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Abstract: Voltage sag is considered to be the most serious problem of power quality. It is caused by
faults in the power system or by the starting of large induction motors. Voltage sag causes about 80%
of the power quality problems in power systems. One of the main reasons for voltage sag is short
circuit fault, which can be compensated for by a distribution static compensator (DSTATCOM) as an
efficient and economical flexible AC transmission system (FACTS) device. In this paper, compensation
of this voltage sag using DSTATCOM is reviewed, in which a sliding mode control (SMC) technique
is employed. The results of this control system are compared with a P+Resonant control system.
It will be shown that this control system is able to compensate the voltage sag over a broader range
compared to other common control systems. Simulation results are obtained using PSCAD/EMTDC
software and compared to that of a similar method.
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1. Introduction

In recent years, by granting the power industries to the private sector, and high demand for this
kind of energy, the power companies—in order to prove their competence—are trying to provide high
quality power to consumers [1,2]. Generally, any problem or defect in voltage, current, or frequency
that leads to errors or malfunctions in electrical equipment is considered as a power quality problem.
In electrical disturbance classification, voltage sag is the most conventional power quality problem [3,4].
According to IEEE 1159–1995 standard, voltage sag or temporary loss of voltage is defined as a
reduction of root mean square (RMS) voltage to a value between 0.1 and 0.9 per unit at the power
frequency for the duration of a half-cycle to 1 minute, where the interruption is a short time deviation
and the total voltage loss (<0.1 per unit) in one or some conductors of phase for the duration of a
half-cycle to 3 s [5,6]. The main causes of voltage sag include short circuit fault, starting large induction
motors, sudden load variations, and energization of the transformer [7,8]. Voltage sag is a temporary
event and its causes are also considered as a temporary low or medium frequency phenomenon [9,10].
Nowadays, with high demands and increases in sensitive equipment, voltage sag is not tolerated
in power systems, and various methods have been applied to decrease it [11,12]. The conventional
methods for decreasing voltage sag include using capacitor banks, installing new parallel feeders, and
uninterruptible power supplies (UPS). Applying such methods cannot completely solve the problems
of power quality. The reasons are uncontrollable reactive power compensation and the high cost of
installing new feeders and using UPS [13,14]. Therefore, the conventional methods are not generally
recommended. In recent years, by the rapid development of semi-conductor industries and control
systems, compensation using high speed controllable electronics devices has become more popular.
These devices are called flexible AC transmission systems (FACTS) [15,16]. The distribution static
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compensator (DSTATCOM) is an important member of this family that is used to improve power
quality [17]. This three-phase compensator is installed near and in parallel with sensitive loads of
distribution systems, and is generally used to compensate the voltage sag. It can also be used to limit
the active and reactive power oscillations or harmonics currents drawn by the load [18,19]. The main
block of DSTATCOM is the voltage source inverter (VSI), in which inverters convert the input DC
voltage into three-phase output voltage at the basic frequency. Different strategies have been suggested
regarding the control of the DSATCOM voltage source inverter. These conventional controllers include
direct quadrature (d-q), state feedback, vector, proportional-integral (PI) and P+Resonant controls,
are designed for a highly-accurate linearized mathematical model around a certain operating point,
and give a superior performance at that particular point [20,21]. However, due to variations in the
system parameters and the presence of nonlinear loads, these methods are unable to provide an
appropriate operation [22,23]. The closed-loop sliding mode control (SMC) system for DSTATCOM is
neither sensitive to variations in the system parameters, nor does it need an accurate mathematical
model [24,25]. According to the alternative structures of the power inverters, this controller has
various advantages, such as system stability against large supply and load variations, robustness,
proper dynamic response, and simple practical performance [26,27]. In this paper, the voltage sag
due to short circuit faults is reviewed and its compensation using DSTATCOM and SMC technique is
proposed. To prove the theory and reveal the efficiency of the suggested control system, voltage sag
compensation due to short circuit faults on the IEEE Standard 13-bus system is simulated by PSCAD/
EMTDC software. Then, the results of this control system are compared with a P+Resonant control
system (P+Resonant control system is an improved PI controller).

