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Abstract: Single, hip-mounted accelerometers can provide accurate measurements of 

energy expenditure (EE) in some settings, but are unable to accurately estimate the energy 

cost of many non-ambulatory activities. A multi-sensor network may be able to overcome 

the limitations of a single accelerometer. Thus, the purpose of our study was to compare 

the abilities of a wireless network of accelerometers and a hip-mounted accelerometer for 

the prediction of EE. Thirty adult participants engaged in 14 different sedentary, 

ambulatory, lifestyle and exercise activities for five minutes each while wearing a portable 

metabolic analyzer, a hip-mounted accelerometer (AG) and a wireless network of three 

accelerometers (WN) worn on the right wrist, thigh and ankle. Artificial neural networks 

(ANNs) were created separately for the AG and WN for the EE prediction. Pearson 

correlations (r) and the root mean square error (RMSE) were calculated to compare 

criterion-measured EE to predicted EE from the ANNs. Overall, correlations were higher  

(r = 0.95 vs. r = 0.88, p < 0.0001) and RMSE was lower (1.34 vs. 1.97 metabolic 

equivalents (METs), p < 0.0001) for the WN than the AG. In conclusion, the WN 

outperformed the AG for measuring EE, providing evidence that the WN can provide 

highly accurate estimates of EE in adults participating in a wide range of activities.  
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1. Introduction 

The measurement of physical activity (PA) is beneficial for assessing the effectiveness of 

interventions at increasing PA, determining normal PA behaviors in populations and evaluating the 

associations of PA health outcomes. Use of commercial accelerometer-based activity monitors has 

increased in recent years, due to their utility in providing objective, valid, reliable and responsive 

measures of free-living PA [1,2]. Accelerometers work by collecting raw data based on accelerations 

of the body in one or more planes of movement, with the assumption that accelerations are 

proportional to muscular contraction and energy expenditure (EE). Commercially available 

accelerometers, such as the ActiGraph models, will digitize, filter and rectify the acceleration signals 

into “activity counts”, allowing meaning to be placed on the acceleration [3,4]. When accelerometers 

are placed on the hip, EE can be predicted from activity counts using linear regression; this method has 

shown moderate-to-high correlations with EE during ambulatory movement (i.e., walking and 

running), which is the most common type of movement in most adult populations [5]. However, 

traditional use of accelerometry suffers from several well-known limitations, including poor accuracy 

for the accurate estimation of the energy expenditure (EE) of activities, such as cycling, walking on an 

incline, climbing stairs, activities involving upper-body movement and the inability to classify the 

activity type [6–8]. Newer accelerometer models are able to collect raw acceleration data for days or 

weeks at a time at very high sampling rates; accordingly, researchers have successfully used machine 

learning techniques, such as decision trees and artificial neural networks (ANNs), to identify PA type, as 

well as intensity [9]. 

While machine learning algorithms developed from hip-mounted accelerometers can offer some 

ability to identify PA type and measure EE [7,10,11], obtaining information about movements of 

multiple parts of the body simultaneously can offer a greatly improved capacity for identifying PA 

type, intensity, frequency and duration [12]. Zhang et al. tested a five-sensor, wired network called  

the Intelligent Device for Energy Expenditure and Activity (IDEEA) and found that it was able to 

identify 32 types of activity with an accuracy of 98.7% [13] and could measure EE with over 95%  

accuracy [14]. In addition, the IDEEA monitor has been used as a criterion measure for measuring 

free-living EE when validating other PA measurement instruments [15,16]. However, the IDEEA has 

several notable shortcomings. First, the five sensors of the IDEEA are each connected (via wires) to a 

microcomputer worn on the hip [13], making the IDEEA cumbersome to wear. These complications 

significantly increase participant burden and may result in lower compliance with wearing the unit in  

free-living settings. Moreover, the IDEEA is not an open architecture, since it is a wired device; 

therefore, it cannot easily be modified to include additional sensor modalities to enhance the detection 

of new activities or postures. This last point is a significant limitation, since the IDEEA monitor does 

not have sensors mounted to the arms and is unlikely to be able to accurately detect some upper-body  

activities [13,17]. Finally, the IDEEA uses proprietary algorithms to classify activity type and predict 
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EE, but the current algorithms dramatically underestimate the EE of activities, such as leg cycling [17]. 

