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Abstract: Footwear is an integral part of daily life. Embedding sensors and electronics in footwear for
various different applications started more than two decades ago. This review article summarizes the
developments in the field of footwear-based wearable sensors and systems. The electronics, sensing
technologies, data transmission, and data processing methodologies of such wearable systems are
all principally dependent on the target application. Hence, the article describes key application
scenarios utilizing footwear-based systems with critical discussion on their merits. The reviewed
application scenarios include gait monitoring, plantar pressure measurement, posture and activity
classification, body weight and energy expenditure estimation, biofeedback, navigation, and fall
risk applications. In addition, energy harvesting from the footwear is also considered for review.
The article also attempts to shed light on some of the most recent developments in the field along
with the future work required to advance the field.

Keywords: accelerometry; energy expenditure; energy harvesting; footwear; gait; plantar pressure;
wearable sensors

1. Introduction

Footwear is an irreplaceable part of human life across the globe. While the initial necessity was
purely to protect the feet [1], they have also become a symbol of style and personality [2]. Footwear
acts as the interface between the ground and the wearer’s foot. Lots of information can be gleaned from
observing this interaction. Attempts to capture this information by integrating sensing elements and
electronics in the footwear began in the 1990s, both for academic research purposes and in commercial
products [3]. In recent times, development of low power, wireless, unobtrusive and socially acceptable
wearable computing systems has become an increasingly important research topic. This trend is
aided by the exponential growth in the electronics industry, which is driving rapid advancements in
microfabrication processes, wireless communication, and sensor systems.

The applications for footwear-based systems range from simple step counting solutions to more
advanced systems intended for use in rehabilitation programs for disabled subjects. Footwear-based
systems available on the market or in research laboratories today vary in their sensor modalities and
data acquisition methodologies in order to meet different application requirements. Typically, these
systems consist of pressure sensors for plantar pressure measurement, inertial sensors (accelerometer
and/or gyroscope) for movement detection and a wired or wireless connection for data acquisition.
The signal processing of this collected data varies depending on the application, can range from
lightweight signal processing methodologies (for example, binary decision trees) running on
a handheld device to complex signal processing/machine learning models (for example, Support
Vector Machines) running on a PC.
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Several vital biomechanical parameters can be estimated using sensors placed in the footwear.
For example, by placing pressure-sensitive elements in the footwear, foot plantar pressure can be
measured. By utilizing pressure-sensitive elements along with inertial sensors, several gait parameters
can be calculated. Additionally, by placing actuators in the footwear and measuring gait patterns,
one can generate biofeedback to assist patients suffering from stroke. The same set of pressure
sensors and inertial sensors can also be used in tracking posture and activity recognition and energy
expenditure estimation. These and other important applications have driven footwear wearable
technology to its present day state and continue to drive the technology even further.

In this work we review advancements in footwear-based wearable systems based on their target
application scenarios. Applications described in the work include those that focus on gait monitoring,
plantar pressure measurement, posture and activity classification, body weight and energy expenditure
estimation, biofeedback, navigation, and fall risk applications. For each application, example systems
are taken from published research and consumer products. Keywords such as ‘gait monitoring
systems’, ‘plantar pressure measurement’, and others were searched in databases such as IEEE Xplore,
PubMed, and Google Scholar. Literature that described portable or wearable systems that have sensors
embedded in the shoes, insoles, sandals, or socks were included and the stationary systems were
excluded from the review.

The article discusses the existing systems with respect to their hardware, sensor modalities,
modes of data acquisition and data processing methodologies. Merits/demerits of each system are
also pointed out. The work also attempts to shine a light on some of the most recent advancements
happening in the field, as well as on the future direction for footwear-based wearable systems.

2. Application Scenarios for Footwear-Based Wearable Systems

2.1. Gait Analysis

A person's walk is characterized by their gait, which involves a repetitious sequence of limb
motions to move the body forward while simultaneously maintaining stability [4]. Having a normal
gait allows someone to remain agile so that they may easily change directions, walk up or down stairs,
and avoid obstacles. Patients with neuromuscular disorders are likely to have abnormal gaits and
suffer in their ability to perform locomotive activities. Objective measurement and analysis of gait
patterns can help in the rehabilitation of such disabled individuals.

Figure 1a shows an illustration of an instrumented insole developed for gait monitoring by
Crea et al. [5]. There are two kinds of parameters that are computed in gait monitoring applications:
temporal and spatial. Some of the examples of the temporal gait parameters are cadence, stance
time, step time, single support time, and double support time; while step length and stride length
are examples for spatial gait parameters. Gait monitoring is one field of wearable computing where
there are a considerably high number of footwear-based systems deployed. Many such systems are
compared in Table 1. There are force plates available for gait analysis [6], and there are also systems
that make use of the Kinect [7,8]; but footwear-based solutions are much better suited for uncontrolled
free living conditions outside the laboratory environment. Footwear is also an ideal location to measure
the gait parameters as these applications measure the parameters involved in the movement of foot.

By utilizing pressure-sensitive elements, such as force sensitive resistors (FSR), for gait monitoring,
temporal parameters such as cadence, step time, stance time and others can be computed. This is done
utilizing the heel strike and toe off time events (Figure 1b). The gait monitoring applications extract
gait event information from the changes in pressure sensor readings and not the absolute pressure.
Hence, the pressure sensing does not need high spatial resolution, so only a few pressure elements
are used in such applications. High pressure measurement precision is also not needed, and for that
reason, sometimes these are called foot switches.
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Figure 1. (a) Instrumented footwear for gait monitoring presented by and Crea et al. [5]; (b) marking 
of heel strike and toe off time instances from the pressure sensor signals. 

 

Figure 1. (a) Instrumented footwear for gait monitoring presented by and Crea et al. [5]; (b) marking
of heel strike and toe off time instances from the pressure sensor signals.
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Table 1. Comparison of footwear-based gait monitoring systems.

