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Abstract: With CMOS technology aggressively scaling towards the 22-nm node, modern
FPGA devices face tremendous aging-induced reliability challenges due to bias temperature
instability (BTI) and hot carrier injection (HCI). This paper presents a novel anti-aging
technique at the logic level that is both scalable and applicable for VLSI digital circuits
implemented with FPGA devices. The key idea is to prolong the lifetime of FPGA-mapped
designs by strategically elevating the VDD values of some LUTs based on their modular
criticality values. Although the idea of scaling VDD in order to improve either energy
efficiency or circuit reliability has been explored extensively, our study distinguishes itself by
approaching this challenge through an analytical procedure, therefore being able to maximize
the overall reliability of the target FPGA design by rigorously modeling the BTI-induced
device reliability and optimally solving the VDD assignment problem. Specifically, we first
develop a systematic framework to analytically model the reliability of an FPGA LUT
(look-up table), which consists of both RAM memory bits and associated switching circuit.
We also, for the first time, establish the relationship between signal transition density and a
LUT’s reliability in an analytical way. This key observation further motivates us to define the
modular criticality as the product of signal transition density and the logic observability of
each LUT. Finally, we analytically prove, for the first time, that the optimal way to improve
the overall reliability of a whole FPGA device is to fortify individual LUTs according to
their modular criticality. To the best of our knowledge, this work is the first to draw such
a conclusion.
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1. Introduction

As electronic device technology aggressively scales towards the 22-nm node, especially with the
recent introduction of high-k material to avoid the gate tunneling effect, the aging-induced reliability
issue will be exacerbated greatly [1,2]. As such, structural degradation in modern Complementary Metal
Oxide Semiconductor (CMOS) devices can potentially accelerate, therefore resulting in hard faults at a
much faster pace [3]. Because these hard faults cannot be rectified to make an ICchip more reliable to
use, it is imperative to develop effective anti-aging techniques at the circuit, logic and architecture levels,
especially for the applications that require high field reliability. Such applications include automobiles,
aircraft, medical equipments or power plants, whereby the performance degradation and circuit failure
can potentially be life-threatening.

Major aging mechanisms of CMOS technology include bias temperature instability (BTI), hot carrier
injection (HCI), electro-migration (EM), stress migration (SM) and time-dependent dielectric breakdown
(TDDB) [4]. All of these mechanisms are responsible for the gradual oxide wear-out or the interconnect
failure that causes circuit performance degradation and transistor failure. Furthermore, all of these
mechanisms can be worsened by the high switching rate of a circuit, excess supply voltage or high
operational temperature. Among all of these transistor aging mechanisms, the most prominent ones are
the negative bias-temperature instability (NBTI), which affects PMOS transistors, and the positive one
(PBTI), which affects NMOStransistors [1,2,5,6]. The major effect of the NBTI and PBTI is that they
increase the magnitude of the transistor’s threshold voltage and reduce the effective carrier mobility over
time, therefore leading to a reduction in the operational reliability of the CMOS transistor. Ultimately,
such aging mechanisms will shorten the lifetime of CMOS devices. In the past, the effect of PBTI was
negligible in comparison to NBTI. However, since the introduction of the high-k/metal gate materials,
its effect becomes comparable.

Historically, Field Programmable Gate Array (FPGA) technology has been always at the forefront
to exploit the latest advancements in CMOS technology. This is because FPGA devices typically
have regular and highly-scalable structures, as well as stringent demands on high performance and
energy efficiency. For example, FPGAs that use a 22-nm high-k/metal gate process technology and
operate with frequencies up to 1.5 GHz have been announced [7]. Unfortunately, CMOS technology
scaling also poses several technical challenges to FPGA device’s reliability. Specifically, these issues
include manufacturing variability, sub-threshold leakage, power dissipation, increased circuit noise
sensitivity and reliability concerns, due to transient (e.g., radiation-induced soft errors) and permanent
(e.g., transistor aging) failures [8,9]. In this paper, we present a novel technique at the logic level,
specifically designed to mitigate the aging effect of FPGA devices. Our proposed method is both
scalable and applicable for Very Large Scale Integration (VLSI) digital circuits implemented with
modern FPGA devices.
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1.1. Research Objective and Key Contribution

Fundamentally, there are two approaches to mitigate the reliability issues in FPGA devices. The first
approach takes a bottom-up strategy, which involves analyzing failure mechanisms at the level of device
physics, therefore improving the overall reliability of FPGA devices through transistor engineering or
circuit optimization. The second approach attempts to improve FPGA device reliability in a top-down
direction, i.e., establishing the relationship between the reliability of individual circuit logic components
and the reliability of the whole device. In other words, the second approach formulates the FPGA
device reliability problem as a system engineering problem and solves it at the logic and architecture
design levels.

This paper focuses on mitigating the negative impacts due to FPGA transistor aging at the logic level.
Specifically, we aim at developing a systematic approach for discriminatively scaling VDDs within an
FPGA device in order to optimally improve its overall reliability. As will be shown later, our proposed
criticality-based approach is totally independent of the specific ways to enhance the reliability of
individual FPGA components. Besides elevating the VDDs of LUTs, we can also use device engineering
or even modular redundancy. As such, we first develop a systematic framework to analytically model
the reliability of an FPGA LUT (look-up table), which consists of both Static Random-Access Memory
(SRAM) bits and associated switching circuits. While the majority of all existing work focused on
studying the timing degradation due to BTI effects, we concentrate on investigating the BTI-induced
switching degradation in FPGA. We also, for the first time, establish the relationship between signal
transition density and a LUT’s reliability in an analytical way. This key observation further motivates
us to define the modular criticality as the product of signal transition density and the logic observability
of each LUT. Finally, we analytically prove that the optimal way to improve the overall reliability of a
whole FPGA device is to fortify individual LUTs according to their modular criticality. To the best of
our knowledge, this work is the first to draw such a conclusion.

