damage, and task completion rewards. They
used parallel EAs that created multi-populations to prevent premature convergence.

3. Demonstration of Problem

In CFSPP problems, MAs find the shortest path from the starting point to the goal point, while
avoiding obstacles. The objective function of CFSPP problems can be formulated as

min f
(

Ps, Pg
)
= d(Ps, P1) +

n−1

∑
i=1

d(Pi, Pi+1) + d
(

Pn, Pg
)
, (1)

where Ps is the starting point, Pg is the goal point, Pi is the i − th point the MA moves onto, and
d(Pi, Pi+1) is the Euclidean distance between Pi and Pi+1. Equation (1) is the function to evaluate the
solution domain and is called fitness function, and the value derived by this function is fitness value.
This function is required in genetic algorithm as in Karami and Hasanzadeh [12], Li et al. [13], and
Tuncer and Yildirim [15], which are previous research studies into this type of problem. The constraint
of this objective function is that the MA does not collide with any obstacles in the given environment.

Many previous studies have represented given environments as grid spaces [8,10–15,35].
This study also uses a grid-based environment representation. In grid-based representation, the
environment is a set of equal-sized cells. There are two ways to identify cells. In the first way, each
cell is identified in numerical order, and in the second way, every cell is identified by its central X/Y
position [15]. The latter is used in this study. Figure 3 presents an example of the representation of
environments used in this study. The entire environment space consists of free and blocked cells.

Figure 3. Environment representation. (a) XY positions; (b) an example of detour.

Electronics 2018, 7, 212 5 of 20

The non-shaded cells in Figure 3a are free cells, meaning an MA can pass through them. On the
other hand, the shaded cells are blocked cells onto which an MA cannot move. Every obstacle consists
of one or more blocked cells.

In Figure 3b, the detour is an example of a trajectory which is passed by six cells; P1 = (1, 1), P2 =

(6, 1), P3 = (6, 6), P4 = (4, 6), P5 = (4, 8), P6 = (8, 8). In order to measure the length of the detour, five
links are observed; d(Ps, P1) = 5, d(P1, P2) = 5, d(P2, P3) = 2, d(P3, P4) = 2, d

(
P4, Pg

)
= 4. Based on

Equation (1), the sums are formulated as f
(

Ps, Pg
)
= d(Ps, P1) +

(
3
∑

i=1
d(Pi, Pi+1)

)
+ d

(
P4, Pg

)
= 18.

The fitness value of this case, which means distance of the detour, is 18. This value measures the
efficiency of the detour through trajectory distance. Thus, a smaller fitness value indicates a better
path in terms of distance, and the objective of the function is to minimize this distance, so that we get
the path as short as possible in a given environment.

4. Modelling Methodology to Generate Feasible Paths

In CFSPP problems, every GA chromosome is represented as an array of start/goal cells and free
cells onto which an MA moves. Since there are large numbers of free cells in a given environment, it is
very difficult to determine which and how many free cells should be selected. Moreover, the generated
paths should be feasible. This paper proposes a novel path planning methodology based on obstacles
to quickly generate feasible paths for the GA’s initializing, crossover, and mutation operations. In this
methodology, two concepts are critical: the effective free cells and moving direction.

4.1. Selection of Effective Free Cells

In general, an effective method of detouring around an obstacle is to move around its corner as
closely as possible.

Therefore, the start/goal cells and free cells that are adjacent to each obstacle in the vertical,
horizontal, and diagonal directions, are considered as effective free cells for CFSPP. Figure 4 shows an
example of effective free cell selection. The group of cells, which are adjacent to the corner, are effective
free cells; sky-blue cells (or gray cells in black and white). Figure 5a is an example of the group of
effective free cells. The numbers in Figure 5b are the indexes used to identify each obstacle. A, B, C,
D, and E are a subset of the selected effective free cells adjacent to the obstacles. Free cells A and B
are adjacent to obstacle 1, C is adjacent to obstacle 3, D is adjacent to obstacle 4, and E is adjacent to
obstacles 4 and 5. Every selected free cell apart from the start/goal cells is adjacent to one or more
obstacles, and the start/goal cells are not adjacent to any obstacles.

After selecting the effective free cells, each selected cell is tested to determine whether it is directly
connected to other cells. In other words, the MA must be able to move from one effective free cell
to another without collisions. Figure 6a shows an example of two selected free cells that cannot be
directly connected to one another, and Figure 6b shows an example of two connected free cells.

Figure 4. Detour efficiency. (a) Inefficient detour; (b) efficient detour.