In order to make a system of accelerometers suitable for free-living PA measurement, the system needs 

to be comfortable to wear, impose minimal burden on participants and be able to accurately measure a 

range of activities. 

A wireless system with the ability to classify upper-body movements and to be suitable for  

free-living use would address many of the shortcomings of the IDEEA. Tapia et al. [18] were the first 

to use a wireless system of five accelerometers and a heart rate monitor for identifying PA type. The 

system achieved an accuracy of about 56% for identifying 30 activities, but was not validated or used 

for EE measurement, which is an important outcome variable in PA research [6]. Tapia’s system 

provided proof-of-concept of the utility of a wireless multi-sensor system, but their use of six 

measurement devices imposes a large burden on the wearer and results in a large amount of data that 

must be cleaned, processed and analyzed. In a later study, Intille et al. [19] used a three-piece wireless 

accelerometer network and found vastly improved EE measurement compared to hip-mounted 

accelerometers, but their study did not utilize ANNs, which show great promise for the improvement 

of EE measurement. Additionally, Intille et al.’s study only evaluated total EE and did not assess 

accuracy for measuring EE over short durations (i.e., minute-by-minute). Thus, over- and  

under-estimations throughout the course of a day could cancel each other out, yielding a misleading 

assessment of the system’s performance for measuring EE. 

There have been several other systems of accelerometers and physiologic monitors designed for 

activity recognition [20–23], but there is limited research specifically on EE measurement. In a recent 

study, Mo et al. [24] were able to accurately classify activity intensity with 86% accuracy when using 

a system of two accelerometers and a displacement sensor (for measuring breathing rate and volume). 

However, activity intensity is a crude measure of EE, since there are only four intensity categories 

(sedentary, light, moderate and vigorous). For the purposes of determining the energy balance or 

movement economy, a more precise measurement of EE (metabolic equivalents (METs)) is required. 

Our research team recently built a three-piece wearable wireless network of accelerometers that are 

worn on the right wrist, thigh and ankle. The classification accuracy for 14 activities ranged from 

93.4% to 97.0% in a laboratory-based setting [23], but the network has yet to be validated for EE 

measurement. Thus, the purpose of this study was to validate the wearable wireless network for 

predicting EE of 14 sedentary, ambulatory, exercise and lifestyle activities in a laboratory-based 

setting. A secondary purpose was to directly compare EE predictions from the wireless system to 

predictions from a hip-mounted, commercially available accelerometer. 

2. Experimental Section 

2.1. Participants 

Participants in this study were 30 healthy adults aged 18–30 who were recruited from the 

surrounding area of East Lansing, MI. Participants were volunteers who were eligible for inclusion in 

the study if they were able to complete the prescribed activities and had no contraindications to 

exercise or gait abnormalities that would invalidate the use of accelerometry. The procedures were 

approved by the Michigan State University Institutional Review Board prior to the start of the study. 
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Participants were instructed not to exercise or eat for at least three hours prior to reporting to the 

laboratory. Upon arriving at the laboratory, the procedures, risks and benefits of the study were 

described both verbally and in writing, and each participant provided written consent before beginning 

the study protocol. Participant height was measured using a wall stadiometer, and participant body 

weight was obtained using an electronic scale. Both measures were obtained according to methods 

described elsewhere [25]. A body fat estimate was obtained using a Quantum Labs bioelectrical 

impedance analysis machine (RJL systems, Clinton Township, MI, USA). 