Bamberg et al. [9] Sazonov et al. [10] Chen et al. [11] Mariani et al. [12] Leunkeu et al. [13] Rampp et al. [14]

Sensing element

FSR, polyvinylidene
fluoride strip,
accelerometer,

gyroscope

FSR, accelerometer FSR, accelerometer,
gyroscope

Accelerometer and
gyroscope

Parotec plantar
pressure insoles

Accelerometer and
gyroscope

Sampling frequency 75 Hz 25 Hz 50 Hz 200 Hz 150 Hz 102.4 Hz

Data transmission
method RF to PC Bluetooth to

Smartphone RF to PC SD card logged SD card logged Data logged using
Shimmer 2R® [15]

Data analysis method
PC post processing to

compute gait
parameters

PC post processing to
compute gait
parameters

PC post processing to
predict abnormal gait

PC post processing to
compute gait
parameters

PC post processing PC post processing

Real time gait
monitoring NA NA NA NA NA NA

Clinical/Validation
Study

Computed gait
parameters of

10 healthy subjects
and five Parkinson

Disease (PD) patients

Computed gait
parameters of

16 healthy subjects
and seven post
stroke patients

NA

Computed gait
parameters of 10 PD

patients and
10 healthy subjects

Computed gait
parameters of

15 Cerebral
Palsy (CP) and

10 normal children

Stride parameter
calculation 116

geriatric patients

Gait analysis
performed

Computed maximum
pitch, minimum pitch,

stride length, stride
time, % stance time

Computed cadence,
step time, cycle time,
swing %, stance %,
single support %,
double support %

Classified 5 different
gait types: Normal,
toe in, toe out, over
supination and heel

walking

Computed turning
angle, stride velocity,
stride length, swing
width, path length

Computed step
duration, double

support time, ground
contact time, velocity,
step frequency and

stride length

Computed stride length,
stride time, swing time,

and stance time

Gold Standard
Comparison

Validated against
MGH BMLs Selspot II

Validated against
GaitRite NA

Validated against
optical system by Vicon

Motion Systems Ltd
NA Validated against

GaitRite

Accuracy

Highest mean
percentage change of
15.6% in maximum

pitch and least mean
percentage change of
6.5% in stride length

Highest relative error
of 18.7% for step time

and least relative
error of 2.7% for

cycle time

Highest accuracy of
97% for detecting

over supination and
least accuracy of
82.3% for toe in

Stride velocity and
stride length

accuracy ˘ precision of
2.8 ˘ 2.4 cm/s and

1.3 ˘ 3.0 cm

NA

Correlation of 0.93 and
0.95 between GaitRite

and this system in stride
length and stride time.

Absolute error of stride
length was 6.26 cm in

normal walking
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Table 1. Cont.

Kong et al. [16] Liu et al. [17] González et al. [18] Crea et al. [5] Wu et al. [19] Ferrari et al. [20]

Sensing element Custom air pressure
sensor

Triaxial force sensors
for measuring GRF

and COP

FSR and
accelerometer Optoelectronic sensing Fiber based pressure

sensors
Accelerometer and

gyroscope

Sampling frequency 200 Hz 100 Hz 50 Hz 18.75 Hz 30 Hz 200 Hz

Data transmission
method

NI Compactrio®

data logger

Storing data in
MCU’s SRAM and
offline uploading

to PC

Bluetooth to
Smartphone Bluetooth to PC SD card logging Bluetooth to smartphone

Data analysis method PC Post processing PC post processing PC Post processing PC Post processing PC post processing PC post processing

Real time
gait monitoring NA NA Android smartphone LabVIEW user

interface in PC NA Android smartphone

Clinical/Validation
Study NA Validated on seven

healthy subjects.
Validated on six
healthy subjects.

Validated on
2 healthy subjects NA

Validated on
12 healthy subjects and

16 PD subjects

Gait analysis
performed

Fuzzy logic based gait
phase abnormality

detection

Average coefficient of
variation for

three-directional GRF
to evaluate extrinsic

gait variability

A fuzzy rule-based
inference algorithm to

detect each of the
gait phases.

Computed stance and
swing duration of both

feet; duration of the
double-support phases;

and step cadence of
both feet.

Methodology for local
randomized selective

sensing based on
pressure signal maps.

Computation of step
length, stride time, stride
length and stride velocity.

Gold Standard
Comparison NA

Validated against
Kyowa force plate
and optical motion
analysis system by
NAC Image Tech

NA Validated against AMTI
force plate NA Validated against

GaitRite

Accuracy

Proposed sensing
unit showed

a repeatability of 97%.
Abnormal gait

monitoring results
weren’t quantified

RMS error of
7.2% ˘ 0.8% and

9.0% ˘ 1% for
transverse component

of ground reaction
force and

1.5% ˘ 0.9% for
vertical component

92% cross validation
accuracy for the

probabilistic classifier

Pearson correlation
0.89 ˘ 0.03 with the

force plate

Normalized mean
square error of the
proposed sensing
methodology is

within 10%,
compared against

actual signal

Over the 1314 strides,
the total root mean

square difference on step
length estimation

between this system and
gold standard was 2.9%
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For computation of temporal gait parameters, a higher sampling frequency means better time
resolution, resulting in higher accuracy in the computed parameters. However, there is a tradeoff
between battery life, sampling frequency, and accuracy (applicable to all of the systems discussed
in this work). A higher sensor sampling frequency will result in higher power consumption by the
system, resulting in a shortened battery life; while a lower sampling frequency may decrease the
accuracy of the system. The work in [5] has used 18.75 Hz, however it has not yet been fully validated.
In [10], it was shown that 25 Hz is sufficient for gait parameter extraction for walking at the speed
of 2 km/h or less. However, our ongoing work suggests that for computation of parameters such
as double support time, especially during walking at speeds more than 4 km/h or running, 25 Hz
is insufficient. Sampling frequencies of greater than 50 Hz, as reported in [9], will provide a better
accuracy for all the gait parameter computations.

Inertial sensors such as an accelerometer in conjunction with gyroscope can be used in the
computation of distance or elevation. Hence, these inertial sensors are utilized in the computation of
spatial gait parameters such as step length or stride length, as shown in [9].

Only a couple of the works discussed the expected battery life for their systems. In [5] it was
reported that a battery life of about 20 h is achievable, which can enable almost two days of wear in
real life situations. In [19], 10 h of usage time on single charge is reported, which can enable one day of
wear on full charge. However, in [19], having this particular lithium polymer battery under the foot
may be potentially hazardous.