Electronics 2018, 7, 212 6 of 20

Figure 5. Selecting effective free cells. (a) Efficient free cells of one obstacle; (b) total efficient free cell.

Figure 6. Connecting free cells to enable a path. (a) Unlinked cells; (b) linked cells.

4.2. Direction-Based Free Cell Search

The selection of effective free cells in Section 4.1 is similar to the visibility graph concept in that
collision-free points near the corners of obstacles are selected. In general, many studies that have
utilized visibility graphs have set their free points near the corners of obstacles as nodes and checked
whether each node is linked as shown in Figure 7.

In other words, a path finding method using a visibility graph converts a map into a graph
and uses tree search methods to find the shortest path as shown in Figure 8. In tree search methods,
however, the time required to generate and calculate trees increases exponentially as the number of
nodes increases.

In this paper, the moving direction concept is considered for fast and effective path planning.
There are numbers of obstacles in a given environment, but the critical obstacles that affect CFSPP
are just part of the entire set of obstacles. One of the shortcomings of the visibility graph is that the
directional information is missing when a map is converted into a graph. Directional information is
important to determine critically affected obstacles. Figure 9 shows that the path finding is affected by
only three of the five obstacles.

Figure 7. Narrowing the searching space to network.

Electronics 2018, 7, 212 7 of 20

Figure 8. Visibility tree search.

Figure 9. Obstacles in collision-free shortest path planning (CFSPP).

Since critically affected obstacles are a subset of the entire set of obstacles, the number of necessary
selected free cells decreases compared to the visibility graph when the moving direction is considered.
Therefore, this study deduces the moving direction of the MAs from the current cell to the goal cell,
and it then narrows the range of selected effective free cells. If an MA is going to collide with an
obstacle while it is moving in the given direction, it must detour around the obstacle to reach the
goal cell. The selected effective free cells found in Section 4.1 are used to effectively detour around
the obstacles.

4.3. Steps to Generate Feasible Paths

The following is a list of detailed algorithm steps.

• Step 0. Initialize the environment.
• Step 1. Check the current position to determine whether it is adjacent to any obstacles. If so, let

the adjacent obstacle i select any random effective free cell n adjacent to obstacle i and update the
current position to cell n. If the current position is not adjacent to any obstacles, do not update the
current position.

• Step 2. Deduce the moving direction from the current position to the goal position and move in
that direction.

• Step 3. If an MA does not collide with any obstacles other than obstacle i, connect the current
position and goal position, and stop the algorithm. If an MA collides with an obstacle, set sub-start
to current position and sub-goal to current destination. After this, continue to Step 4.

• Step 4. Let the obstacle the MA collides with first, be obstacle j. Check whether any effective
free cells adjacent to obstacle j are linked to the current position. If so, continue to Step 5. If not,
create a recursive function in which the goal point is set to a random effective free cell adjacent to
obstacle j considering direction factor, and go to Step 1.

• Step 5. The MA moves to a random effective free cell, m, adjacent to obstacle j and update the
current position to cell m.

Electronics 2018, 7, 212 8 of 20

• Step 6. Repeat Steps 1 to 5 until the MA reaches the goal point.

Figures 10–13 are examples of generating initial chromosomes. In Figure 10a, the direction from
the start point to the goal point is deduced, and an obstacle that an MA collides with when moving in
the given direction is found. Figure 10a presents an example in which an MA collides with obstacle 1.
In this case, the current position is the start point, and the effective free cells linked to the current
position are (5, 1) and (6, 1), as shown in Figure 10b. The MA moves to a free cell randomly selected
among these six cells. In this example, it is assumed that the MA moves to (6, 1).

Figure 10. Selecting an effective free cell. (a) Direct path from the start to the goal; (b) effective free cells.

Figure 11. Selecting free cells to avoid obstacles. (a) A path from the selected free cell to the goal; (b)
searching paths for the first free cell.

Figure 12. Generating sub-problems. (a) Defined sub-problem; (b) selected free cells for a feasible path.

Electronics 2018, 7, 212 9 of 20

Figure 13. Modifying two infeasible cells for the same obstacle. (a) An infeasible solution; (b) detour
path generated to maintain feasibility.

Since cell (6, 1) is adjacent to obstacle 1, one effective free cell adjacent to obstacle 1 is randomly
selected, as demonstrated in Step 1. Figure 11a shows that cell (5, 3) is selected. The direction from
(5, 3) to the goal point is deduced. The MA collides with obstacle 5. The algorithm searches for effective
free cells that link obstacle 5 to cell (5, 3), as demonstrated in Step 4, but no cells are found. Actually,
there are no effective frees cells linking obstacles 1 and 5, as shown in Figure 11b.