The rest of the paper is organized as follows. Section 2 states the existing study results on CMOS
technology aging. We then delve into more detailed descriptions of the analysis procedure for FPGA
aging due to BTI in Section 4. In Sections 5 and 6, we outline our modeling strategy of FPGA reliability,
our proposed strategy to maximize its overall reliability and the optimality proof of our proposed
approach, respectively. Subsequently, Section 7 describes the reliability improvement results that we
obtained using benchmarks from the Altera benchmark suite of the Quartus University Interface Program
(QUIP). In these results, we aim to illustrate both the effectiveness and the computational efficiency of
our proposed approach. Afterwards, we present and analyze the usefulness of modular criticality values
by applying discriminative logic fortification to several circuits. As we will show, the knowledge of
modular criticality values for a given circuit can significantly increase the cost-effectiveness of hardware
redundancy. Finally, Section 9 concludes the paper.

2. Modeling BTI-Induced CMOS Device Aging

Several predictive models for BTI have been developed based on reaction-diffusion (R-D)
models [10,11]. In particular, several studies analyzed the BTI effect on threshold voltage
changes. Traditionally, although BTI can be categorized into two different effects on the
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transistor model, the NBTI, which affects PMOS transistors, is far more important than the
PBTI, which affects NMOS transistors. However, with the better understanding of high
κ/metal gate transistors in sub-45-nm technology, the PBTI effect becomes more important
and comparable to NBTI. In this paper, we adopt the most recent results and combine
both the NBTI and PBTI effects when estimating BTI’s impact on the transistor threshold
voltage Vth. For brevity, we omit the detailed description of the physical mechanism for
both the BTI and PBTI. Instead, we refer interested readers to many existing studies [11–13] for
further information.

Fundamentally, there are two types of BTI effects: static BTI and dynamic BTI. The static NBTI/PBTI
corresponds to the case when the PMOS/NMOS transistor is under constant stress. In this case, ∆Vth

due to NBTI/PBTI at time t can be expressed, according to [14], as:

∆Vth = A
(

(1 + δ)tox +
√
C(t− t0)

)2n
,

where n is the time exponent and n = 1/6 to 1/4 depends on the diffusion type used in the physics
modeling. A is another constant depending on the hole density, temperature T and the electrical field
Eox = (VGS − Vth)/tox. Specifically,

A =

(
qtox
εox

)[
K2Cox(VGS − Vth)

(
exp

(
Eox

E0

))] 2
3

,

where q is the electron charge, k is the Boltzmann constant andCox is the oxide capacitance per unit area.
Dynamic BTI corresponds to the case where the PMOS/NMOS transistor undergoes alternate stress

(Vgs = (−/+)VDD) and recovery (Vgs = (+/−)VDD) periods. Fundamentally, both NBTI and PBTI
have two phases: (1) the stress phase, at which the gate-source voltage is reversely (positively) biased
(VGS = −(+)VDD); and (2) the relaxation phase (VGS = 0). As shown in Figure 1, at the stress phase,
the interface of channel and gate oxide creates some interface traps. The created interface traps make
the magnitude of threshold voltage Vth increase; on the other hand, some of the interface traps may be
removed, and as a result, the Vth of the transistor decrease, due to the widely different diffusivity of H2

in the oxide and poly-Si. The recovery becomes a two-step process, with fast recovery driven by the H2

in oxide followed by slow recovery of H2 by back diffusion from poly-Si. Thus, ∆Vth can be separately
expressed in stress and recovery periods.

∆Vth =
[
Kv(t− t0)

1
2 + (∆Vth0)

1
2n

]2n
,

and

∆Vth = Vth0

[
1− 2ξ1te +

√
ξ2C(t− t0)

2tox +
√
Ct

]
,

where te either equals tox or the diffusion distance of hydrogen in the initial stage of recovery. This
parameter captures the fast drop of Vth at the beginning of the recovery phase. This effect is verified
with estimated measurement data from [11]. This model also accurately captures the dependence of the
fractional recovery on tox. Thus, thicker dielectrics have higher fractional recovery.
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Figure 1. Illustration of Dynamic BTI. Each clock cycle consists of two phases:
(1) Stress (D) and (2) Recovery (R). The dashed line represents the overall aging process,
i.e., the increasing trend of Vth.
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In order to predict the long-term threshold voltage degradation (∆Vth) due to NBTI at a time t,
the stress and recovery cycles can be simulated for m = t

Tclk
cycles to obtain the long-term degradation.

However, for high performance circuits, m can be very large, even for t = 1 month. Thus, it becomes
impractical to perform simulation in order to predict ∆Vth. However, various recent studies have shown
that it is possible to obtain a closed form for the upper bound on the ∆Vth as a function of the duty
cycle α, Tclk and t [15]. In fact, the models of PBTI and NBTI are similar to each other. The BTI effect
on Vth can be calculated as follows [15],

∆Vth = AY ntn, (1)

where A is a function-dependent factor of the temperature, n is a constant depending on the fabrication
process (n = 1/6 or n = 1/4 based on the diffusion type [14]), Y is the duty cycle and t is the total time
(transistor age) [15]. In this paper, we define the duty cycle of a transistor as the ratio between the stress
time to the total time, which also can be defined by signal probability (SP). To further verify the accuracy
of this model, we have compared the results of our modeling and the experimental data collected by [15]
for the TSMC45-nm technology node. Both data have shown very good matching.