From connectivity perspective, Bluetooth is quite commonly used in many of the footwear-based
systems as done in [5,10,18] and others. A lower power consumption version of Bluetooth, named
Bluetooth Low Energy (BLE), is coming to prominence in the recent years and there are a few
footwear-based systems that have utilized BLE, [21,22], which will be discussed in the later sections.
The study in [21] has reported more than two orders of magnitude in power savings when utilizing
BLE compared to traditional Bluetooth.

With regards to data processing, many gait monitoring applications in their current form rely on
collecting the data from human subject experiments and a PC performing post processing, as in most
of the cases as shown in Table 1. Real-time gait monitoring and visual feedback can help in clinical
applications and González et al. [18], Ferrari et al. [20], and Crea et al. [5] have taken this into account.

There are a few works that have used gait information obtained from footwear-based systems in
pattern recognition. Huang et al. [23] identified a human subject based on the wearer’s gait against
eight other human subjects. Jochen Klucken et al. [24] were able to successfully distinguish PD patients
from healthy subjects with an accuracy of 81%. Jens Barth et al. [25] have presented a methodology to
search for patterns matching a pre-defined stride template from footwear sensor data, to automatically
segment single strides from continuous movement sequences.

All of the footwear-based solutions listed are research prototypes and some of them [9,11] are
primarily suited for laboratory studies. On the other hand, Sensoria® has developed commercial
instrumented socks for gait monitoring [26]. The associated smartphone application running on iOS or
Android is intended to help runners and provides real-time feedback on foot landing patterns, cadence
and other important gait characteristics. Technical characteristics of the Sensoria product were not
available at the time of this review.

Systems in [5,11,19,23] would need further human subject studies as they have not yet been fully
tested. Additionally, it is important to note that none of the above-described systems have undergone
a longitudinal free-living study, which is essential to understand the gait behavior of wearers in
community living. Development and full-fledged validation of a socially acceptable, user friendly,
and reliable footwear-based gait monitor well suited for longitudinal studies is still an open challenge
in the field that needs to be addressed.

2.2. Plantar Pressure Measurement

Plantar pressure is the pressure distribution between the foot and the support surface during
everyday locomotion activities. Foot plantar pressure measurement applications focus on measuring
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of the pressure distribution between the foot and the support surface. Figure 2a shows an illustration
of a plantar pressure map during one stance phase (heel strike to heel off) of a healthy individual [27].

The foot and ankle provide the support and flexibility for weight bearing and weight shifting
activities such as standing and walking. During such functional activities, plantar pressure
measurement provides an indication of foot and ankle functions. Plantar pressure measurement has
been recognized as an important area in the assessment of patients with diabetes [28]. The information
derived from plantar pressure measurement can also assist in identification and treatments of the
impairments associated with various musculoskeletal and neurological disorders [29]. Hence, plantar
pressure measurement is important in the area of biomedical research for gait and posture
analysis [11,30,31], sport biomechanics [32,33], footwear and shoe insert design [34], and improving
balance in the elderly [35], among other applications.

For all the above applications, there are solutions that utilize non-wearable systems, such as
force plates and force mapping systems [36], but footwear is an ideal location for such measurements.
Footwear-based platforms also offer much higher portability and can potentially enable monitoring
outside of the laboratory, in uncontrolled, free living applications. Almost all the footwear-based
applications reviewed in this work have some form of plantar pressure sensing elements built in to
them; however, in this section we place an emphasis on the footwear systems that deal explicitly with
plantar pressure measurement. These systems are compared in Table 2. Figure 2b shows the F-scan®

system by Tekscan, Inc. (Boston, MA, USA) [37].
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Table 2. Comparison of plantar pressure measurement systems.

Adin Ming et al. [38] Lin Shu et al. [39] Saito et al. [40] TekScan F-Scan® [37] Novel Pedar® [41] Orpyx LogR® [42]

Sensing element Piezo resistive material,
total 75 nodes

Resistive fabric sensor
array, six sensor array

Pressure sensitive
conductive rubber

Fabricated resistive insole,
960 sensing elements

Capacitive sensing
element, 256 nodes

The system has custom-built
force sensor array of 8 sensors

Device usage Academic research
prototype

Academic research
prototype

Academic research
prototype Commercial Commercial Commercial

Sampling frequency 13 Hz 100 Hz 50 Hz Up to 750 Hz * 78 Hz 100 Hz

Sensor data
transmission method Bluetooth Bluetooth Wired to PC PC tethering, data logging,

or Bluetooth
Bluetooth/SD card

logging Bluetooth

Visualization method
Real time visualization

of plantar pressure
distribution in PC

Real-time visualization
of mean pressure, peak

pressure, center of
pressure (COP), and
speed of COP, in PC

and smartphone

Visualization of
plantar pressure

distribution in PC
after data logging

Real-time visualization of
plantar pressure

distribution in PC

Real time
visualization of
plantar pressure

distribution in PC

Real time visualization of
plantar pressure distribution

in iPhone

Validation

Validated against the
standard force plate
and the measured

plantar forces showed
R2 value of 0.981

Relative mean
difference of 5% in

plantar pressure against
standard force plate

Validated against
F-scan. difference in
computed plantar

pressure varied from
´4% to 18%

Multiple validation studies
as reported in [43–47] have

validated the system

Multiple validation
studies [46–48] have
validated the system

A validation study in [49]
reported r2 of 0.86 in plantar

pressure measurement against
(undisclosed) gold standard

* Up to 100 Hz when wireless data collection is used.
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As seen in the Table 2, the sensing nodes for plantar pressure measurement application are much
denser compared to those used in gait monitoring or activity monitoring, with the F-scan® system
using as many as 960 sensing elements. This is because plantar pressure measurement applications
demand the estimation of the absolute pressure that is exerted at different locations of the foot; while
in activity and gait monitoring applications [7,30], it is more important to capture the relative changes
in the pressure levels than the actual pressure values as previously discussed. F-scan® [29] can be used
for the pressure ranges of 345 to 825 kPa, while Pedar® from Novel, gmbh (Munich, Germany) [31] can
be used in the range of 15–600 kPa or 30–1200 kPa.