This means there is another obstacle between obstacles 1 and 5, and it prevents feasible paths
from being generated. In this case, a feasible path from obstacle 1 to 5 can be found using a recursive
function, as demonstrated in Step 4, splitting the original 8 × 8 problem into a 5 × 8 sub-problem. In
Figure 12a, the sub-start point is set to one effective free cell next to obstacle 1, and the sub-goal is
one of the effective free cells next to obstacle 5. Since obstacle 4 is blocking the path from obstacle 1
to 5, one effective free cell next to obstacle 4 is selected as a detour point. When choosing one of the
effective free cells, a direction factor which includes distance from sub-start point to sub-goal point,
and the direction derived by these two points is considered. If there are multiple direction factors
that generate a comparable path, then it will choose the better path based on these direction factors,
and this path forms detours or could be formed as another sub-problem. In this example, cell (3, 5)
is selected, and the MA can reach the sub-goal. The sub-problem is solved, and the solution path is
added to the path of the original problem.

The current position of the MA is cell (4, 7), and the free cell is adjacent to obstacle 5. When the
MA moves from cell (4, 7) to the goal point following a linear line, it does not collide with any obstacles
apart from obstacle 5. That is, some free cells next to obstacle 5 are directly linked to the goal point
demonstrated in Step 3, and the algorithm stops as shown in Figure 12b.

Figure 13 shows the generated initial paths via the proposed algorithm. Paths from cell (6, 1) to
(5, 3) and from (4, 7) to (8, 8) in Figure 13a generate infeasible paths, but two cells are adjacent to the
same obstacle. It is assumed that all information is known. Therefore, a detour can be generated by
moving along the edge of the obstacle. Following these procedures, Figure 13a becomes a feasible path,
as shown in Figure 13b.

5. Genetic Algorithm

Applying the proposed methodology, a modified GA is introduced to solve CFSPP problems.
Contrary to many previous studies that used random selection to generate feasible chromosomes, this
study uses effective free cells and the moving direction of the MAs in its initializing, crossover, and
mutation operations. Chromosomes are reproduced based on their ranking of fitness values, and a
diversity of chromosomes is achieved with a random mutation operation. Details of the proposed
modified GA follow below.

Electronics 2018, 7, 212 10 of 20

5.1. GA Model

Figure 14 shows the flowchart of the GA model. At the beginning of the GA, a population is
required to initialize the chromosomes. This paper uses 60 chromosomes in one population. Each
generation produces a new population using the crossover and mutation operations. These processes
are explained in Sections 5.3 and 5.4.

Figure 14. Flow of search process.

5.2. Chromosome Reproduction

After evaluating the fitness values of each chromosome, the chromosomes are ranked in order
of fitness values. Figure 15 shows the reproduction process. Top 20 chromosomes are carried down
directly to the next generation, and the remaining 40 chromosomes are reproduced. Half of the bottom
40 chromosomes are reproduced via a crossover operation, and the other half is generated via a
mutation operation.

Figure 15. Reproduction of chromosomes.

5.3. Crossover

In the crossover operation, each parent chromosome is randomly selected from the top 20
chromosomes. A random gene, a − th, in the parent chromosomes is selected as a swapping point,
and offspring chromosomes are generated by swapping genes after the a − th gene. Child 1 inherits
the genes of Parent 1 before the a − th gene, and then inherits genes from Parent 2. In the same
manner, Child 2 inherits the genes of Parent 2 before the gene and then inherits genes from Parent 1.
Figures 16–18 demonstrate the crossover operation.

Electronics 2018, 7, 212 11 of 20

Figure 16. Parents of the crossover operation (a) Parent 1; (b) Parent 2.

Figure 17. Chromosomes of crossover operation (a) two parents’ chromosomes; (b) generated
chromosomes via crossover operation.

Figure 18. Children of crossover operation. (a) Original Child 1; (b) modified Child 1; (c) original
Child 2; (d) modified Child 2.

Electronics 2018, 7, 212 12 of 20

In the case depicted in Figure 16, Figure 16a, b show the parents of the crossover operation. These
graphs are represented as chromosomes in Figure 17a. The crossover’s swapping point is set as the 5th
gene of each chromosome.

