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Abstract: Applications and volume of integrated circuits operating at frequencies up to 100 GHz
are steadily increasing. This establishes serious challenges, especially for temporarily contacting
such products during manufacturing tests with appropriate signal integrity. At present, existing
test socket concepts have reached their applicability limit. The most promising candidates to meet
the requirements of future microwave device interfacing are thin, anisotropic conducting polymers.
This paper reports a survey covering measurement methodology for signal integrity properties of
conducting polymers, model parameter extraction, measurement results from various materials,
reliability issues, and a prototype application.

Keywords: anisotropic conducting polymer; test fixture; material characterization; cross talk;
signal integrity

1. Introduction

Integrated circuits (ICs) for microwave applications, like any other ICs, have to be tested prior to
assembly on printed circuit boards (PCBs). This requires temporary interconnects to test equipment.
Common test contact technologies like e.g., rigid contacts or spring loaded pins [1,2], as employed for
fixturing other classes of ICs, cannot be used in the two-digit GHz-range anymore due to prohibitive
parasitics. For such frequencies, a short interconnect length is the key requirement. To this end,
thin anisotropic conducting polymers (ACPs) are the most promising candidates [3]. In this work,
characteristics of ACPs with respect to signal integrity when applied in test fixtures for microwave ICs
are analyzed.

The paper is organized as follows: Section 2 briefly explains ACP structure and functionality.
Characterization methodologies for measuring electrical properties are introduced in Section 3.
Extraction of material parameters appropriate for use with field solvers is presented in the next
Section 4, the results of which are verified in Section 5. In Section 6, the effects of ACPs on crosstalk
are investigated. Section 7 discusses reliability issues of ACPs, crucial for test fixture applications.
Finally, the measurement results of a test adapter utilizing ACP as a temporary contact are presented in
Section 8. The overall feasibility of ACP-based test fixtures for applications up to 110 GHz is assessed
in the conclusion.

2. Structure and Functionality

ACPs are thin composite materials, that establish mutually isolated electrical contacts between
components by carrying currents only in the direction perpendicular to the contact plane (Figure 1).
This property is achieved by small filaments aligned in the contact direction and embedded in
a polymer matrix [4]. According to the technology used by the individual manufacturer, these
filaments consist of e.g., silver-plated nickel spheres stapled to chains (Figure 1) [5] or gold-plated pins
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(Figure 2) [4]. By mechanical compression, the filaments break through the embedding silicon matrix
and penetrate a possible oxide layer on the object to be contacted (Figure 1). The major advantages
coming along with this technology are the compensation of surface unevenness (e.g., PCBs) and the
expendability of fine position adjustments in test adapters. Furthermore, the signal path through
these thin materials is much shorter than the wavelength even of 100 GHz signals, which makes them
particularly suitable for microwave applications.
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3. Characterization Methodologies 

3.1. Planar Transmission Line Contacts 

An obvious method for characterizing conductive polymer contacts is suggested by a typical 
application [6]: The ACP specimen is inserted between two identical PCBs carrying transmission 
lines with one end connected to measurement equipment and the other just open. To this end, one 
PCB is placed upside down onto the other, such that the open ends of the transmission lines are 
slightly overlapping. Measurements are taken first without an ACP specimen inserted and then with 
the specimen between the overlapping contact region (Figure 3). 

From the difference of the obtained results, ACP characteristics can be derived. If a vector 
network analyzer is used for measurement, it can be calibrated to the coaxial end launch connectors 
on the PCBs or to reference planes in the planar transmission lines using calibration structures 
manufactured onto the same PCBs. However, the latter method tends to deliver a reduced quality of 
calibration as compared to coaxial standards. 
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3. Characterization Methodologies

3.1. Planar Transmission Line Contacts

An obvious method for characterizing conductive polymer contacts is suggested by a typical
application [6]: The ACP specimen is inserted between two identical PCBs carrying transmission lines
with one end connected to measurement equipment and the other just open. To this end, one PCB
is placed upside down onto the other, such that the open ends of the transmission lines are slightly
overlapping. Measurements are taken first without an ACP specimen inserted and then with the
specimen between the overlapping contact region (Figure 3).