Since plantar pressure measurement applications are concerned more with the absolute pressure
measurement and not the events, time resolution in the data from such systems do not play as vital
a role as in gait monitoring. Sampling frequencies of as low as 13 Hz up to 750 Hz have been used in
systems as shown in Table 2.

A potential concern with the pressure sensing elements in the footwear is their drift over time,
which will become important when the systems are used in real life settings for long periods of
time. A periodic recalibration would be needed to obtain repeatability as done for the case of F-scan®

in [45,50]. Studies in [46,47] have suggested that capacitive sensing based Novel Pedar® has higher
repeatability and accuracy when compared to the resistive sensing based Tekscan F-scan® systems.
However, out of all the systems reviewed, F-scan offers the highest spatial resolution with 960 sensing
elements in the insole. The F-scan® system has a reported 2 h of battery life, which is rather low.
The LogR® by Orpyx, Inc. (Calgary, AB, Canada) [42] has reported 8–12 h of battery life, long enough
to last through a regular day of wear.

All of the systems listed in Table 2 have connectors on the insoles which need to be connected to
the microcontroller unit (MCU) outside of the footwear. This can limit usability in free living conditions
by causing the footwear look out of the ordinary and feel uncomfortable. The system presented in [40]
has a wired PC interface, which can limit use even in a controlled laboratory setup.

These above solutions measure the vertical force component of the ground reaction force (GRF),
and Liu et al. [51] have presented a wearable force plate system for the continuous measurement
of tri-axial ground reaction force in biomechanical applications. This system not only measures the
vertical component of the GRF during ambulatory phase, but also measures transverse components
of the GRF (anterior-posterior and medial-lateral). However, comfort levels wearing such systems
made with tri-axial force sensors under heel may be questionable, as the sensor itself is 5 mm tall and
it would be rather uncomfortable below the heel. Under the arch of the foot may be a better option for
placing these sensors.

2.3. Posture and Activity Recognition, and Energy Expenditure Estimation (EE)

The ever increasing problem of obesity has brought immense importance to study in the field
of posture and activity recognition and energy expenditure estimation. Weight gain is caused by
a sustained positive energy balance, where daily energy intake is greater than daily energy expenditure.
This is typically caused by living a sedentary lifestyle [52,53]. In [14] it was reported that obese
individuals spend more time seated and less time ambulating than lean individuals. More than one
third of U.S. adults are obese [54] and quantifying posture and activity allocation to help keep track
of energy expenditure utilizing wearable sensors is quickly becoming a part of weight management
programs. The applications extend beyond weight management programs, as posture and activity
monitoring is an important aspect in the rehabilitation programs for post-stroke individuals [55].
Posture and activity classification is a large part of the consumer electronics industry’s fitness
segment. Fitness applications running on smartphones, smart watches, and fitness trackers are
becoming common parts of modern daily life [56–60]. Almost all of these solutions are based on
accelerometry and there are many published works on using accelerometer for posture and activity
recognition [61–68]. There are also comparisons of commercially available accelerometry based activity
and energy expenditure estimation (EE) monitors in [69–71]. In this section however, we focus only on
footwear-based solutions used for posture and activity recognition, body weight, and EE estimation.
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There are several footwear-based systems for posture and activity recognition purposes,
and an example of these are the SmartShoe system developed by Sazonov et al. [72] which have
been validated extensively for posture and activity monitoring. They have been used with healthy
subject groups [30,72,73], people with stroke [55,74] and children with cerebral palsy [75]. The most
recent incarnation of the SmartShoe systems, named SmartStep by Hegde et al., has shown the
capability to be accurate in posture and activity classification [21,76,77]. Chen et al. have designed
a foot-wearable interface for locomotion mode recognition based on contact force distribution [78].
Kawsar et al. have developed a novel activity detection system using plantar pressure sensors and
a smartphone [79]. Table 3 contains the comparison of these systems. Figure 3a shows a picture of
SmartStep insole [80] and the associated Android application for daily activity monitoring.
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Table 3. Comparison of footwear-based posture and activity recognition systems.

Sazonov et al. [55,72–74] Hegde et al. [21,76,77] Chen et al. [78] Kawsar et al. [79]

Sensing element
Five Interlink force sensitive
sensors FSR402 in the insole,

accelerometer in the shoe clip on

Three Interlink force sensitive
sensors FSR402, accelerometer,

gyroscope all in the insole

Four FlexiForce A401 force
sensor from Tekscan

Eight Fabric pressure sensors
reported in [39]. Accelerometer and

Gyroscope in the smartphone

Sampling frequency 25 Hz 25 Hz–75 Hz 100 Hz 37 Hz

Data transmission method Bluetooth to smartphone BLE to smartphone RF module to PC Bluetooth to smartphone

Data processing method

PC post processing for activity
classification using neural

network [81], decision trees [74],
and support vector machines

(SVM) [81]

PC post processing for activity
classification utilizing
multinomial logistic

discrimination (MLD) [80]

PC post processing for activity
classification using decision

trees [78] and linear
discriminant analysis [78]

Four different decision trees to
classify activity from four sets of

sensors (left shoe, right shoe,
accelerometer, and gyroscope.
Majority voting to decide the

activity [79]

Activities classified Sitting, standing, walking, upstairs,
downstairs, cycling

Initial validation study
classified sitting, standing,

walking and cycling

Sitting, standing, level
walking, obstacle clearance,

upstairs, downstairs
Sitting, standing, walking, running

Real time activity feedback Windows smartphone Android smartphone PC post processing and no real
time feedback Android smartphone

Clinical/Validation Study Validated on stroke subjects [55,82]
and healthy subjects [73,81]

Initial validation study on five
healthy subjects [80]

Validated on five healthy
subjects and one subject with

amputee
NA

Accuracy ~99% 96% 98.4% ~99%
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All of the systems listed make use of various pressure sensors in order to determine the activity
the user is undergoing. Pressure sensors can help to handle the ambiguity between weight bearing and
non-weight bearing activities such as sitting and standing postures that cannot easily be determined
using only accelerometry. An example of a pressure sensor signal located at heel for different
daily living activities [76] is shown in Figure 3b. All of the systems utilize motion sensors such
as accelerometers and the systems in [77,79] have a gyroscope as well.