The R-D based Vth model discussed above assumes nominal degradation without considering the
statistical variation in the underlying degradation process. In reality, due to the finite number of Si-H
bonds in the channel, breaking and re-passivation of these bonds experience stochastic fluctuations [16].
This phenomenon is similar to the random Vth variation induced by the number and the placement
of dopant atoms in the channel, known as the random dopant fluctuation (RDF) effect. The general
framework of BTI variation has been proposed by Stewart in [17], where the number of broken bonds
NIT in the channel has been modeled as a Poisson random variable. Under this assumption, NIT satisfies
the following:

σ2(NIT) = µ(NIT) =
Coxµ(∆Vth)

q
=
εoxAGµ(∆Vth)

qtox
,
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where σ(NIT) and µ(NIT) represent the mean and the standard deviation (SD) of NIT. µ(∆Vth) is
the nominal (mean) Vth degradation due to the BTI. AG is the effective channel area. We can further
derive the SD of Vth as:

σ2(∆Vth) = σ2(NIT)

(
q

Cox

)2

=
qtoxµ(∆Vth)

εoxAG

. (2)

This equation shows that since the nominal Vth degradation follows a fractional power law,
the µ(∆Vth) also maintains a power relationship with respect to time with a fixed exponent of 1/12. Note
that unlike the nominal Vth degradation, the BTI-induced Vth SD depends on the transistor dimension
AG with a reverse square relationship.

3. Aging-Induced Error Probability in CMOS

In Section 2, we analyzed the temporal degradation of Vth in CMOS transistors due to BTI. In this
section, we show that knowing the threshold voltage degradation of a single transistor due to BTI, one can
predict the degradation of CMOS transistor switching performance and SRAM read/write performance
with a high degree of accuracy.

3.1. BTI-Induced Error Probability in CMOS Switches

As Vth increases due to transistor aging, the voltage drive (VDD − Vth) decreases, thus gradually
degrading the digital switching behavior of a CMOS transistor. However, quantifying such a negative
impact on digital switching is very challenging for two fundamental reasons [18]. First, the switching
failure of a given logic circuit is almost always caused by a group of several transistors that gradually
experience increases in Vth; therefore, it is very difficult to attribute the overall logic failure of a circuit to
a single gate. Second, it is very challenging to define a clean cut-off point of the voltage drive (VDD−Vth),
beyond which the transistor switching will stop functioning correctly. In fact, for a given logic gate,
as long as its output voltage level can be correctly interpreted by its receiving circuit, any input voltage
level is theoretically acceptable. To overcome these issues, we use a modeling approach based on the
voltage transfer curve (VTC) analysis proposed in [19] and further developed in [18]. In this method,
the amount of headroom to a switching failure is measured with the worst-case static noise margin
(SNM) present in the gate pair, which can be determined using the DC noise source configuration shown
in Figure 2a,b, or equivalently from a butterfly plot shown in Figure 2c. Here, the VTC of the first
gate is plotted combined with the inverse VTC of the second one. Positive SNM corresponds to the
existence of two areas entirely enclosed by the VTCs, corresponding to the two stable states of the gate
pair. Intuitively, the larger the values of W1 and W2, the better the switching performance is. As in
both [18] and [19], the exact threshold value of W1 and W2, as well as their corresponding threshold
values of V ∗th can be determined empirically. In this paper, we define that the switching failure happens
when the VTC asymmetry ratio γ exceeds 0.1, where γ is defined as |W1−W2|

max{W1,W2} . In many aspects, this
quantifying method based on SNM is conceptually very similar to the well-known “eye diagram” used
in analog circuit analysis.
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Figure 2. (a) Using a looped gate chain with feedback configuration to model a gate chain
with infinite length in (b); (c) the voltage transfer curves (VTCs) of the gate pair are used in
butterfly plots to determine the static noise margins (SNMs) [18].
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Figure 3. VTC curves of the 22-nm predictive CMOS device model [20] for five different
Vth values.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Va

V
b

Vth = 10mV

Vth = 20mV

Vth = 40mV

Vth = 60mV

Vth = 80mV

To further validate the SNM-based method, we have used the 22-nm predictive CMOS device
model [20], and our SPICE simulation results are presented in Figure 3. We define the SNM values to be
the side lengths of the largest squares, which can be inscribed into the areas (Figure 2c). For gates with
more than one input, multiple possible VTCs exist depending on the input configuration. As suggested
in [18], we solve this problem by considering only gate combinations that are expected to be critical, due
to their topology. For example, given the common logic gates, such as NAND2 and NOR2, an obvious
choice for the critical VTC will be the input combination of a weak low and a weak high values due to
the stacked transistors in the corresponding output path. In Figure 3, we have plotted the VTC curves
of the 22-nm predictive CMOS device model [20] for five different Vth values. It shows that as the Vth
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value increases from 20 mV to 100 mV, the VTC asymmetry ratio γ defined above increases from 0.0 to
0.5. Clearly, when Vth reaches 50 mV, the VTC asymmetry ratio γ ≥ 0.1, thus signaling the switching
failure.

As discussed in Section 2, both analytical modeling and empirical study have shown that ∆Vth follows
a Gaussian distribution. Furthermore, its mean µ(∆Vth) and variance σ(∆Vth) can be obtained by
Equations (1) and (2). For any given CMOS device, when ∆Vth > ∆V ∗th, digital switching fails, where
the threshold value ∆V ∗th can be obtained through SPICE simulations. Therefore, the error probability
of digital switching for a particular gate can be computed as:

Perr =

∫ +∞

V=V ∗th

fVth(V ). (3)

The relationship between Perr and the normal distribution of ∆Vth can be depicted as in Figure 4.