From the difference of the obtained results, ACP characteristics can be derived. If a vector network
analyzer is used for measurement, it can be calibrated to the coaxial end launch connectors on the
PCBs or to reference planes in the planar transmission lines using calibration structures manufactured
onto the same PCBs. However, the latter method tends to deliver a reduced quality of calibration as
compared to coaxial standards.

A comprehensive approach for judging contact structures is reflectometry, yielding the impedance
profile of a signal path. Figure 4 shows impedance profiles of the described measurement assembly
without and with an ACP specimen inserted.
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Figure 3. Planar transmission line contacts connected with ACP (Adapted with permission from [6],
IEEE, 2017).
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Figure 4. Impedance profiles of planar transmission line contacts (Adapted with permission from [6],
IEEE, 2017).

Compared to the black dashed line of the empty measurement in Figure 4, the insertion of an
ACP specimen leads to a capacitive drop between 0.2 and 0.3 ns in the impedance profile. This is
mainly caused by the geometry change in the overlap region of the measurement assembly due to
the additional polymer thickness of 60 µm [6]. Microstrip lines can be utilized as well as coplanar
waveguides in this methodology.

3.2. Modified Coaxial Assemblies

To combine the benefits of measuring the ACP directly between VNA calibration reference planes
and the accuracy of coaxial calibration, a less obvious method can be employed: To this end, the ACP
specimen is inserted between the faces of two sexless coaxial connectors (e.g., APC-7 series), which
before were connected to their related coaxial calibration standards shown in Figure 5. Thus, the
specimen is measured directly between these coaxial reference planes with the signal path consisting
only of the ACP, its length being the thickness of the specimen. A typical measurement result is shown
in Figure 15 of Section 5, the insertion loss of an ACP being 0.04 dB at 18 GHz.
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used in [6] to achieve high precision results up to 110 GHz with the same measurement principle. 
Since the pin of the male standard would puncture the ACP, the inner lead together with the pin was 
cut flush with the outer lead (Figure 6, right). Moreover, the spring fingers of the female standard 
were filled in order to increase the contact area, thereby ensuring contact for a sufficient number of 
filaments in the ACP and reducing DC resistance (Figure 6a). Thus, a pair of sexless 1.0 mm 
connectors is established. Prior to actual measurement, the VNA is calibrated using unmodified 
pin/socket through standards. After calibration, the unmodified through standards are replaced by 
the modified sexless pair. This procedure is valid, because the modified connectors are made from 
calibration standards and therefore are geometrically and electrically identical. Figure 7 shows 
insertion loss responses measured with such assemblies. 
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Figure 6. Modified 1.0 mm calibration kit (through) to measure ACP properties up to 110 GHz, (a) 
modified 1.0 mm male standard (b) modified 1.0 mm female standard [6]. 
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permission from [6], IEEE, 2017). 
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Figure 5. Sexless coaxial connectors (e.g., APC-7 series) with planes highlighted by dashed yellow lines.

As already described in [6], commercially available sexless coaxial connectors operate only up to
18 GHz. For this reason, pin/socket through standards of a 1.0 mm coaxial calibration kit were used
in [6] to achieve high precision results up to 110 GHz with the same measurement principle. Since the
pin of the male standard would puncture the ACP, the inner lead together with the pin was cut flush
with the outer lead (Figure 6, right). Moreover, the spring fingers of the female standard were filled in
order to increase the contact area, thereby ensuring contact for a sufficient number of filaments in the
ACP and reducing DC resistance (Figure 6a). Thus, a pair of sexless 1.0 mm connectors is established.
Prior to actual measurement, the VNA is calibrated using unmodified pin/socket through standards.
After calibration, the unmodified through standards are replaced by the modified sexless pair. This
procedure is valid, because the modified connectors are made from calibration standards and therefore
are geometrically and electrically identical. Figure 7 shows insertion loss responses measured with
such assemblies.
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Insertion loss of the modified without ACP inserted (solid black line) fluctuates around 0 dB
due to the fact that the reference planes and properties of the modified pair are closely identical to
the unmodified through standards. Consequently, the response with ACP inserted (continuous red
line) represents the insertion loss solely of the ACP, which is about 1 dB at 110 GHz. For verification
purposes, calibration was also performed to the reference planes on the remote interfaces of the
two through standards. Thus, the black dashed line shows the insertion loss of the pair of through
standards. By inserting an ACP between the standards, this insertion loss is increased by the additional
loss of the specimen. Hence, the difference of the red dashed line and the black dashed line again is
the insertion loss of the ACP, with a value of about 1 dB, which is consistent to the previous result [6].