Similar to the gait monitoring systems, the pressure sensitive elements in the footwear for activity
monitoring are used for marking the events. However, since changes in activity do not happen too
often, a lower sampling frequency can also be used in activity classification to save battery power.
In [83] it was shown that for accelerometer based daily activity classification, a 15 Hz sampling rate
can provide a 85% classification accuracy. When it comes to footwear-based systems, as shown by
works of Sazonov et al. even 1 Hz sampling rate can be used in monitoring of the daily activities with
93% accuracy [72], and as shown in [55,72–74], a 25 Hz sampling frequency can provide a 99% accurate
activity classification. Other described systems also have a very high accuracy (>96% across any system
presented) in discriminating between the daily living activities of sitting, standing, walking, running,
and cycling.

One of the limitations of footwear-based systems in activity monitoring is that they cannot be
used in classifying upper body activities. To monitor upper body activities, additional sensors need
to be worn on locations of the upper body. An example of such a system is the one presented by
Ryan et al., who have used a wrist worn accelerometer along with the footwear system to classify
daily living activities of ascending stairs, descending stairs, doing the dishes, vacuuming, and folding
laundry, along with many athletic activities [84].

A long battery life is very important for the usability of these systems. Reports in [21,72,85] have
discussed the battery life of the corresponding systems and the SmartStep system in [21], stands out
among these, with more than four days of operations on single charge in certain modes. The other two
systems had battery lives of approximately 5 h on a single charge.

None of the above systems have undergone longitudinal free living studies. There are many
factors that need to be effectively addressed to enable such studies in community living environments.
Social acceptability, user friendly operation, comfort for wear and unobtrusiveness are some of
the important challenges that need attention. SmartStep [21,77] has tried to address many of
these challenges in footwear-based systems, with its socially acceptable design, low power usage,
and completely unobtrusive form factor.

In terms of data processing, as reported in [81], support vector machines (SVM), being
computationally expensive, are not suitable for implementing in portable electronic devices, such as
smartphones, for real-time activity classification purposes. The study in [81] also reports that activity
prediction models based on multinomial logistic discrimination (MLD) is computationally less
expensive in terms of required memory space and execution time, and performs equally well in
terms of accuracy, as compared to SVM. Binary decision trees [74,78,79], being a light-weight classifier,
can possibly enable the implementation of predictive models on the sensor itself. This can potentially
reduce the power consumption at the sensor node that would occur during the wireless connection
events for raw data transmission.

With respect to energy expenditure (EE) estimation, there are relatively few footwear-based
systems that are targeted for such applications. The SmartShoe platforms have been extensively
validated in EE (in controlled laboratory environments) [81,86]. SmartShoes were compared against
other accelerometry-based wearable devices and have proven to be equally or more accurate [87].
There are also several commercial footwear-based systems that can be used in EE, such as Lechal
systems [88] and Lenovo SmartShoe [89], track their user's EE. The Lenovo ones have yet to enter
the market.

In general, most of the present day solutions predict EE in terms of a steady state
(sitting/standing/walking etc.). However, daily life is a mixture of both steady states and the
continuous transitions between them. It is important to be able to quantify these in-between states in
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order to better estimate energy expenditure. Hence, we expect to see more and more research from
a data processing perspective, to try to more accurately estimate EE in daily life. This may lead to
the inclusion of several different sensors alongside activity predictors (heart rate, breathing rate and
others) and novel data processing techniques, similar or better to the ones presented in [90] in order to
better estimate EE.

Excessive body weight is the factor which defines obesity and body weight is also one of the
most significant factors in calculating energy expenditure. Self-reporting of body weight can be highly
erroneous [91]; hence, objective and autonomous measurements of body weight can help in accurate
EE estimation and obesity treatment programs. Footwear is an ideal location for automatic body
weight estimation systems since all of the body’s weight is placed upon the feet when standing. A few
footwear-based systems have been used for body weight estimation as done in [92,93]. The study
in [92] reported root-mean squared error of 10.52 kg in estimating body weight of 9 study subjects,
while the one in [93] reported an average overestimation error of 16.7 kg in estimating body weight of
10 study subjects. These works validate the approach, but there is a room for improving the accuracy
of the footwear-based systems in estimating body weight.

In all, footwear-based systems have yet to become matured in the field of daily energy expenditure
estimation. The problem with measuring daily energy expenditure utilizing footwear systems is that
people, on average, may wear footwear for 12 h of their whole day. This leaves a good 50% of the
activities outside the purview of such sensor systems. Though one may argue that the majority of the
remaining 12 h may be spent sleeping (6–8 h), to measure accurate daily living energy expenditure,
one may have to use other sensor systems in conjunction with footwear-based ones. These may
include smartphones or smart watches, which are generally used even when someone is not wearing
footwear at home. Another potential concern with footwear-based wearable systems for use in daily
living is that people usually tend to use multiple pairs of footwear. Insole based systems would be
much more practical, as users can insert the insole into any of their shoes that they want to wear.
However, the actions of taking out the insole from the shoe and inserting into another may not be
a very comfortable act and future research work in this area needs to address this challenge.

2.4. Biofeedback

The sensing technologies embedded in the footwear in conjunction with real-time feedback
mechanisms can be deployed in rehabilitation programs of many health conditions. For example,
utilizing the real-time gait information retrieved from the footwear, post stroke individuals can be
given feedback to improve the asymmetry in their walking. An example of real-time monitoring
of stroke patient’s gait and generation of active feedback to improve the asymmetry is depicted in
Figure 4a. The feedback can be delivered in visual, auditory, or tactile manners. Several footwear-based
systems have been presented in biofeedback applications and are presented in Table 4.
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Table 4. Comparison of footwear-based biofeedback systems.