Following the crossover, the children’s chromosomes are generated as Figure 17b. When the
children are produced via the crossover operation, there is a chance that infeasible paths are created.
For Child 1 in Figure 18a, cells (5, 3) and (4, 7) are neither linked, nor adjacent, to the same obstacle.
When infeasible chromosomes are created, the two genes that make the path infeasible are set to
the start and goal points, respectively, and they are modified into a feasible path with the algorithm
proposed in Section 4.3. Child 2 in Figure 18c represents a solution that is infeasible due to a collision
with an obstacle. Applying the same logic to this case, the results are shown in Figure 18d.

By using the proposed algorithm, a feasible path between cells (5, 3) and (4, 7) is generated, and
Child 1 consists of (1, 1), (6, 1), (6, 2), (5, 3), (6, 5), (4, 7), (4, 8), and (8, 8).

5.4. Mutation

The mutation operation in the GA is important to retain the diversity of chromosomes and prevent
trapping in the local minimum. This study adopts a random mutation. A chromosome among the
top 20 is randomly selected. A random a − th gene is selected from the selected chromosome. A
mutant chromosome inherits the genes of the selected chromosome before the a − th. gene, and it
then generates a random path. Figure 19 shows the random mutation operation. In Figure 19, the
chromosome brings the first three genes from the parent, and the rest of the chromosomes are filled via
the process of finding feasible paths described in Section 4.3. This new chromosome represents a new
solution that is the result of the mutation operation.

Figure 19. Path mutation. (a) Chromosome; (b) mutation operation on graph.

6. Experimental Results

The proposed methodology and GA are implemented using the following specifications: Java
jdk1.8, Intel Core i7-4790K central processing unit (CPU) (4.0 GHz) processor, 16 GB of memory,
and Windows 10. Five different environments are experimented on to measure performances.
Environments 1 and 2 are small cases with 16 x 16 grid spaces, and Environments 3 to 5 are bigger
problems with 30 × 30 spaces. The GA is run 100 times for each environment. The experimental results
for Environments 1 and 2 are compared to the results in previous studies. Environment 1 includes

Electronics 2018, 7, 212 13 of 20

seven obstacles, and the MA moves from cell (1, 1) to (16, 16). In Environment 2, there are 10 obstacles,
and the MA travels from cell (1, 16) to (16, 1). Figure 20 shows Environments 1 and 2.

Figure 20. Representation of environments. (a) Environment 1; (b) Environment 2.

In the two environments, the GA stops if the best fitness value does not update over 500 sequential
generations. Tables 1 and 2 show the results for Environments 1 and 2, respectively. The result of
benchmark problem, Environment 1 and 2, are from the previous literature. [12,13,15] This study is
designed to include the average of all fitness values, average running time of 100 trials, and best fitness
value found in 100 trials.

Table 1. Comparison of results in Environment 1.

Study Fitness Value (Average) CPU Time (s) (Average) Best Fitness Value

Li et al. [13] 31.21 0.26 28.73
Tuncer and Yildirim [15] 29.08 0.86 -
Karami and Hasanzadeh

[12] - 3.47 28.87

This study 28.67 0.10 28.65

Table 2. Comparison of results in Environment 2.

Study Fitness Value (Average) CPU Time (s) (Average) Best Fitness Value

Li et al. [13] 25.17 0.34 -
Tuncer and Yildirim [15] 24.71 0.69 -
Karami and Hasanzadeh

[12] - 3.62 23.59

This study 23.46 0.13 22.84

In each environment, the best fitness value of the proposed method is better than [12,13], and the
average of all fitness values is better than [13,15]. Average fitness value of this study is better than the
best fitness value of [13,15]. Figure 21 shows the found collision-free shortest path in each environment.

It is also remarkable that the proposed method determines good paths much faster for both
environments compared to the methods in previous research. Figure 22 shows that the proposed
method converges very rapidly.

Electronics 2018, 7, 212 14 of 20

Figure 21. Collision-free shortest paths in environments. (a) Environment 1; (b) Environment 2.

Figure 22. Rapid convergence of proposed method in environments. (a) Environment 1; (b)
Environment 2.

Table 3 shows that the deviation of fitness value is decreasing by time. The deviations of initial
fitness values are remarkably high. As time goes on, the deviations are rapidly decreasing. The
algorithm makes the fitness value converge towards a good solution consistently. This indicates that
the algorithm tries diverse ways to find a solution at the initial stage, and it consistently converges
to certain points which are assumed to be reasonably great at the end of iteration. This means that
the algorithm follows the right track for diversification and intensification. We can expect that the
algorithm generates very stable values at the termination stage for each instance.

Table 3. Average fitness value and deviation of fitness value in Environment 1 (E1) and 2 (E2).