Figure 4. Probabilistic density function of ∆Vth (mV). ∆V ∗th denotes the cut-off point,
beyond which the transistor stops switching correctly. The shaded area represents the total
error probability that the transistor malfunctions.
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3.2. BTI-Induced Error Probability in SRAM Cells

The majority of FPGA devices are SRAM-based, i.e., they store logic cell configuration data in the
static memory organized as an array of latches. Figure 5 illustrates a standard logic design for a SRAM
cell consisting of six transistors. Unfortunately, In a static random-access memory (SRAM) cell, a
mismatch in the strength between the neighboring transistors, caused by BTI-induced aging, can result
in the failure of the cell [21], therefore causing the FPGA logic to malfunction. Specifically, there are
mainly three causes of SRAM failure.

Read failure: An increase in the cell access time that exceeds the delay requirements can cause SRAM
cell read failure. In SRAM cell concepts, the cell access time is defined as time of generating a difference
of pre-specified voltage between two bit-lines. The threshold voltage Vth of access transistor AXR and
the pull-down NMOS NR may significantly increase the access time.

Write failure: The inability of writing data into SRAM cells is called write failure. For example,
suppose the SRAM cell currently stores the value “1”, when writing “0” into this cell; the node VL gets
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discharged through the bit line BL in Fig. 5 to the low value VWR determined by the voltage division
between the PMOS PL and the access transistor AXL [21]. If VL cannot be reduced within time below
the trip point of inverter PR −NR(VTRIPWR), the write failure occurs.

Figure 5. Transistor network of a standard SRAM cell.
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Hold Failure: Hold failure happens when the content of a SRAM cell cannot be preserved due to the
application of lower power voltage VDD, which aims at saving leakage power consumption. For example,
in Figure 5, if the voltage of node L is lower than the trip point of inverter (PR−NR), hold failure occurs.
Additionally, flipping of the cell data with the application of a supply voltage lower than the nominal
one can also cause the failure of data holding in a SRAM cell at the standby mode.

Figure 6. Variation of failure probability with σ(Vth) [21].
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All of these failure modes can be caused by the BTI-induced Vth changes in CMOS transistors. In this
paper, we adopt the probabilistic SRAM failure model first proposed in [21] in order to analyze and
quantify the failure probabilities (access-time failure, read/write failure and hold failure) of synchronous
random-access memory (SRAM) cells. Unfortunately, there is no close-form solution for the overall
error probability for a given SRAM cell. Instead, we rely on a numerical method to obtain the error
probability solutions. In Figure 6, we present such error probability results. Note that it is the σ(Vth),
not the Vth itself, that determines the combined error probability of a SRAM cell. Later, in Section 4.1,
we will use these results to compute the aggregated error probability of FPGA LUTs due to BTI effects.

4. Modeling FPGA Device Aging

An FPGA is a logic device that contains a two-dimensional array of generic logic elements (LEs)
and programmable switches, as shown in Figure 7a. A logic element depicted in Figure 7b can
be configured (i.e., programmed) to perform a simple function, and a programmable switch can be
customized to provide interconnections among the logic elements. A custom design can be implemented
by specifying the function of each logic element, selectively setting the connection of each logic element
and selectively setting the connection of each programmable switch. A logic element usually contains a
programmable look-up table (LUT), programmable interconnects and flip-flops (FF). An n-input look-up
table is typically implemented by a static random access memory (SRAM) and is used to implement any
n-input combinational function. The flip-flops can be selectively used to implement sequential circuits.
Most FPGA devices also embed certain macro cells, such as block RAMs, dedicated multipliers, clock
managers and I/O interface circuits. Logic elements are usually grouped into logic array blocks (LABs).
Since the LUT is the basic logic element to implement the logic function, in this work, we analytically
quantify the aging-induced effect on the transistor for the FPGA reliability issue.

Figure 7. (a) Sketch of the FPGA architecture; (b) diagram of a simple logic block. FF,
flip-flop.
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In FPGAs, LUTs are considered the basic blocks for mapping Boolean functions. Modern FPGAs
allow modifications to the mapped function of LUTs through reconfiguration, partial or full, online
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or offline. The logic structure of a typical FPGA logic block consists of SRAM configuration
bits and switching network. Figure 8 depicts a small two-input LUT, whereas modern FPGA
devices typically use six- or eight-input LUTs. In the following, we derive the error probability of a LUT
analytically based on the error probability results of the SRAM cell and switching transistors developed
in Sections 3.1 and 3.2. Ideally, we should also incorporate flip-flops into our analytical framework.
There are two reasons why we did not do that. First, this paper mainly focuses on the logic correctness
of a placed and routed circuit implemented with an FPGA device. Flip-flops are clocked circuits whose
outputs may change on an active edge of the clock signal based on its input. Flip-flops normally would
not change the output upon input change, even when the clock signal is asserted. Therefore, the logic
correctness of an FF mostly depends on the timing violations due to device aging, which can be more
effectively addressed by reducing the clock rate or allowing more generous timing margins at the design
stage. Secondly, for all combinational circuits, FF does not exist. Even for the sequential circuits, the
number of FFs is much smaller than the number of switches in a modern FPGA. Finally, although we
did not include FFs in our theoretical analysis, we include every gate in our experiments of extracting
modular criticality through simulations.

Figure 8. Logic diagram of a two-input LUT.
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4.1. Aging-Induced Effect on LUT-SRAM

As discussed in Section 3, the device aging effect can cause read, write and hold failure in SRAM
cells. In fact, the error probability of a SRAM cell is determined by σ(Vth), which can be described as
a function of device duration t, technology node Gdevice and signal probability α. Therefore, the error
probability of a SRAM cell eSRAM = f(t, Gdevice, α).