Using the same approach, 2.4 mm connectors were also modified in a similar way in order to
determine the insertion loss of different ACP materials up to 40 GHz. Only with this type of connector
was it possible to measure materials with lower filament density due to the larger area of the inner
connector. As displayed in Figure 8, the ACP specimens reveal tremendous performance differences
in terms of insertion loss. Moreover, there was a large number of ACPs, whose frequency range is
considerably restricted. The related results are not shown here.
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4. Extracting Apparent Material Parameters from Measured Data

In order not to characterize the ACP just by the impedance profile or insertion loss of an individual
sample, material parameters for use with 3D filed solvers were extracted. As ACPs are composite
materials of dielectric matrix and conductive filaments, such figures are not actually physical but
“apparent” parameters [7]. These apparent material parameters were obtained according to the
methodology described in Section 3.2, using an assembly of two sexless APC7-type connectors where
the elastomer is inserted in between. Figure 9 shows a longitudinal cross section through the assembly
and its geometrical dimensions, where t describes the thickness of the material under test (MUT).
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As per TOSM (through, between all ports, open, short, match at each port) calibration, the
reference planes are thus set to the outer surfaces of the ACP specimen, and the assembly can be
described by the S-Parameter cascade model in Figure 10.
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The transmission line properties γx and ZL,x can be extracted from the measured S-parameters
according to

ZL,x = Z0

√√√√ (1 + S11)
2 − S2

21

(1− S11)
2 − S2

21

(1)

γx = −1
l

ln
(

S21

1− rS11

)
(2)

where l is the length of the transmission line, and r is the reflection coefficient at the step from the
reference impedance (50 Ω) to the line impedance ZL,x.

Due to the pressure that is imposed on the polymer by the inner and outer leads of the
APC7-connectors, the polymer itself turns into a short section of a coaxial transmission line. Thus, for
the following analysis, the electric and magnetic field distributions may be assumed to be very similar
to those of an actual coaxial transmission line:

• The longitudinal current in the two leads is associated with a transversal magnetic field in an
angular direction.

• The voltage between the leads is related to a transversal radial electric field.
• The longitudinal current leads to ohmic losses inside regions of finite conductivity.
• Dielectric losses occur because of the material’s dielectric loss tangent.

Since the metal particles inside the elastomer’s regions not exposed to pressure will influence the
fields in a slightly different way than usual homogeneous dielectric material, the following additional
field effects have to be involved:
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• The radial electric field will cause a transversal current density J = σE inside the conducting
particles, which in turn is related to ohmic losses.

• The angular magnetic fields will induce current densities inside the metal particles that are also
related to ohmic losses.