Time (s)
E1 E2

Average Deviation Average Deviation

initial fitness 42.27114
30.32668

1.587456
1.040444

44.01728
26.92745

4.493747
1.9526330.01

0.05 28.75185 0.016225 24.85468 0.355333
0.1 28.72511 0.007467 24.06891 0.265282
0.2 28.69232 0.004177 23.98146 0.211417
0.5 28.67255 0.001941 23.51231 0.153957

Rapid convergences result from the narrowed search space scope. Table 4 shows the scopes of
the search spaces in each environment. In both environments, the proposed method searches only

Electronics 2018, 7, 212 15 of 20

limited free cells compared to the previous methodologies. Since the proposed methodology depends
heavily on obstacles, when the number of obstacles increases, the search space scope also increases.
Nevertheless, the proposed methodology always searches for smaller scopes than those searched for
by the previous methodologies. This boosts rapid convergence and helps to determine good paths.

Table 4. Comparison of selectable free cells in Environments 1 and 2.

Attribute E1 E2

of total cells 256
of obstacles 7 10

of blocked cells 65 98
of free cells 189 156

of selectable cells in random selection 189 156
of selectable cells in this study 24 55

To ensure that the proposed methodology and GA perform well in more complex environments,
this study introduces and conducts experiments with three complex 30 × 30 environments. Figure 23
shows Environments 3 to 5 and their collision-free shortest paths.

Figure 23. Grid-based representation and collision-free shortest paths in environments. (a)
Environment 3; (b) Environment 4; (c) Environment 5.

Electronics 2018, 7, 212 16 of 20

There are a large number of identical obstacles at regular intervals in Environment 3 and a
relatively small number of large obstacles in Environment 4. Environment 5 is rather complex, as it
includes many concave-shaped obstacles. In three environments, the GA stops if the best fitness value
does not update over 2000 sequential generations.

Table 5 shows the average of all fitness values, the average running time of 100 trials, and the best
fitness value found in 100 trials. Table 6 and Figure 24 shows the average of all fitness values over time.

Table 5. Obtained results in Environments 3, 4, and 5.

Environment # Fitness Value (Average) CPU Time (s) (Average) Best Fitness Value

E3 43.84 1.17 42.95
E4 52.06 0.67 50.49
E5 46.82 1.87 45.52

Table 6. Average distances over time in Environments 3, 4, and 5.

Times (s) E3 E4 E5

initial fitness 83.26 134.6274 210.25
0.01 56.38 66.30 91.67
0.05 45.09 56.44 50.35
0.1 44.64 54.64 48.96
0.2 44.36 53.22 48.02
0.5 44.12 52.14 47.69
1 43.79 51.85 47.10
2 43.67 51.77 46.68
3 43.53 51.83 46.53

Figure 24. Plot of average distances over time.

The proposed method finds collision-free short paths very quickly in three environments. It took
less than 1 second in Environment 4. Environments 3 and 5 took slightly longer than 1 second. Since
the proposed method depends heavily on obstacles, when the number of obstacles increases, or when
obstacle shapes become more complex, it requires a little more time, but is, nevertheless, reasonable.
In more complex environments, the proposed method also determines good collision-free paths and
converges very rapidly, regardless of environment size or obstacle shape.

Table 7 shows relationship between experimental space and CPU time. Environments 2 and
4 have a similar number of obstacles and effective free cells. However, the average CPU time of
Environment 4 is about 5 times longer than Environment 2. Concurrently, Environments 3 and 4 have
the same number of total cells, but the method found the solution much faster for Environment 4.

Electronics 2018, 7, 212 17 of 20

This is because there are more obstacles and effective free cells in Environment 3 than Environment 4.
The number of effective free cells are not directly proportional to the number of obstacles but there is
higher chance of having more effective cells with more obstacles. Therefore, the required solution time
depends on the number of cells and the number of effective free cells, which depends on the shape
and number of obstacles.

Table 7. Comparison of experimental spaces and results between each Environment.

Environment # E1 E2 E3 E4 E5

of total cells 256 256 900 900 900
of obstacles 7 10 27 11 19

of effective free cells 62 79 270 87 219
Average CPU time (s) 0.10 0.13 1.17 0.67 1.87
Average fitness value 28.67 23.46 43.84 52.06 46.82

7. Conclusions

In this paper, a novel methodology for a GA in CFSPP is introduced. Many previous studies
have generated CFSPP by connecting randomly selected free points, but this free space-based random
selection includes many infeasible paths, thereby causing slower convergence. On the other hand, the
obstacle-based search methodology proposed in this study searches for short paths by finding critical
obstacles first, and effectively detouring around them. Critical obstacles that affect CFSPP are mainly
determined by considering the moving directions of the MAs, and effective free cells are selected based
on the critical obstacles.