Orpyx [42,49] Khoo et al. [94] Donovan et al. [97] Hegde et al. [95] Bamberg et al. [96]

Sensing element Array of eight custom
pressure sensors Six FSR sensors Pedar-x plantar pressure

system and EMG Two FSR sensors Ten FSR sensors

Sampling frequency Not reported Not reported 100 Hz 20 Hz 114 Hz

Data transmission method Wireless to smartwatch Wired connection to MCU
mounted on the lower back Wired data logger Wired connection to MCU

mounted on the waist Wireless to a portable PC

Feedback methodology

Smartwatch alerts when
dangerous pressure levels
are detected, so the user

can modify behavior and
avoid foot damage

Tactile and auditory feedback
to correct the gait asymmetry

Auditory biofeedback to
reduce the plantar pressure in

the area of lateral forefoot

Tactile and auditory feedback
to correct the gait asymmetry

Auditory feedback when the
symmetry ratio is less than one

Computation method
Computation of plantar

pressure levels for
diabetic patients

Real-time computation of
stance time difference; swing
difference and generation of

active feedback

Real-time computation of the
lateral column plantar

pressure and generation of
active biofeedback

Real-time computation of
stance time difference and

generation of active feedback

Real-time Matlab program running
on the PC that computes stance
time and gait symmetry ratio

Clinical/Validation
Study and results NA

Validation on four healthy
subjects and preliminary
validation on post stroke
patients. Gait parameters

validated against gold standard
(results not quantified)

Validated on nine subjects
with chronic ankle instability.

Pronounced reductions in
peak pressure and pressure
time integral of the lateral

midfoot and lateral forefoot
with the biofeedback

Validated on single stroke
subject. Subject showed

increased symmetry (step
time differential improved by

48% standard deviation for
the same increased by 88%)

Validated on three stroke patients.
One subject reduced trunk sway by

85.5%, and the other subject
reducing trunk sway by 16.0% and
increasing symmetry ratio toward

unity by 26.5%
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Orpyx® have insole-based wearable systems that have been clinically validated [49] that give
biofeedback to diabetic patients on a smartwatch, based on their plantar pressure profile [42].
This system makes use of a neurological rewiring phenomena in the brain, termed neuroplasticity.
Khoo et al. [94] and, independently, Hegde et al. [95], and Bamberg et al. [96] (Figure 4b) have
developed biofeedback devices for post-stroke patients to improve their gait asymmetry. Donovan et al.
have worked on a shoe-based biofeedback device to assist people with chronic ankle instability [97].

Compared to gait and activity monitoring systems, biofeedback systems need to process the
sensor data in real-time and also generate active feedback in real-time. Hence, these systems do not
make use of elaborate sets of sensing elements. All of them use only pressure sensing elements as
seen in Table 4, with Donovan et al. [97] being the only exception which uses EMG sensing along with
pressure sensing. The sampling frequency can be as low as 20 Hz as shown by Hegde et al. [95], to save
battery power. The computation methodologies need to be lightweight and cannot be running on a PC
for providing real-time feedback.

All of the presented systems make use of auditory or tactile feedback mechanisms in order to
communicate with the user. Accuracies of the systems in [94–96] seem comparable. Additionally,
all of these were externally wired systems (which could potentially get in the way of their purpose).
A full-fledged insole system would be much more attractive for real world usage. In [97], during
experiments, the device threshold was adjusted using a small screw driver to turn the trimpot’s
dial. A more autonomous system than this would be attractive and make the device easier to use.
Furthermore, all of these systems need further human subject validation.

Studies in [95–97] have showed significant improvements to the patients’ health conditions.
These results indicate that footwear-based systems could indeed be of great use in rehabilitation and
should be further pursued.

2.5. Fall Risk Assessment and Fall Detection Applications

One of the primary causes for the disorders referenced in the sections above is aging. By 2040,
the number of elderly people in U.S. is projected to be 21.7% of the total population [98], and the risk
of falling in older adults is an important social problem to be addressed [99]. Systems that monitor the
individual’s gait over a long period of time and predict risk of falling are termed as fall risk assessment
systems [100]. On the other hand, a fall detection system is a real time assistive device which has a main
objective of alerting when a fall event occurs. We review such footwear-based systems in Table 5.

Doukas et al. have developed an advanced fall detection system based upon movement and
sound data [101]. Wiisel is an advanced insole-based system that is used for fall risk applications [22].
Otis et al. [102] have come up with an efficient home-based falling risk assessment test using
a smartphone and instrumented insole. Sim et al. [103] have worked on a fall detection algorithm for
the elderly using acceleration sensors on the shoes. Majumder et al. have implemented a real-time
smartshoe and smartphone-based fall risk prediction and prevention system [104]. Figure 5a shows
the Wiisel system that is used for fall risk applications.
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Table 5. Comparison of footwear-based systems in fall risk applications.

Doukas et al. [101] Wiisel [22] Otis et al. [102] Sim et al. [103] Majumder et al. [104]

Sensing element Accelerometers and
microphone

Textile based smart insole,
14 pressure sensors,

accelerometer, gyroscope

FSR, accelerometer and
bending sensor Accelerometer

Piezo resistive sensors
and inertial sensors from

smartphone

Sampling frequency NA 30 Hz 1000 Hz 225 Hz 25 Hz

Data transmission method ZigBee to PC BLE to smartphone Bluetooth to Android Bluetooth to PC Wi-Fi to iPhone

Data analysis method

Short time Fourier transform
and spectrogram analysis of the
data to detect fall incidents. The
classification of the sound and
movement data is performed

using Support Vector Machines

Data is transmitted from
insoles to smartphone to
back end server. Stand-
alone program at the

server analyses the gait
and predicts fall risk

Proposed an automatic
version of One-Leg

Standing (OLS) score, based
on COP measurements, for
risk of falling assessment

Resultant acceleration
signal is averaged and a

threshold is used to
predict the risk of falling

Tilt-invariant calculations
on accelerometer and

gyroscope data and usage
of decision trees to
classify high risk

Clinical/Validation Study

Three human subject validation
while they performed walk,
walk and fall, walk and run.

100% accuracy for fall detection
and 96.72% for walk and

run detection

Validated on 54 elderly
participants [105],

results NA

Twenty-three subject
human subject study [106]

including seven elderly and
four PD subjects. Results
suggest that the risk of

falling depends on the type
of ground

Six subject test. 81.5%
sensitivity

Fifteen subject study.
Subject dependent

individual model has high
accuracy but group model
has accuracy of only 72%
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Accelerometer is the common sensing element across all the systems used in this field as seen
in Table 5. Otis et al. [102] and Sim et al. [103] have used relatively high sampling frequencies,
with Otis et al. using 1000 Hz, though the reports did not substantiate the use.