Since the volume of metal particles inside the examined material occupies only a small part of
the total volume, the mentioned effects will have little impact on the extracted parameters compared
to other uncertainties along the measurement. Following a perturbation approach, the fields will
be assumed not to change dramatically due to the additional effects. Hence, the coaxial waveguide
formed by the elastomer may also be described by the transmission line model, where a section of
infinitesimally small length dz is modeled by the equivalent circuit network shown in Figure 11.
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The propagation coefficient γ and characteristic impedance ZL of this line are

γ =
√
(R′ + jωL′)(G′ + jωC′) (3)

ZL =

√
R′ + jωL′

G′ + jωC′
(4)

As the four per-unit-length parameters are not sufficient to accurately describe the six effects
listed above, it becomes obvious that the extracted values of material properties must be understood
as apparent parameters, combining several effects into one. However, the deviation from the pure
material properties is considered to stay within an acceptable margin and the final application of
the extracted parameters in 3D field simulation software is still justified. As described in [8] from
Equations (3) and (4), we can obtain the per-unit-length parameters of the transmission line as follows:

R′ = <{γxZx} (5)

L′ = ={γxZx}/ω (6)

G′ = <{γx/Zx} (7)

C′ = ={γx/Zx}/ω (8)

Since G′ = jωC′ tanδapp, the loss tangent tanδapp can be directly extracted from

tan δapp =
<{γx/Zx}
={γx/Zx}

(9)

Figure 12 shows the measured response of the extracted apparent tanδ of a 0.2 mm ACP with a
thickness of t = 60 µm. From this response, the root-mean-square (RMS) value is taken to obtain a
constant material parameter.
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By comparing the measured values to the theoretical formulations describing the per-unit-length
parameters in coaxial transmission lines [9] and taking into account the effect of inner inductance [10],

L′i =
R′

ω
(10)

L′ = L′e + L′i (11)

L′e =
µ

2π
ln
(

D
d

)
(12)

C′ =
2πε

ln(D/d)
(13)

G′ = ωC′ tan δ (14)

R′ =
1
σ

(
1

Ao
+

1
Ai

)
(15)

one can solve these equations for µr and εr, which actually yields the desired apparent figures.
Measured data are visualized in Figure 13 for the elastomer sample described above. The relatively
constant response of both parameters justifies averaging by taking the RMS values.
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Evaluating R′ according to Equations (5) and (15) reveals a very low conductivity in the order
of 101 S/m to 103 S/m. On the one hand, it is sufficiently high to neglect displacement currents; on
the other hand, the finite lead thickness must be taken into account when calculating the skin-depth
for the current densities leading to equivalent skin-depths δ′. An analytical approximation based on
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the plane skin effect assumes the current density’s magnitude to decline in an exponential manner
inside conducting matter. At the same time, the total current must stay the same among the whole
lead surface over different frequencies. Consequently, the equivalent skin-depth can be formulated as

δ′ = δ0(1− e−a/δ0) (16)

where δ0 is the plane skin depth and a represents the lead thickness. Using δ′ and the assembly’s
geometry data, the formulation for the per-unit-length resistance R′ is found according to Equation (15)
with

Ao = π
(

R + δ′0
)2 − πR2 (17)

Ai = πr2 − π
(
r− δ′i

)2 (18)

where δ0
′ and δi

′ are the equivalent skin depths, and R and r are the radii of the outer and inner lead,
respectively.

In order to find the correct conductivity, all other apparent material parameters are first estimated
as described. With these, the value for the apparent conductivity is found by minimizing the deviation
of the calculated from measured response.

5. Verification

For the examined ACP, the described procedure delivers the following material parameters
εr,app = 3.72, µr,app = 1.33, tanδapp = 0.066, and σl,app = 548 S/m. These parameters allow for the
simulation of the assembly with the 3D FEM field solver Microwave-Studio by CST. A waveguide port
was used for excitation of a short section of coaxial wavegeuide in the frequency domain. The ASP was
inserted between the two faces of the guides, as shown in Figure 14. In particular, the compressed areas
between the leads were modeled as lossy metal with the aforementioned parameter σl,app = 548 S/m,
and the non-compressed areas were modeled as dielctric. Figures 15 and 16 show the comparison
between the measured, modeled, and simulated assemblies in very good agreement.
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6. Effects of ACPs on Crosstalk