The proposed method can narrow the scope of the search spaces. This allows it to determine
better collision-free shortest paths than random selection methods. Moreover, the proposed method
simplifies the given problems by splitting them into small sub-problems, in some specific cases. As
such, the method can reduce problem complexity.

An additional experiment has been conducted to show the methodology’s applicability to more
complex problems (i.e., Environments 3 to 5). The proposed direction-based GA generates favorable
solutions very quickly—within a maximum of 2 s—despite the increased problem size. This suggests
that the proposed method could be applied to real world problems that are very large and contain
complex obstacles, such as irregular shapes.

Although this paper only employs static environments, the short convergence time shows that
the proposed method and algorithm could be applied to dynamic environments in which real-time
path planning is necessary. The proposed ideas could also be applied to 3-dimensional environments
for UAVs, with more constraints for practical cases in future research.

This research focused on searching for efficient and effective paths for MAs in static environments.
However, the current state of art in MAs indicates that the limited resources of MA to compute the
best path is expanding to generate the path in dynamic environments in a reasonable time. This could
direct our future research. We could apply the evolutionary algorithm to search for the path when
the MA is assigned to move from origin to destination without a predefined path. Additionally, we
assumed the solution space is in a 2D environment, but we could expand the dimensions of possible
paths for MA, which is possible to apply to UAVs.

Author Contributions: Conceptualization, J.C and H.-Y.L. Methodology, H.-Y.L.; Validation, H.-Y.L. and H.S.
Formal Analysis, H.-Y.L and H.S.; Writing—Original Draft Preparation, H.-Y.L.; Supervision, J.C.; Writing—Review
& Editing, H.S. and J.C.; Implementing the algorithm and the experiment were mostly carried out by H.-Y.L. and
H.S. under the supervision of J.C.

Funding: This work was supported by a 2017 Korea Aerospace University faculty research grant.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2018, 7, 212 18 of 20

Appendix A. Dynamic Environment

When MAs detect a change of obstacles during the path planning process, the path should be
changed as a reflection of obstacle changes, which is referred to as a dynamic environment [13,15].
The dynamic simulation environment, as shown in Figure A1a,b, is applied to compare the results
with [13,15]. In Figure A1b, a new obstacle appears, and the original solution in Figure A1a is no longer
feasible, and the algorithm needs to start the process to find the best path. The algorithm finds the
solution in a relatively short time, and it swiftly responds to the change in environment. Li et al. [13]
made a scenario in which an obstacle is added, as shown in Figure A1a,b.

Figure A1. Dynamic environment scenario. (a) Origin Environment 1; (b) changed Environment 1.

The results of [13,15], and this study, under dynamic environment scenario, are shown in Table A1.
This study finds better average fitness values than that of Li et al. [13] and Tuncer and Yildirim [15]. In
the Original Environment 1, the average fitness value in this study is the same as the best fitness value.
This means that the proposed algorithm consistently found the best solution for the problem. In terms
of CPU time, the algorithm finds the solution in a relatively short time, even though the time measure
is not directly comparable. We can expect that the path would be shorter, again, if the obstacle, which
appears after the original environment, disappears.

Table A1. The result of dynamic environment scenario.

Environment
Name Item Li et al. [13] Tuncer and

Yildirim [15] This Study

Original E1
fitness value (average) 29.25 27.82 27.22
CPU time (s) (average) 0.31 0.89 0.16

best fitness value 27.22 - 27.22

Changed E1
fitness value (average) 31.21 29.08 28.67
CPU time (s) (average) 0.26 0.86 0.10

best fitness value 28.73 - 28.65

References

1. Banker, S. Robots In The Warehouse: It’s Not Just Amazon. Forbes. 2016. Available
online: https://www.forbes.com/sites/stevebanker/2016/01/11/robots-in-the-warehouse-its-not-just-
amazon/#49c4019840b8 (accessed on 20 July 2017).

2. Amazon makes first drone delivery. BBC. 2016. Available online: https://www.bbc.com/news/technology-
38320067 (accessed on 15 August 2017).

3. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots; MIT Press:
Cambridge, MA, USA, 2011.

https://www.forbes.com/sites/stevebanker/2016/01/11/robots-in-the-warehouse-its-not-just-amazon/#49c4019840b8
https://www.forbes.com/sites/stevebanker/2016/01/11/robots-in-the-warehouse-its-not-just-amazon/#49c4019840b8
https://www.bbc.com/news/technology-38320067
https://www.bbc.com/news/technology-38320067

Electronics 2018, 7, 212 19 of 20

4. Van Den Berg, J.; Ferguson, D.; Kuffner, J. Anytime path planning and replanning in dynamic environments.
In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA,
15–19 May 2006; pp. 2366–2371. [CrossRef]

5. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey.
Robot. Auton. Syst. 2016, 86, 13–28. [CrossRef]

6. Gao, M.; Xu, J.; Tian, J.; Wu, H. Path Planning for Mobile Robot Based on Chaos Genetic Algorithm.
In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China,
18–20 October 2008; pp. 409–413. [CrossRef]

7. Gemeinder, M.; Gerke, M. GA-based path planning for mobile robot systems employing an active search
algorithm. Appl. Soft Comput. 2003, 3, 149–158. [CrossRef]

8. Sugihara, K.; Smith, J. Genetic Algorithms for Adaptive Motion Planning of an Autonomous Mobile Robot.
In Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and
Automation, Monterey, CA, USA, 10–11 July 1997; pp. 138–143. [CrossRef]

9. Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta *: Any-Angle Path Planning on Grids. J. Artif. Intell. Res.
2010, 39, 533–579. [CrossRef]

10. Hu, Y.; Yang, S.X. A knowledge based genetic algorithm for path planning of a mobile robot. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA’04), New Orleans, LA, USA,
26 April–1 May 2004; Volume 5, pp. 4350–4355. [CrossRef]

11. Huang, H.; Tsai, C. Global path planning for autonomous robot navigation using hybrid metaheuristic
GA-PSO algorithm. In Proceedings of the SICE Annual Conference (SICE), Tokyo, Japan, 13–18 September
2011; pp. 1338–1343.

12. Karami, A.H.; Hasanzadeh, M. An adaptive genetic algorithm for robot motion planning in 2D complex
environments. Comput. Electr. Eng. 2015, 43, 317–329. [CrossRef]

13. Li, Q.; Zhang, W.; Yin, Y.; Wang, Z.; Liu, G. An Improved Genetic Algorithm of Optimum Path Planning
for Mobile Robots. In Proceedings of the Sixth International Conference on Intelligent Systems Design and
Applications, Jinan, China, 16–18 October 2006; Volume 2, pp. 637–642. [CrossRef]

14. Sedighi, K.H.; Ashenayi, K.; Manikas, T.W.; Wainwright, R.L.; Tai, H. Autonomous Local Path Planning for a
Mobile Robot Using a Genetic Algorithm. Electr. Eng. 2004, 1338–1345. [CrossRef]

15. Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm. Comput.
Electr. Eng. 2012, 38, 1564–1572. [CrossRef]

16. Frontzek, T.; Goerke, N.; Eckmiller, R. Flexible Path Peal-Time Applications Using A*-Method and Neural
RBF-Networks. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation,
Leuven, Belgium, 16–20 May 1998; pp. 1417–1422.

17. Juidette, H.; Youlal, H. Fuzzy dynamic path planning using genetic algorithm. Electron. Lett. 2000, 36,
374–376.

18. Miao, H.; Tian, Y.-C. Dynamic robot path planning using an enhanced simulated annealing approach.
Appl. Math. Comput. 2013, 222, 420–437. [CrossRef]

19. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5,
396–404. [CrossRef]

20. Wang, C.; Soh, Y.C.; Wang, H.; Wang, H. A hierarchical genetic algorithm for path planning in a static
environment with obstacles. In Proceedings of the Canadian Conference on Electrical and Computer
Engineering (IEEE CCECE 2002), Winnipeg, MB, Canada, 12–15 May 2002; pp. 1652–1657.

21. Lozano-Pérez, T.; Wesley, M.A. An algorithm for planning collision-free paths among polyhedral obstacles.
Commun. ACM 1979, 22, 560–570. [CrossRef]

22. Rashid, A.T.; Ali, A.A.; Frasca, M.; Fortuna, L. Path planning with obstacle avoidance based on visibility
binary tree algorithm. Robot. Auton. Syst. 2013, 61, 1440–1449. [CrossRef]

23. Janson, L.; Ichter, B.; Pavone, M. Deterministic sampling-based motion planning: Optimality, complexity,
and performance. Int. J. Robot. Res. 2018, 37, 46–61. [CrossRef]

24. Lin, Y.; Saripalli, S. Sampling-Based Path Planning for UAV Collision Avoidance. IEEE Trans. Intell.
Transp. Syst. 2017, 18, 3179–3192. [CrossRef]