After configuring an FPGA device, the SRAM cells in each of the activated LUTs store different
logic values, “0” and “1”, that determine the functionality of each LUT, hence the overall functionality
of the complete implemented logic design. During the operation of an FPGA device, for any given LUT
used, different combinations of input signals will switch on different transistor paths. The switched-on
path will establish the connection to a specific SRAM cell, whose stored logic bit becomes the output.



Electronics 2015, 4 161

Assume that the LUT has N inputs; the total number of bits in the N -LUT will be 2N . Furthermore,
assume the access probability and the error probability of each SRAM cell to be Pi and ei, respectively.
Because the error probability of a memory cell also depends on its content [21], we denote the error
probability of a SRAM cell that stores “0” and “1” as ei,0 and ei,1, respectively. Finally, we suppose
that the error probability of each memory cell is totally independent. Therefore, the error probability of
a 2N configuration memory block in a N -LUT can be written as PSRAM =

∑2N

i=1 Pi · ei =
∑

i∈S0
Pi ·

ei,0 +
∑

i∈S1
Pi · ei,1. Now, we assume that all SRAM cells are designed and manufactured with the

same error characteristics; therefore, ∀i, ei,0 = e0 and ei,1 = e1. As a result, PSRAM =
(∑

i∈S0
Pi
)
e0 +(∑

i∈S1
Pi
)
e1, where S0 and S1 denote the set of all memory cells that store “0” and “1”, respectively.

Because the signal probability α equals
∑

i∈S1
Pi, the final result:

PSRAM = (1− α)e0 + αe1. (4)

As discussed in the previous section, the “1” cell is much more critical than the “0” cell, and the
increasing of the signal probability of the LUT output for the “1” cell error probability will definitely
increase the total probability of the SRAM.

4.2. Modeling Error Probability of Switching Network

As illustrated in Figure 8, the LUT of modern FPGA devices typically uses an NMOS pass transistor
as the switching elements. Different input signal combinations can turn on some of these switching
transistors and route the bit content of one of LUT memory cell to the output y. Therefore, the error
probability for the switching network can be written as:

PSN =
2N∑
i=1

Pi · epath,i, (5)

where Pi and epath,i denote the probability of taking switching path i and the probability that the
path i malfunctions.

A faulty switching path can be caused by the switching degradation of the NMOS transistor, as
discussed in Section 3.1. Fundamentally, the long stress time on the NMOS transistor may lead to
increasing of threshold voltage Vth, which, in turn, results in degraded switching strength. Figure 9
illustrates a switching path consisting of N NMOS transistor switches. Assuming the aging-induced
error probability of an individual NMOS transistor Mi to be eMi

, the probability for the switching path
to be faulty can be written as epath = 1 − ∏N

i=1(1 − eMi
) = 1 − (1 − eM)N , when ∀i, eMi

= eM.
Substituting this into Equation (5) results in:

PSN =
2N∑
i=1

Pi · eM = 1− (1− eM)N . (6)
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Figure 9. One switched path containing N NMOSswitches.
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4.3. Analytically Modeling Error Probability in LUT

Each LUT in an FPGA device consists of two parts: the SRAM cell array and the multiplexer
switching network. Assuming that these two components malfunction independently, the error
probability of a LUT can be formalized as follows:

Perr,LUT = 1− (1− PSRAM) · (1− PSN)

= 1− (1− ((1− α)e0 + αe1))(1− PSN) (Substitute with Equation (4))

= 1− (1− e0 − α(e1 − e0))(1− (1− eM)N) (Substitute with Equation (6))

= 1− (1− eM)N(1− e0) + α(e1 − e0)(1− eM)N , (7)

where e1, e0 and eM denote the error probability of a SRAM cell that stores “1” and “0” and the
aging-induced error probability of an individual NMOS transistor (M), respectively. Furthermore,

dPerr,LUT

dα
= (1− eM)N · (e1 − e0) (8)

Because e1 > e0, as discussed in Section 4.1, obviously dPerr,LUT

dα
> 0, which means that the overall

error probability of a LUT increases monotonically with the increase of the output signal probability α.
It will become clear that this result is critical in our optimal solution of improving the overall reliability
of a placed and routed logic design with an FPGA device.

5. Analyzing FPGA Device Reliability

In this section, an intuitive approach to reliability analysis is described. It is based on the observation
that a failure at a gate close to the primary output has a greater probability of propagating to the primary
output than a gate several levels of logic away from the primary outputs. This is because a failure that
has to propagate through several levels of logic has a higher probability of being logically masked. This
can be quantified by applying the concept of observability, which has historically found use in the testing
and logic synthesis domains.

In reliability analysis, the logic observability of any logic node can be defined as the probability that
a logic value upset error (0 → 1 or 1 → 0) at the logic node under consideration will change the circuit
outputs. As stated in [22], logic observability can be computed with Boolean differences, symbolic
techniques based on binary decision diagrams (BDDs) or simulation. In this study, we will attempt to
derive a closed-form expression for the logic reliability, Pcorrect(e), where e denotes the error probability
of each logic gate.
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To the best of our knowledge, there has not been any systematic study on accurately measuring
modular criticality values within a large-scale VLSI digital circuit. The most related works to this
paper are several recent studies that explored various analytical ways of computing the overall logic
reliability of VLSI logic circuits [23–26]. Reliability analysis of logic circuits refers to the problem
of evaluating the effects of errors due to noise at individual transistors, gates or logic blocks on the
outputs of the circuit. The models for noise range from the highly specific decomposition of the
sources, e.g., single-event upsets, to highly abstract models that combine the effects of different failure
mechanisms [27,28]. For example, in [22], the authors developed an observability-based approach that
can compute a closed-form expression for circuit reliability as a function of the failure probabilities and
observability of the gates. Unfortunately, all of these analytical studies, although mathematically concise,
have to make some key assumptions, therefore seriously limiting their applicability and accuracy.
For example, the method in [22] needs to approximate the multi-gate correlations in order to handle
reconvergent fan-out. In addition, it is not clear how the existing analytical approaches can handle some
unspecified probabilistic input vector distributions or more complicated correlation patterns within a
VLSI logic circuit.