Due to the the vertical arrangement of the embedded contact filaments in an ACP and their low
mutual distance, it would be justified to assume a strong capacitive coupling between adjacent signal
paths in a horizontal direction, especially as there are always floating filaments in between the regions
with filaments establishing contact. As a consequence, these conducting polymers would lead to
unwanted additional crosstalk effects when inserting them e.g., between a small pitch ball grid array
(BGA) package of an integrated circuit and the related PCB contact pads on a test fixture. To investigate
such parasitic capacitive coupling, several types of measurement assemblies were designed to quantify
both far end and near end crosstalk effects (FEXT, NEXT) of ACP inserted between transmission lines
resp. contact pads. The first type of assembly is displayed in Figure 17 and consists of two coupled
microstrip lines connected to end launch connectors. Different coupling factors were accomplished by
implementing the coupled line structures with different gap widths. The generator output of a vector
network analyzer (VNA) is fed into one of the end launch connectors, while the output on all other
connectors is measured by the VNA receivers. Thus, besides insertion loss of the operated transmission
line (aggressor), FEXT and NEXT to the other line (victim) are observed. Crosstalk is going to happen
almost entirely between those sections of the microstrip lines that run closely parallel to each other, as
the feeding sections depart perpendicularly to the coupled sections. Feed lines, bends, and coupled
lines are all impedance-matched. The objective is to acquire information on how a conducting polymer
placed above the coupled lines alters the amount of the two crosstalk types FEXT and NEXT.
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Figures 18 and 19 show FEXT and NEXT, respectively, measured on strongly coupled transmission
lines without an ACP specimen (solid green) and with two different ACP specimens (dashed blue
and dash-dotted red, respectively) in comparison to weakly coupled lines without an ACP specimen
(dotted violet).
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Figure 19. NEXT of coupled microstrip lines without and with two different ACP specimens in
comparison to weakly coupled lines without an ACP specimen.

In contrast to the intuitive assumption, conducting polymer placed above the strongly coupled
coupled transmission lines slightly increases only NEXT for frequencies up to 10 GHz, whereas it is
reduced for higher frequencies, as is FEXT for the entire frequency range. One possible explanation
is that the field concentrates mostly below the microstrip lines in the dielectric and hence the space
between and above the lines, where the ACP is located, is not sufficiently penetrated by the EM
field. Therefore, the second type of assemblies (Figure 20) consists of two identical PCBs with four
contact pads, as used for BGA packages, closely parallel to the edges of the PCBs. The inner two
of these pads are connected to the ends of the signal traces of two microstrip lines, while the outer
two pads establish contact with the ground planes on the back sides of the PCBs, thus forming a
ground–signal–signal–ground (GSSG) contact pattern. All microstrip lines are connected to end
launch connectors at their other ends. As described in Section 3.1, in this “planar transmission
line contact methodology”, one PCB is placed upside down onto the other such that the open ends
of the transmission lines are slightly overlapping. Microstrip line geometry was modified in the
overlap region in order to maintain impedance matching when both PCBs are brought to contact.
Measurements were taken without and with an ACP specimen inserted between the overlap region. As
a result, the inserted specimen is completely penetrated by the EM field and could lead to considerable
crosstalk effects.



Electronics 2017, 6, 109 12 of 17

Electronics 2017, 6, 109  12 of 17 

 

 
(a) (b)

Figure 20. (a) Planar transmission line contact assembly with parallel microstrip lines; (b) ACP 
between the overlap region for complete field penetration. 

Figures 21 and 22 show FEXT and NEXT measured on the same contact pad grid with a pitch of 
0.8 mm without an ACP specimen (“empty”, solid green) and with three different ACP specimens 
(dashed blue, dash-dotted red, and dotted violet). In comparison to the empty measurement, all 
investigated materials cause no appreciable effects, neither on FEXT nor on NEXT. However, the 
coupling between the feed lines could be large compared to the crosstalk effects at the overlap 
region, thus concealing crosstalk in the overlap region. Therefore, further efforts were undertaken to 
determine the effects of conducting polymers between BGA pads. 