Making the footwear systems comfortable for daily wear is a challenge and Wiisel insoles [22]
have addressed this. These insoles are industrially built and with their built in wireless charging,
this solution be used to benefit the elderly. However, people need to remove the insoles from their
shoes in order to charge them. This is due to a limitation of the current version of the wireless charging
standard Qi, which allows a maximum of 1.5 cm distance between the wireless power transmitter and
receiver. This might be increased to 4 or 5 cm in the future and will remove the need for taking out the
insoles for charging purposes. Systems other than Wiisel in this section are all laboratory prototypes.

If the systems have some kind of real time feedback, such as to call for help, that would be
beneficial. Only [104] has any kind of real-time feedback implemented and adding this will be the next
logical step for footwear systems used in fall risk applications.

Of the above mentioned systems, the one proposed by Doukas et al. [101] was the most
accurate with 100% accuracy for fall detection. In that system, usage of microphone data along
with accelerometer was novel. On the other hand, Sim et al. [103] system’s 81.5% sensitivity is
considerably low given the severity of misclassification.

2.6. Navigation and Pedestrian Tracking Systems

Another interesting area where footwear-based systems are being utilized is in the field of
navigation assistive technologies and pedestrian tracking. These systems are aimed at providing
assistance for the vision impaired, guiding emergency first responders, and work in augmented reality
applications. In general, systems targeted for tracking utilize inertial sensors mounted on the footwear
alongside GPS or radar; while navigation systems use actuators along with the sensors to guide the
user in real-time. The key challenge for devices in this field is to be able to provide accurate location
information without the need of a pre-installed infrastructure. In Table 6 several of these systems
are reviewed.
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Table 6. Comparison of footwear-based navigation systems.

Schirmer et al. [107] Bebek et al. [108] Castaneda et al. [109] Foxlin [110] Lechal System® [88]

Sensors
Accelerometer, gyroscope,
magnetometer, compass,

smartphone GPS

Accelerometer, gyroscope,
magnetometer heel of the
shoe. capacitive pressure

sensor at the heel

Accelerometer and gyroscope Accelerometer, gyroscope,
magnetometer

Insole pressure sensors not
detailed. The electronics is

mentioned to be having
motion sensors

Actuators Two vibration motors No actuator No actuator No actuator Haptic or vibratory feedback

Sensor sampling
frequency NA NA NA 300 Hz NA

Data transmission method BLE to iOS Wired to laptop Wired to laptop RF to laptop BLE to iOS or Android

Data analysis method

Phone computes walking
path and turns, and

communicates with the shoes
to trigger the actuators

IMU bias compensation,
and computing of

position after zero velocity
update (using the

pressure sensor signals)
and slope correction

Fuzzy logic procedure for
better foot stance phase

detection and an indirect
Kalman filter for drift

correction based on the
zero-updating measurement

Zero velocity update of
accelerometer and gyroscope,

magnetometer calibration
followed by Geomagnetic

modeling and heading
drift Correction

NA

Real time analysis
Different vibration patterns

for different paths
(front, back, left, right)

Future Work Real time analysis in laptop Future Work Can provide turn-by-turn
navigation feedback

Validation Study

Twenty-one subject study
showed that 99.7% of the time
users correctly identified the
path and turns as fed back

by the shoes

Six walking experiments
of half hour each, average
relative error 0.35% in the

final position tracked
by the system

Three walking experiments,
average relative error of 0.55%
in the final position tracked

by the system

Single user, 118 m walking
indoor with 0.06% error and
741 m outdoor experiment

with 0.3% error

NA
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All of the described systems in Table 6 make use of accelerometer and gyroscope for computing
the navigation path. These applications demand high temporal resolution in sensor sampling
(as demonstrated by Foxlin [110] with 300 Hz), because of complex computation (such as Kalman
filtering [110]) and integration that needs to be performed to accurately determine the path.

Schirmer et al. [107] and Lechal System [88] provide feedback for real-time navigation. In order to
use the system in [107], the user will need initial training to be able to understand the actuator patterns
for front and back movement guidance, as they only use two actuators.

The Lechal® system by Ducere Technologies Pvt. Ltd. (Secunderabad, Andhra Pradesh, India) [88],
being a commercial system, is industrially built (Figure 5b). Though initially intended as an assistance
for a blind subject population, it can also be used by all for navigating purposes. Footwear feedback
levels in this system are user configurable and it also provides options for configuration using
voice commands.

The wired connection to a laptop limits the use of systems in [109,110] for practical applications.
Reported error in navigating a predefined path is very much comparable in all these systems and is
less than 1% in the final position tracked by these systems.

2.7. Other Enabling Technologies

Energy harvesting from footwear is an area which has been of interest for a long time.
As electronics are becoming smaller and smaller, the recent trend in wearable technology is to move
towards smaller batteries or battery-less systems and to tap the energy needed from the human body
or its motions. As early as 1995, Starner [41] reported that 67 watts of power are available in the heel
movement of a 68 kg person who is walking at a pace of two steps per second. Even a fraction of that
energy, if harvested, can easily power today’s low power electronics. Many attempts are underway to
tap the energy from body heat and the force produced during locomotive activities.

In Table 7 we compare several footwear-based systems that make use of energy harvesting
methods. Shenck et al. have devised a methodology for energy scavenging with shoe-mounted
piezoelectrics [111]. Orecchini et al. have come up with an inkjet-printed RFID system for scavenging
walking energy [112]. Zhao et al. have developed a shoe-embedded piezoelectric energy harvester for
wearable sensors [113]. Kymissis et al. have tested three different energy harvesting elements in their
work [114]. Meier et al. have presented a piezoelectric energy-harvesting shoe system for podiatric
sensing [115].
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Table 7. Comparison of footwear-based energy harvesting systems.