6. Optimally Improving Reliability via Discriminative VDD Scaling

In a typical FPGA CAD flow, after logic synthesis and technology mapping, any given logic circuit
will be converted into a network of LUTs (G). Without loss of generality, we assume that the circuit
under consideration consists of N LUTs, and each LUT has k inputs and one output. Furthermore, we
assume that G has M signal nets, each of which connects the output port of exactly one LUT to the
input ports of a number of LUTs. Furthermore, we define the signal probability and error observability
of signal net i as αi and βi, respectively. Finally, in this study, we define the product of αi and βi as the
logic criticality γi of LUT i.
G’s output reliability R(G, {ei}Ni=1) is its probability of being correct in all its output ports when

a large ensemble of identically and independently distributed (i.i.d.) random inputs are applied. Here,
{ei}Ni=1 denotes the vector of error probability of all N gates.

Intuitively, the larger the γi is, the more critical the LUT i is to the correctness of the whole circuit G.
Note that the input vector distribution need not to be uniform i.i.d. Instead, it can be any general form.
In other words, the larger the logic criticality γi is, the more sensitive the overall output reliability is
towards LUT i’s error.

The intuitive explanation of our definition of γi = αi × βi is straightforward. First, for any LUT i,
αi represents the frequency of its output switching, which is directly related to the transistor aging and
shows how likely a switching error will occur. Second, βi shows how sensitive the final output of G will
be to the output error of LUT i. Essentially, γi reflects the combined effect of both αi and βi towards
G’s overall correctness. In the following, we will show that our definition is not only intuitive, but also
optimal in the sense that, using the ranking of logic criticality γi as the guidance, we can optimally
maximize the overall reliability improvement of G given a fixed amount of extra resources, such as
additional chip area or extra power budget.
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Thus, observability-based reliability analysis makes two simplifying assumptions for estimating
the effect of multiple gate failures.

1. The effect of LUT failures at the primary output is decoupled from each other, i.e., a failure at each
LUT i is assumed to affect the output with a probability βi regardless of other LUT failures. This
assumption allows the joint observability to be replaced by simultaneous observability, which is
computationally less demanding, to compute the effect of multiple gate failures at the output.

2. The observability of the LUTs are assumed to be independent of each other. Using this assumption,
the computation of the simultaneous observability of two LUTs can be simplified to the product
of the individual LUT observabilities. For instance, the probability that LUT 1 is observable and
LUT 2 is not observable is given by β1(1 − β2), and the probability that LUT 1 and LUT 2 are
both not observable is given by (1− β1)(1− β2).

With this background, we shall derive the expression for the probability of error at the output for
a general circuit network G with N LUTs. Without loss of generality, we assume that the circuit has
a single output y. Denote the error probability and logic observability of the ith LUT by ei and βi,
respectively. Using the first assumption, the output y will be in error when an odd number of faulty
LUTs in G are simultaneously observable. Using the second assumption, the simultaneous observability
of a set of LUTs can be computed by simply multiplying the individual observabilities of the LUTs.

In general, the probability that only the LUTs in F are observable is given by
A =

∏
i/∈F (1− βi)

∏
i∈F βi. The expression B =

∏
i/∈F (1− βi)

∏
i∈F −βi has the same magnitude as A

and the same sign as A when F has an even number of LUTs and the opposite sign as A when F has an
odd number of LUTs. Thus, when F has an odd number of LUTs, the expression 1/2(A−B) gives the
probability that the LUTs in F are observable, and when F has an even number of LUTs, 1/2(A− B) is
equal to zero. Thus, the probability that an odd number of LUTs in G is observable is given by:∑

F∈2G

1

2

(∏
i/∈F

(1− βi)
∏
j∈F

βj −
∏
i/∈F

(1− βi)
∏
j∈F

−βj
)
.

By the first simplifying assumption, the probability of error at the
output y given that the LUTs in G have failed is also given. Thus,
Pr(yerr)|G = 1

2

(∑
F∈2G

∏
i/∈F (1− βi)

∏
j∈F βj −

∑
F∈2G

∏
i/∈F (1− βi)

∏
j∈F −βj

)
=

1
2

(∏
j∈G(βj + (1− βj))−

∏
j∈G((1− βj)− βj)

)
= 1

2

(
1−∏j∈G(1− 2βj)

)
.

The probability that the LUTs in G are in error and the LUTs in Gc are error-free is
given by

∏
i∈G ei

∏
j∈Gc(1 − ej). Thus, the probability of error at the output y is given by

Pr(yerr) =
(∑

G∈S
∏

i∈G ei
∏

j∈Gc(1− ej)
)

1
2

(
1−∏j∈G(1− 2βj)

)
. Finally,

Pr(yerr) =
1

2

(
1−

∏
i∈G

(1− 2eiβi)

)
. (9)

This result clearly shows that, in order to minimize the overall error probability Pr(yerr), we should
always choose the largest eiβi terms to remove. Therefore, given N LUTs in an FPGA design, if only K
of them can be fortified, in order to maximize the overall design reliability, we should always choose the
K LUTs with the largest criticality values γi, where γi = αi × βi.