 
Figure 21. FEXT measured with the planar transmission line contact assembly of Figure 19 without 
an ACP specimen inserted and with three different ACP specimens. 

 

Figure 22. NEXT measured with planar transmission line contact assembly of Figure 19 without an 
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Figure 20. (a) Planar transmission line contact assembly with parallel microstrip lines; (b) ACP between
the overlap region for complete field penetration.

Figures 21 and 22 show FEXT and NEXT measured on the same contact pad grid with a pitch
of 0.8 mm without an ACP specimen (“empty”, solid green) and with three different ACP specimens
(dashed blue, dash-dotted red, and dotted violet). In comparison to the empty measurement, all
investigated materials cause no appreciable effects, neither on FEXT nor on NEXT. However, the
coupling between the feed lines could be large compared to the crosstalk effects at the overlap region,
thus concealing crosstalk in the overlap region. Therefore, further efforts were undertaken to determine
the effects of conducting polymers between BGA pads.
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To create a situation closely comparable to future application in test fixtures and to exclude the
coupling influence of adjacent feed lines, the concept of a third assembly is displayed in Figure 23. This
planar BGA contact pad set-up comprises two different PCBs, whose common interface exclusively
consists of the BGA pads of the upper and lower PCBs (Figure 24). The feed lines are arranged such
that no appreciable additional crosstalk can occur, i.e., perpendicular to each other. Worth mentioning
is the fact that FEXT and NEXT become identical with this measurement assembly, as crosstalk is going
to occur in a point-shaped region only. Thus, a signal input to Port 1 creates the same crosstalk on Port
3 and Port 4. In either case, the measurement result is the crosstalk between two pairs of adjacent BGA
pads, connected by an ACP.
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Figure 24. Concept of planar BGA contact pad assembly from Figure 23. (a) lower PCB (b) upper PCB
(c) lower+upper PCB

Again, measurements were taken without and with ACP specimens inserted between the BGA
contact pads.

The red continuous line of Figure 25 represents the empty measurement. Based on a comparison
to that, the insertion of all types of investigated anisotropic conducting polymer does not result in
any additional appreciable crosstalk. Contrary to the initial, intuitive assumption mentioned at the
beginning of this section, the investigated materials do not increase crosstalk effects between lines or
BGA pads. Therefore, the application of thin anisotropic conducting polymers as temporary microwave
interconnects in test fixtures is not limited because of additional crosstalk. This observation is also in
accordance with the relatively high apparent loss tangent of the ACP inferred by the considerations in
Section 4, which causes sufficient attenuation in the transversal direction.
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from section 3 revealing spheres agglomerated after 300 contact cycles under a contact force 10 times 
higher than suggested by the vendor. Despite the obvious structural deterioration, the signal 
propagation parameters did not exhibit any deviation from those of the un-deteriorated conducting 
polymer. Generally, the measured insertion loss of this material turned out to be quite insensitive to 
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Figure 25. Crosstalk measured with planar BGA contact pad assembly of Figure 23 without an ACP
specimen inserted and with three different ACP specimens.

7. Reliability

Besides the electrical performance of ACPs—which was demonstrated to be very promising
in the previous sections—high reliability is a requirement for application in test fixtures. For high
reliability in application, correct mechanical handling, with an emphasis on the influence of contact
force, is crucial.