Shenck et al. [111] Orecchini et al. [112] Zhao et al. [113] Kymissis et al. [114] Meier et al. [115]

Energy harvesting element Piezoelectric lead zirconate
titanate (PZT) Piezoelectric pushbutton Polyvinylidene

difluoride (PVDF)
PZT, PVDF, and rotary

magnetic generator
Vibrational transducer and

piezoelectric transducer

Placement of the energy
harvesting element Insole Underneath the shoe heel Insole

Insole for PZT and PVDF,
under the shoe for rotary

magnetic generator
Shoe heel

Validation application
scenario Shoe-powered RF tag system Self-powered RFID shoe NA A self-powered RF Tag System Self-powered gait data

capture system

Salient features
One of the first practical

systems demonstrating the
feasibility of the approach

Emphasis was put on
designing RF antenna, in the
shape of a logo to make the
system socially acceptable

Flexible and thin insole
platform

Compared the efficiency and
practicality of 3 different energy

harvesting elements

Were able to run a data
acquisition at 5 Hz from

harvested energy

Reported harvested energy 8.4 mW in a 500-kohm load at
0.9 Hz walking pace

833 µJ (test conditions not
reported)

1 mW during a walk at
a frequency of 1 Hz

From PZT 1.8 mW, from PVDF
1.1 mW, from rotary magnetic

generator 0.23 W
10–20 µJ of energy per step
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The energy can be harvested by vibration, compression, or bending produced in the footwear
while the wearer performs motion activities such as walking. Piezoelectric lead zirconate titanate (PZT)
and polyvinylidene difluoride (PVDF) are quite commonly used energy harvesting elements. PZT is
a ceramic material, while PVDF is a plastic material.

From the study in [114] it is concluded that, even though mechanical systems such as the rotary
magnetic element generate two orders of magnitude more energy than other systems, they are difficult
to integrate into footwear. PZT and PVDF are more compact elements and can be much more easily
integrated. The combination of the harvesting element and the placement of the element determine
the resultant harvested energy.

Among the described works, Nathan S. Shenck [111] seems to be the one with the highest-reported
power generated, but the system appears to be a laboratory prototype. The Rich Meier et al.
solution [115] involves alteration of the shoes, which would limit its usage in generic footwear systems.

Though the amount of power generated by these systems is quite low, many of these systems
were able to provide enough energy to drive low power RFID systems. For the systems demanding
higher power, the resulting power from energy harvesting can be utilized in supplementing the power
provided by the battery, to extend its runtime.

3. Recent Trends and Future

3.1. Socially Acceptable and User Friendly Solutions

It is important that footwear-based systems are as discrete and user friendly as possible. Most of
the systems that are discussed in this work require a wireless/wired MCU placed outside the footwear.
For free living daily life studies this may be a concern, and we are seeing work being done to move
towards full-fledged insole-based systems. Insoles are now being equipped with all of the sensing
elements, battery, recharging circuitry, and wireless interfaces [22,77,88,91]. Systems in [49,88] have
wireless charging capabilities which make them more user friendly.

The SmartStep [77] system has an over-the-air firmware upgrade feature, which can be used to
easily configure the system for use in different application scenarios. The concept of real-time data
collection and offline transmission of SmartStep, presented in [77], can be attractive for the elderly
population as they do not need to carry smartphones with them to use the system. In this scenario,
the sensor data is logged in the system’s flash memory during wear and later is transferred to the
base station when the insoles are being charged. These trends will hopefully continue and can help
researchers, as well as users, to better utilize such systems.

3.2. Footwear as Internet of Things (IoT) Devices and Big Data

IoT is a field that is redefining the way people interact with their environment in their daily lives.
IoT can enable every object we interact with (for example: key chains, coffee mug, cloths, appliances,
and many more) to be a sensor and a minicomputer connected to the internet [116]. We foresee that
footwear is going to become a part of the IoT revolution soon and can help people become more
connected and help them better manage their lives. The application scenarios such as gait and activity
monitoring, fall risk/fall detection, and others, can take advantage of such infrastructure. An example
use case can be that the individual with asymmetric walking (caused by a neurological disorder),
wears IoT-enabled footwear, which sends the gait parameters to the physician in a distant place in
real-time. The infrastructure can also allow the physician to give feedback to the individual based on
the progress.

The next problem which arises after the systems are ready for daily usage and are a part of the IoT,
is how to handle the enormous amount of data coming in from these systems. Novel data processing
techniques, which do not only deal with the data from one set of sensors/systems, but from multiple
sensors in a smart environment, will be gaining more and more traction from researchers. This greater
expanse of data will help to make better informed decisions. We also foresee that footwear-based
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systems are going to play an important role in the remote monitoring of disabled and elderly people in
the future.

3.3. Advanced Study Approaches for Footwear-Based Systems

From a research perspective, many of the footwear-based systems have not undergone
longitudinal free-living studies. Footwear are subjected to enormous amounts of wear and tear,
and the electronics built into them need to be able to withstand this for a long period of time. This may
be one of the reasons why Nike and some other footwear manufacturers have stopped producing
their SmartShoe product lines [117]. We foresee that, in the coming years, there will be more and more
longitudinal studies in free-living conditions conducted, in each of the different application scenarios.

3.4. Affective Computing

Affective computing is a field of technology, in which systems can determine the users’ mood and
emotions, based upon his or her behavior sampled through different physiological factors, and adjust
a smart environment to suit their mood. There are wearable systems that monitor users joy, stress,
frustration, and other moods/emotions utilizing heart rate monitoring sensors, electroencephalogram
(EEG) sensors, electro dermal activity (EDA) sensors, and others [118].

From footwear-based systems perspective, there was some initial work being done with this by
Lenovo with their Smartshoes [89], that display a person’s mood on a small screen embedded directly
on the footwear, though technical details were not available at the time of this review. Additionally,
there is a Kickstarter campaign on its way to make shoes that can change their entire appearance with
a smartphone application [119]. Using affective computing, it would be possible to one day change the
shoes color or display to reflect the user’s mood.

4. Conclusions

In this work we reviewed footwear-based wearable systems based on their target application.
Existing footwear-based solutions from academic research as well as commercial ones in the areas of
gait monitoring, plantar pressure measurement, posture and activity classification, body weight
and energy expenditure estimation, biofeedback, fall risk applications, navigation, along with
footwear-based energy harvesting solutions were detailed. The article also discussed sensor technology,
data acquisition, signal processing techniques of different footwear-based systems along with critical
discussion on their merits and demerits. Additionally, we attempted to shine a light on recent trends
and future technological pathways for footwear-based solutions.
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