Electronics 2015, 4 165

7. Results and Analysis

To validate our error probability model and our discriminative assignment strategy, we have chosen
10 circuits from the Altera benchmark suite of the Quartus University Interface Program (QUIP).
The overall procedure of our experiments is depicted in Figure 10. All of our test circuits are in the
form of Verilog source files. We rely on the commercial Altera Quartus 2 software to perform all
FPGA logic synthesis, logic optimization and technology mapping. Finally, the resulting .QVM files
from the Quartus contain both the LUT netlist and the encoded logic truth table for each LUT. We then
use our in-house logic simulation tools to read in the .QVM file, and perform logic simulation. As in
many other studies, we use extensive Monte Carlo logic simulation to obtain the error probability of any
given circuit design. For each benchmark circuit, we cover all possible input combinations. For each
input combination, we run many simulation iterations in order to obtain accurate output reliability.
Of course, the number of simulation iterations for any given input vector will highly depend on the
specific topology and complexity of the targeted logic circuit. We continue logic simulations until the
out error probability saturates. Our results have shown that typically 5,000 logic simulations for each
input vector are often sufficient. As for logic observability, we use a similar approach, the only difference
being that we only invert the logic value at the logic node under consideration, while keeping all logic
values at all other nodes unchanged. The observability will be measured by counting the probability
for any output to change its value. Obviously, these measurement results also take the dependency of
logic observability on internal logic values into considerations. To deal with the intensive computations
required for the above logic simulations, we employ the STOKEScomputing cluster at UCF (University
of Central Florida), which consists of 3,450 compute cores (Intel Xeon 64-bit processors) and over 7.5
TB of RAM. The total simulation took about one week to complete.

We use the 45-nm predictive technology model (PTM) to model all CMOS devices
(http://ptm.asu.edu). At the nominal VDD = 1V and Vth = 0.18V , we assume the error probability
of all transistors to be zero. We then set the on-time to be C = 3 years and obtain the duty cycle values
Y from our logic simulations. Next, using Equation (1), we compute the ∆Vth, which can then be used to
obtain σ2(∆Vth) using Equation (2). Using Equation (3), we then obtain the error probability of a single
transistor Perr. Finally, we can calculate the error probability of any single LUT by the method discussed
in Section 4. Note that the above methodology of computing error probability caused by device aging is
only applicable to pass-transistor switches. Because the SRAM elements store constant values, we use
a different approach to evaluate the aging effect on the error probability. Specifically, as discussed in
Section 4.1, after obtaining σ2(∆Vth) using Equation (2), we can utilize the empirically-measured data,
as shown in Figure 6, to read out three main components of the error probability of a SRAM memory
cell [21], which can be readily combined to obtain the total memory error probability due to device
aging. Our results have shown that for the 45-nm CMOS technology, after three years of switch-on time,
the ∆Vth is 0.063 V, which induces about 1.34 × 10−4 in LUT error probability. This error probability
can be completely eliminated by elevating the VDD to be about 1.1 V.
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Figure 10. CAD flow of our circuit design experiments.
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All results in Table 1 have been obtained under the above assumptions. For each of these
ten benchmarks, we conduct four sets of experiments denoted by U, A, B and C. Type U experiments
serve as the baseline when no circuit fortification is done. In Type A experiments, we use the optimal
fortification strategy that we developed in Section 6, i.e., we chose K LUTs with the largest criticality
values to fortify. In Type B experiments, we randomly pick K LUTs to fortify, while in Type C
experiments, we do the opposite to our optimal fortification strategy: we choseK LUTs with the smallest
criticality values to fortify. Finally, we have tried three differentK values, which are 10%, 20% and 30%
of N .

Table 1. Results of the overall error probability Perr for all 10 Quartus University Interface
Program (QUIP) benchmarks.

top 10% top 20% top 30%
LE# PIN# U

A B C A B C A B C

OC_SRAM 243 153 0.0387 0.01046 0.0265 0.02636 0.00331 0.00887 0.008812 0.00331 0.00887 0.008812
B04 189 21 0.03698 0.01581 0.0276 0.0281 0.00404 0.00843 0.008139 0.0016 0.002811 0.002711

Barrel16 135 38 0.0314 0.01314 0.0192 0.0198 0.00361 0.00714 0.007108 0.00105 0.00295 0.003071
Barrel64 897 136 0.1765 0.03023 0.1274 0.1211 0.00841 0.0231 0.02341 0.000817 0.00714 0.007131
EX1010 871 20 0.145 0.0912 0.1287 0.1233 0.045 0.0854 0.0844 0.01226 0.0368 0.03067

FLIP_RISK8 1490 113 0.282 0.0876 0.235 0.2345 0.0484 0.085 0.082 0.0106 0.021 0.024
MUX8_64 835 76 0.161 0.054 0.112 0.116 0.0114 0.0877 0.0881 0.006325 0.00969 0.00971

OC_AES_CORE 5005 388 0.312 0.082 0.278 0.277 0.01087 0.051 0.0526 0.0081 0.0314 0.0322
OC_FPU 6972 110 0.351 0.0754 0.2588 0.257 0.012745 0.0621 0.0652 0.006124 0.00881 0.00892

OC_DES3PERF 20188 298 0.413 0.0959 0.381 0.3815 0.010745 0.07821 0.07813 0.00196 0.009181 0.00912

As shown in Table 1, for all benchmark circuits, our optimal discriminative voltage scaling method has
significantly improved its overall logic circuit reliability. The improvement ranges from approximately
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three-times to five-times. Not surprisingly, the opposite voltage scaling (Type C) has performed poorly
with reliability improvements ranging from merely 10% to 30% for K = 10%N . Also intuitively true,
when K values increases from 10% to 30%, for any benchmark circuit and any voltage scaling method,
the improvement in overall circuit reliability steadily increases. Somewhat surprisingly, when comparing
Type B with Type C experiments, very few differences can be found. This essentially shows that, without
utilizing the LUT criticality values as the guidance for discriminative voltage scaling, the reliability
improvement is almost as poor as the worst scenario. This finding clearly shows the significant advantage
of our proposed discriminative voltage scaling scheme based on the LUT criticality ranking.