One cause of defect is illustrated in Figure 26. On the left, the side view of a virgin ACP with pins
as conducting elements is shown, whereas on the right, the same specimen is depicted after a single
contact cycle at increased contact force, which led to irreversible damage. In contrast, conducting
polymers with spheres turned out to be much more durable under increased contact forces. However,
in these materials, the filaments tend to agglomerate under increased contact forces after high cycle
counts. This phenomenon is depicted on the left side of Figure 27. The outer black circle originates
from agglomerated spheres after 105 contact cycles between the outer conductors of sexless coaxial
connectors. The part of the inner conductor is even ruptured for the same reason. However, these
agglomerations did not lead to any influence with regard to the electrical parameters. The right
side of Figure 27, for example, shows the microstrip-to-microstrip assembly from Section 3 revealing
spheres agglomerated after 300 contact cycles under a contact force 10 times higher than suggested by
the vendor. Despite the obvious structural deterioration, the signal propagation parameters did not
exhibit any deviation from those of the un-deteriorated conducting polymer. Generally, the measured
insertion loss of this material turned out to be quite insensitive to different contact forces. To avoid
such agglomerations, it is necessary to calculate the contact force from the recommended force per area
figure, multiplying by the actual contact footprint area only instead of the entire ACP area. Another
challenge consists in printed circuit boards that are largely uneven. Intending to ensure a reliable
contact, PCBs are often pressed too hard onto the test fixture, causing deterioration discussed above.
It is therefore important to define a limit for the unevenness of printed circuit boards.
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Despite the fact that Figure 29 represents an end-to-end measurement, where the reference 
planes were located at the coaxial part of the GSG-probes and a certain mismatch was present at the 
transition to the DUT, very promising measurement results were achieved. Up to 40 GHz, the return 
loss was below −20 dB except for a small peak at 35 GHz, and insertion loss steadily climbed to only 
about 3.5 dB at 40 GHz. 

Figure 27. ACP with embedded spheres. (a) agglomerated after >100 contact cycles between sexless
connectors (b) microstrip-to-microstrip transition.

8. Application in Test Fixtures

As already described in [6], a simple method for temporarily contacting ICs for microwave
applications is to use a PCB with the IC footprint, to connect both by interposing an ACP and to
fix all by an appropriate mechanical assembly. Figure 28 shows the transition from a PCB to the
device under test (DUT) with a BGA grid via an ACP. Using a chip consisting only of a through
line in an inner layer as the DUT, the performance of the ACP in test fixture application can be
comprehensively evaluated. The signal path is as follows: coaxial jack—probe—pad—microstrip line
(feed line)—BGA—ACP—dummy chip with via—ACP—BGA—microstrip line—pad—probe—coaxial
jack [6].
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Figure 28. PCB to chip transition with test socket and ACP as temporary microwave interconnect
(Adapted with permission from [6], IEEE, 2017).

Despite the fact that Figure 29 represents an end-to-end measurement, where the reference planes
were located at the coaxial part of the GSG-probes and a certain mismatch was present at the transition
to the DUT, very promising measurement results were achieved. Up to 40 GHz, the return loss was
below −20 dB except for a small peak at 35 GHz, and insertion loss steadily climbed to only about
3.5 dB at 40 GHz.
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In this paper, newly developed measurements methodologies for quantifying the electrical 
performance of ACPs are presented, and their applications are described. The measured ACPs 
showed tremendous differences in terms of insertion loss. High-end ACPs suggest that test fixtures 
up to 110 GHz are feasible, as already postulated in the headline. In addition, the developed 
measurement methods are even capable of determining apparent material parameters of these very 
thin composite materials, which enables straightforward modeling and use in field solvers, which 
has been verified in an exemplary case. Despite initial intuitive assumptions, specific measurements 
show that ACPs do not cause additional crosstalk. Reliability tests showed that, as long as ACPs are 
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9. Conclusions

In this paper, newly developed measurements methodologies for quantifying the electrical
performance of ACPs are presented, and their applications are described. The measured ACPs showed
tremendous differences in terms of insertion loss. High-end ACPs suggest that test fixtures up to
110 GHz are feasible, as already postulated in the headline. In addition, the developed measurement
methods are even capable of determining apparent material parameters of these very thin composite
materials, which enables straightforward modeling and use in field solvers, which has been verified
in an exemplary case. Despite initial intuitive assumptions, specific measurements show that ACPs
do not cause additional crosstalk. Reliability tests showed that, as long as ACPs are treated carefully
regarding contact force, microwave applications are feasible, especially when temporary contacting
is needed, as the signal integrity results here suggest. These detailed results were confirmed by the
promising overall performance of a prototype test fixture.
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