2. Voltage Sag

Voltage-quality problems are as follows: voltage sag, voltage swell, and harmonics. The short
circuit faults causing voltage sag are classified into symmetrical and unsymmetrical groups.
Single-phase short circuit to ground is an unsymmetrical fault that happens more than the symmetrical
faults; it is noted that symmetrical faults (three-phase to ground fault has the most effect on the voltage
sag) hardly ever occur [28,29]. To determine the voltage sag domain in radial distribution networks,
a voltage division model (depicted in Figure 1) is used where Zs is the source impedance in the point
of common coupling (PCC) and Zf is the impedance between PCC and fault location. Voltage in PCC
bus and accessories terminal is as follows:

Vsag “
Z f

Z f ` Zs
E (1)
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When the faults occur close to the customers (lower Zf), the voltage sag is more serious than the
case with the least fault level (large Zs). Based on Thevenin theorem in a looped system, it is also
possible to have voltage sag domain in bus i due to a fault in bus r, as follows:

Vsag,i “ Vo,i ´
Ztr

Z f ` Zrr
Vo,i (2)

where Vsag,i is the voltage sag due to the fault in bus i. Vo,i and Vo,r are the voltage before the fault.
Zrr and Ztr are the elements in the bus impedance matrix Zbus, and Zf is the fault impedance.

3. DSTATCOM Structure

DSTATCOM is installed close to and in parallel to the sensitive loads. That is based on power
electronics equipment. The main parts of this compensator are shown in Figure 2. The components of
DSTATCOM include capacitor, DC supply, three-phase inverter, filter capacitor, coupling transformer,
and control strategy. The main block of DSTATCOM is the VSI, which inverts the input DC voltage
into three-phase output voltage at basic frequency. Therefore, this compensator is used to dynamically
set the domain and the angle between the inverter voltage and distribution system voltage. Thus,
the DSTATCOM exchanges the active and reactive power with the distribution network through
leaking reactance of the coupling transformer [30,31]. The injected current of the compensator is
as follows:

im “
V ´Vi

X f
(3)
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In which the transformer resistance is neglected. In (3), the inverter output phase voltage based
on thyristor (Vi), is controlled by the V distribution system voltage. Xf is the leaking reactance of the
coupling transformer.

4. Sliding Mode Control

Sliding mode controllers have some advantages, such as parameter insensitivity and realization
simplicity [32]. SMC is a variable structure control system that increases the robustness of the system
and preserves stability under variations and external disturbances [33]. The general structure of VSI
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is first reviewed. The voltage control loop of VSI will use a SMC in order to achieve the intended
purpose. The design of the SMC of the VSI is discussed in this section. The SMC is designed based on
the following three-step algorithm [34,35]:

Step 1—writing the state-space equations of the system.
Step 2—selecting the linear sliding surface for the system and evaluating the existence of

sliding mode.
Step 3—determining control law.

4.1. System Equations

Consider the schematic block diagram of DSTATCOM in Figure 2. In order to design a control
law independent of the parameters network and load, the following state vector is defined:

VT “
”

v
.
v
ı

(4)

where state variable v is the voltage in PCC point and
.
v is its derivative. Considering state vector V as

the output, the state spatial equation of the DSTATCOM is defined as follows:

d
dt V “ AV ` Bu` Cd
y “ V

(5)

where:

A “

«

0 1

´ 1
C f L f

´
R f
L f

ff

(6)

B “

«

0
Vdc

C f L f

ff

(7)

C “

«

0
1

ff

(8)

Variable d is the disturbance, depending on the parallel branch current as follows:

d “ ´
1

C f

ˆ

dish
dt

˙

´

˜

R f

C f L f

¸

ish (9)

SMC technique is used to solve the tracking problem; here the goal is that the output (y) follows
the desired output VT

re f “
”

vre f
.
vre f

ı

. Its error state vector is expressed as follows:

VT
e “

”

vre f ´ v
.
vre f ´

.
v
ı

(10)

4.2. Sliding Surface Selection and Sliding Mode Existence Evaluation

In order to control the inverter output voltage, an appropriate sliding surface directly affected by
the switching law must be found. A sliding surface is in fact a surface on which the state trajectories
are located to attain a stable condition. So, the sliding surface equation should be dynamically stable.
A common form for choosing this surface is the following state feedback law:

S pVe, tq “ K Ve “ k1
d
dt

ve ` k1ve (11)
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where K is a feedback gain matrix with two non-zero positive gains, k1 and k2. The following equation
shows that the sliding surface has dynamic stability.