25. Wei, K.; Ren, B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle
Avoidance Based on an Improved RRT Algorithm. Sensors 2018, 18, 571. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ROBOT.2006.1642056
http://dx.doi.org/10.1016/j.robot.2016.08.001
http://dx.doi.org/10.1109/ICNC.2008.627
http://dx.doi.org/10.1016/S1568-4946(03)00010-3
http://dx.doi.org/10.1109/CIRA.1997.613850
http://dx.doi.org/10.1613/jair.2994
http://dx.doi.org/10.1109/ROBOT.2004.1302402
http://dx.doi.org/10.1016/j.compeleceng.2014.12.014
http://dx.doi.org/10.1109/ISDA.2006.253911
http://dx.doi.org/10.1109/CEC.2004.1331052
http://dx.doi.org/10.1016/j.compeleceng.2012.06.016
http://dx.doi.org/10.1016/j.amc.2013.07.022
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1145/359156.359164
http://dx.doi.org/10.1016/j.robot.2013.07.010
http://dx.doi.org/10.1177/0278364917714338
http://dx.doi.org/10.1109/TITS.2017.2673778
http://dx.doi.org/10.3390/s18020571
http://www.ncbi.nlm.nih.gov/pubmed/29438320

Electronics 2018, 7, 212 20 of 20

26. Aguilar, W.G.; Morales, S.G. 3D Environment Mapping Using the Kinect V2 and Path Planning Based on
RRT Algorithms. Electronics 2016, 5, 70. [CrossRef]

27. Mohanty, P.K.; Parhi, D.R. Optimal path planning for a mobile robot using cuckoo search algorithm. J. Exp.
Theor. Artif. Intell. 2016, 28, 35–52. [CrossRef]

28. Englot, B.; Hover, F. Multi-goal feasible path planning using ant colony optimization. In Proceedings of
the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 2255–2260. [CrossRef]

29. Wang, X.; Xue, L.; Yan, Y.; Gu, X. Welding Robot Collision-Free Path Optimization. Appl. Sci. 2017, 7, 89.
[CrossRef]

30. Raja, P. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320. [CrossRef]
31. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30,

846–894. [CrossRef]
32. Roberge, V.; Tarbouchi, M.; Labonte, G. Comparison of parallel genetic algorithm and particle swarm

optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 2013, 9, 132–141. [CrossRef]
33. Bottasso, C.L.; Leonello, D.; Savini, B. Path planning for autonomous vehicles by trajectory smoothing using

motion primitives. IEEE Trans. Control Syst. Technol. 2008, 16, 1152–1168. [CrossRef]
34. Scheuer, A.; Fraichard, T. Continuous-curvature path planning for car-like vehicles. In Proceedings of the 1997

IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World
Applications (IROS ’97), Grenoble, France, 11 September 1997; Volume 2, pp. 997–1003. [CrossRef]

35. Tsai, C.-C.; Huang, H.-C.; Chan, C.-K. Parallel Elite Genetic Algorithm and Its Application to Global Path
Planning for Autonomous Robot Navigation. IEEE Trans. Ind. Electron. 2011, 58, 4813–4821. [CrossRef]

36. De Boor, C. On calculating with B-splines. J. Approx. Theory 1972, 6, 50–62. [CrossRef]
37. Cox, M.G. The numerical evaluation of B-splines. IMA J. Appl. Math. 1972, 10, 134–149. [CrossRef]
38. Jia, D.; Vagners, J. Parallel evolutionary algorithms for UAV path planning. In Proceedings of the AIAA 1st

Intelligent Systems Technical Conference, Chicago, IL, USA, 20–22 September 2004. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics5040070
http://dx.doi.org/10.1080/0952813X.2014.971442
http://dx.doi.org/10.1109/ICRA.2011.5980555
http://dx.doi.org/10.3390/app7020089
http://dx.doi.org/10.5897/IJPS11.1745
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1109/TII.2012.2198665
http://dx.doi.org/10.1109/TCST.2008.917870
http://dx.doi.org/10.1109/IROS.1997.655130
http://dx.doi.org/10.1109/TIE.2011.2109332
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1093/imamat/10.2.134
http://dx.doi.org/10.2514/6.2004-6230
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Demonstration of Problem
	Modelling Methodology to Generate Feasible Paths
	Selection of Effective Free Cells
	Direction-Based Free Cell Search
	Steps to Generate Feasible Paths

	Genetic Algorithm
	GA Model
	Chromosome Reproduction
	Crossover
	Mutation

	Experimental Results
	Conclusions
	Dynamic Environment
	References