When examining the results in Table 1 more carefully, one can find that the effectiveness of our
discriminative voltage scaling method varies widely. For example, after fortification, the reliability of
FLIP_RISKS has been improved by almost 3.22-times, while the reliability of EX1010 has only been
improved by 1.58-times, although both circuits are of almost the same size. To better understand
this phenomenon, in Figure 11, we have plotted the value profile of LUT criticality and LUT error
probability values for both circuits. In each circuit, we first sort all of the LUTs according to the
decreasing order of criticality. We then plot the LUT error probability values according to this sorted
order. Comparing Figure 11a,b, one can easily observe that for the circuit FLIP_RISKS, the sorting order
of LUT criticality and error probability match quite closely. In contrast, for Ex1010, these two orderings
differ greatly. In other words, for FLIP_RISKS, the most critical LUT often is the one with the highest
error probability, while for Ex1010, the opposite is true. Therefore, in the case of Ex1010, we may
have fortified many LUTs with very low error probability, hence the relatively low effectiveness of our
discriminative voltage scaling.

Figure 11. Profile comparison between LUT criticality and LUT error probability values.
(a) Results of circuit FLIP_RISKS. (b) Results of circuit Ex1010.
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8. Related Work

Criticality analysis has been extensively studied in software [29], but is quite rare in error-resilient
computing device research. Only recently, the general area of criticality analysis (CA), which provides
relative measures of significance for the effects of individual components on the overall correctness of
system operation, has been investigated in digital circuit design. For example, in [30], a novel approach
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to optimize digital integrated circuit yield with regards to speed and area/power for aggressive scaling
technologies is presented. The technique is intended to reduce the effects of intra-die variations using
redundancy applied only on critical parts of the circuit. In [31], the researchers have explored the
idea of discriminatively fortifying a large H.264 circuit design with FPGA fabric. They recognize that:
(1) different system components contribute differently to the overall correctness of a target application
and therefore should be treated distinctively; and (2) abundant error resilience exists inherently in many
practical algorithms, such as signal processing, visual perception and artificial learning. Such error
resilience can be significantly improved with effective hardware support. However, in [31], the authors
used Monte Carlo-based fault injection, and therefore, the resulting algorithm cannot be efficiently
applied to large-scale circuits. Furthermore, their definition of modular criticality was quite ad hoc,
therefore lacking analytical justification.

More relevant to our study, [32] introduced a logic-level soft error mitigation methodology for
combinational circuits. Their key idea is to exploit the existence of logic implications in a design
and to selectively add pertinent functionally redundant wires to the circuit. They have demonstrated that
the addition of functionally redundant wires reduces the probability that a single-event transient (SET)
error will reach a primary output and, by extension, the soft error rate (SER) of the circuit. Obviously,
the proposed circuit techniques can be readily applied using our proposed criticality estimation method,
especially in a large-scale circuit case. However, more importantly, the method used in [32] to determine
circuit criticality is mostly done by assessing the SET sensitization probability reduction achieved by
candidate functionally-redundant wires and selects an appropriate subset that, when added to the design,
minimizes its SER. Consequently, their overall method of criticality analysis is rather heuristic and
utilizes largely “local” information. In addition, it is not very clear how this method can scale with
very large-scale circuits.

Samudrala et al. [33] also targeted hardening combinational circuits, but focused on mapping digital
designs onto Xilinx Virtex FPGAs against single-event upsets (SEUs). They do not perform detailed
criticality analysis. Instead, their method uses the signal probabilities of the lines to detect SEU-sensitive
sub-circuits of a given combinational circuit. Afterwards, the circuit components deemed to be sensitive
are hardened against SEUs by selectively applying triple modular redundancy (STMR) to these sensitive
sub-circuits. More recently, in [34], a new methodology to insert selective TMR automatically for SEU
mitigation has been presented. Again, the criticality was determined based on empirical data. Because
the overall method is cast as a multi-variable optimization problem, it is not clear how this method can
scale with circuit size, and few insights will be provided as to which part of the circuit is more critical
than others, and by how much.

Finally, another related study [6] also studied the transistor aging mostly due to NBTI and PBTI for
FPGA technology. However, they only investigated the effect of transistor aging, due to NBTI and PBTI,
in LUTs, by considering different implementations through detailed SPICE simulations. In contrast, our
study involves both analytical and empirical studies. More importantly, we study how to improve the
overall logic reliability for logic circuits implemented with an FPGA device, without modifying any
logic structure in FPGA circuit implementations. Our main approach is to strategically elevate VDD at
various critical components to maximize its reliability benefits.
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9. Conclusions

There are two fundamental contributions in this work. First, to the best of our knowledge,
this study is the first one to reveal the analytical relationship between the BTI-induced device aging and
its device reliability through a probabilistic argument. Building upon this finding, we were able to derive
analytical models to model the circuit reliability of LUTs in an FPGA device. Second, for the first time,
we show that, given a fixed amount of extra resources, the optimal way to allocate them, so that the
overall reliability of circuit design can be maximized, is to use the criticality to prioritize the resource
allocation. This solution is quite general in its applicability. Moreover, the extra resource considered can
take many forms. In this work, we chose to use elevated VDD, but this can also be replaced with hardware
redundancy, transistor device engineering or transistor sizing.
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