SpVe, tq “ 0 ñ k1
.
ve “ ´k2ve ñ ve “ vep0qe

´
k2
k1

t

t Ñ8ñ ve Ñ 0 ñ vptq Ñ vre f ptq
(12)

In the suggested control system, all state trajectories should be converted to a sliding surface of
S(Ve,t) = 0 over a limited time. Therefore, the switching law should ensure the stability condition for
the system in SMC. This is the sliding mode existence condition, defined as follows:

S pVe, tq
.
S pVe, tq ă 0 (13)

Equation (13) is the Lyapunove function that ensures the system stability condition, since:

- if S > 0 and Ṡ < 0, then S(Ve,t) will decrease towards zero.
- if S < 0 and Ṡ > 0, then S(Ve,t) will increase towards zero.

The sliding mode existence condition implies that the distance between the system states and the
sliding surface will lend to zero.

4.3. Determination of Control Law

After verifying the sliding mode existence condition, the switching law for the semiconductor
switches can be devised as follows:

uptq “

#

`1 S pVe, tq ą 0
´1 S pVe, tq ă 0

(14)

If u(t) = +1, then Sw1 and Sw2 switches are on. If u(t) = ´1, then Sw3 and SW4 switches are on.
In the ideal SMC, at infinite switching frequency, state trajectories are directed toward the sliding
surface. However, a practical power inverter cannot have an infinite switching frequency. So, the states
trajectories will not tend towards the origin, and move along the discontinuity surface with undesired
oscillation known as Chattering. These oscillations may excite un-modeled dynamics of the system.
Therefore, to implement practically and to eliminate chattering, the system characteristics are compared
to a 2ε hysteresis band, where switching occurs at |S(Ve,t)| < ε. By applying the above hysteresis
surface comparator, the switching law is modified as follows:

uptq “

#

`1 S pVe, tq ą ε
´1 S pVe, tq ă ε

(15)

Figure 3 shows the complete strategy to implement the SMC of the DSTATCOM. The derivative
part of the SMC in (11) is implemented using the filter capacitor current feedback loop as follows:

k2p
.
vre f ´

.
vq “

k2

C f
piC f re f ´ iC f q (16)
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5. Simulation Results

Voltage sag in the distribution system due to short circuit faults can be simulated using
PSCAD/EMTDC software on the IEEE 13-bus standard test system. The impact of DSTATCOM
compensator on the voltage sag compensation in the distribution system (Figure 4) is studied.
In Figure 4, bus 650 is chosen as the input bus of the system, and is fed by the 20 kV voltages.
A voltage regulator is used between buses 650 and 632. For regulator simulation, a transformer with a
tap changer under load is employed, enabling stabilization of the voltage oscillations due to system
disturbances. Two transformers with Y-Y connection and a turns ratio of 20/0.4 are used to model the
low voltage network. These transformers are 500 kVA with R = 1.1% and X = 2%, located between buses
633 and 634 and between buses 671 and 680. In this system, seven different network configurations
are used to model the distribution lines. The loads in this network are in the lumped and distributed
forms, and a nonlinear load is connected to bus 680 consisting of a full bridge diode rectifier with
equivalent DC side resistance of 5 Ω and smoothing DC capacitor of 500 µF.
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5.1. Voltage Sag

Short circuit faults, as one of the most important reasons for voltage sag, can be simulated in the
distribution networks. The types of different short circuit faults regarding the network structure are
created in bus 671. Then, the voltage changes of buses 650, 634, 646, 675, and 611 due to these short
circuits are obtained and summarized in Table 1. In this case, simulation time is 2 s and the fault occurs
in ts = 1 s, and is cleared after 0.1 s. In these simulations, the fault impedance is 1 Ω and the fault
resistance between the lines is 0.1 Ω. Figures 5 and 6 shows the voltage variations in typical bus 611
due to symmetrical and unsymmetrical faults.
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Figure 5. Voltage variations in bus 611 due to types of unsymmetrical short circuit faults in bus 671
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Figure 6. Voltage variations in bus 611 due to types of symmetrical short circuit faults in bus 671 and
in uncompensated system: (a) three-phase fault; (b) three-phase to ground fault.

Table 1. Domain of bus voltage due to different short circuits in the uncompensated system.

Short Circuit Type
Bus Number

650 634 646 675 611

Single-phase to ground 19.950 0.379 19.164 17.233 17.190
Two-phase 19.941 0.373 18.243 10.579 10.470

Two-phase to ground 19.935 0.364 18.101 9.791 9.669
Three-phase 19.914 0.335 17.793 0.385 0.363

Three-phase to ground 19.892 0.319 17.685 0.141 0.135

5.2. Voltage Sag Compensation

Considering that the majority of nonlinear and sensitive loads were located nearly or on bus
671, DSTATCOM is used for voltage sag compensation on the same bus. Voltage variations due
to different short circuit faults in bus 611 in the presence DSTATCOM with two different control
systems—P+Resonant and SMC—in bus 671 are simulated in Figures 7 and 8. The two factors of
P+Resonant controller kP = 50 and kI = 100 are assumed. In the SMC controller, two parameters are
designed (k1 = 0.01 s, k2 = 2) and the hysteresis band is ε = 0.5 kv. It is easily possible to determine and
recognize the voltage sag and interruption as shown in Tables 2 and 3, and Figures 5–8.
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compensation with P+Resonant and SMC control systems.

Table 2. Domain of bus voltage due to different short circuits in the DSTATCOM-compensated system.

Short Circuit Type
Bus Number

Control System 650 634 646 675 611

Single-phase to ground SMC 19.983 0.390 19.531 18.413 18.407
P+Resonant 19.963 0.382 19.241 17.601 17.589

Two-phase SMC 19.976 0.384 18.984 17.718 17.705
P+Resonant 19.957 0.377 18.442 16.891 16.998

Two-phase to ground SMC 19.968 0.373 18.525 17.008 16.922
P+Resonant 19.949 0.369 18.229 16.423 16.313

Three-phase SMC 19.959 0.359 17.992 16.023 15.995
Control system 650 634 646 675 611

Three-Phase to ground SMC 19.959 0.359 17.992 16.023 15.995
P+Resonant 19.940 0.347 17.851 14.889 14.908

Table 3. Domain of bus voltage due to different short circuits in the DSTATCOM-compensated system.

Short Circuit Type
Bus Number

Control System 650 634 646 675 611

Three-Phase to ground SMC 19.948 0.347 17.841 15.482 15.135
P+Resonant 19.921 0.331 17.716 14.304 14.361
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As shown in Table 2 and Figures 7 and 8, the P+Resonant (an improved type of PI controller) and
SMC controllers are able to improve the voltage profile due to different short circuit faults in the typical
network. As it is shown, in presence of the nonlinear load, the proposed control method can provide
fewer disturbances (especially sensitive loads) and better compensate the voltage sag compared to
P+Resonant controller.

To compare the effectiveness of the SMC, simulation results of these two control systems are
presented in Table 3. Comparison of these figures and tables indicates that in using the SMC system,
the voltage sags due to the different short circuit faults are reduced by 100% if the domain of the
voltages are in the range of d < 0.1 and 0.3 < d < 0.6; in addition, the fault domain lies in the range of 0.6
< d < 0.9. Thus, this reduces the impacts of the voltage sag. So, compensation using DSTATCOM has
led to a 59.88% improvement in voltage quality. The level of this reduction depends on the type of fault,
which lies in the range of 5% to 18%. The compensator enables the provision of the required power for
full compensation of the symmetrical and unsymmetrical faults through DSTATCOM, in such a way
that if the fault is cleared in shorter than 75 ms, the compensator is able to fully compensate the voltage
interruption through its energy stored system. Figure 9 shows the voltage variations of buses 611, 675,
and 646, and also low voltage bus 634 due to three-phase to ground fault in bus 671. As depicted in
Figure 9, the voltage domain increases more than 0.9 per unit of the basic voltage—this indicates the
full compensation of the voltage interruption.
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Figure 9. Comparison of voltage interruption due to three-phase to ground fault in bus 671
with DSTATCOM.

6. Conclusions

In this paper, short circuit faults were reviewed as an important cause of voltage sag, and
DSTATCOM was used to compensate this phenomenon. Different strategies have been suggested
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so far for the control of DSATCOM. The conventional controllers (such as P+Resonant) are optimized
for a certain operating point and give a superior performance at that particular point. However,
considering the presence of nonlinear loads in power systems and parameter variations of distribution
networks, the P+Resonant controller fails to maintain good performance. Therefore, for system
nonlinearity and uncertainties in the distribution network, control techniques for variable structure
systems such as SMC can find a natural application in FACTS devices. In this paper, the design
and operation of the robust control of SMC in DSTATCOM to compensate voltage sag phenomena
were explained. Use of the SMC technique in this compensator enables compensation of voltage
sag appropriately over a wider range with less disturbance than other conventional control systems.
So, SMC represents a powerful tool to improve the performance of power inverters. In order to
validate the proposed control, the types of different short circuit faults on the IEEE standard system
related to distribution networks were simulated, and the results of the simulation indicated that the
aforementioned compensator with the proposed controller is able to improve the voltage profile about
59.88%, with almost no disturbance.
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