2.2. Equipment 

2.2.1. Wireless Accelerometer Network 

The wearable wireless network system is comprised of three wireless MICA2 motes (Crossbow 

Inc., Milpitas, CA, USA). Each mote measures raw, biaxial acceleration data at a rate of 10 samples/sec 

(Hz) and is mounted to a battery pack and an elastic band. Together, each mote (including two AAA 

batteries and an elastic band) weighs about 50 grams. One mote was placed at the dorsal part of the 

right wrist, just proximal to the hand. The second mote was then placed on the lateral part of the right 

thigh, just superior to the knee, and the third mote was placed on the lateral part of the right ankle, just 

superior to the foot. These placements were chosen to capture the movement of the upper and lower 

body, as well as the postural differences between sitting, lying and standing [23]. To reduce power 

usage and improve the battery life of the motes, out-of-body processing was utilized, meaning that data 

collected by the wireless system was immediately transmitted, via a wireless signal, to a computer 

instead of being stored within the accelerometer (like how most commercially available accelerometers 

function). Accelerometer data were continuously transmitted to a computer and wireless base station. 

In order to minimize the loss of data during transmission, data were replicated in consecutive data 

packets. In the event of a data packet loss, the sensor on the base station could recover lost data due to 

the redundancy in the transmission. Thus, data loss would occur only when two consecutive packets  

were lost. 

2.2.2. Hip-Mounted Accelerometer 

The ActiGraph accelerometer (ActiGraph, LLC, Fort Walton Beach, FL, USA) is one of the most 

popular accelerometers used for measurement of PA. It has been validated for use in adults and has 

been used in previous research using both regression equations and machine learning algorithms for 

estimating PA type and EE [5,7,26,27]. The ActiGraph GT3X+ was used in the current study and was 

set to record raw, triaxial data at a sampling rate of 30 Hz. The ActiGraph was placed on the anterior 

axillary line of the right hip and was secured using an elastic belt. Prior to each test, the ActiGraph was 

initialized using the ActiLife software according to the manufacturer’s recommendations. 

2.2.3. Portable Metabolic Analyzer 

The Oxycon Mobile portable metabolic analyzer (CareFusion, Hoechberg, Germany) is an indirect 

calorimeter, which measures breath-by-breath expired gases, allowing for the calculation of oxygen 

consumption (VO2) and carbon dioxide production (VCO2). The Oxycon is a lightweight device (950 g) 
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consisting of two small computer units that are mounted to participants’ backs using a shoulder harness. 

Participants also wear a breathing mask that covers the nose and mouth (held in place by a mesh cap) for 

the collection of all expired gases. The mask is attached to a digital turbine flow meter and a gas 

sampling tube, which connect to the computer units on the back. The flow meter and sampling tube 

allow for the measurement of VO2 and VCO2 from the measured inspired and expired gas 

concentrations and volumes. The Oxycon has been validated for the measurement of oxygen 

consumption across a range of exercise intensities [28], and it serves as the criterion measure of EE in 

this study. Before each test, the Oxycon was calibrated according to manufacturer specifications. Prior 

to each visit, the wireless network, ActiGraph and Oxycon were synchronized to an external clock to 

allow for exact comparisons of data from the devices. 

2.3. Description of Activities Performing during the Protocol 

After being fitted with the wireless network, ActiGraph and metabolic analyzer, participants began 

the experimental protocol. Each participant performed 14 activities in the Human Energy Research 

Laboratory (the activities are shown in Table 1). These activities were chosen to represent a range of 

sedentary, ambulatory, exercise and lifestyle activities comprising a range of intensities (from 

sedentary to vigorous). Activities were performed in this order, because pilot testing determined that 

this order corresponded to an increasing intensity of activity, thereby minimizing the time required for 

VO2 to reach a steady state for each activity [29]. The activities were performed for a duration of five 

minutes each. Participants were instructed to complete each activity without stopping (if possible), and 

between activities, they were allowed to rest and remove the Oxycon mask briefly to drink water. 

For all activities, research assistants read a script to participants describing the correct execution of 

each activity and then were monitored throughout the visit to ensure that each activity was correctly 

performed. Ambulatory activities were performed on a treadmill. Cycling slow and cycling fast were 

performed on a Monark 818E (Monark Exercise, Varberg, Sweden) cycle ergometer, and stair 

climbing was performed on a StairMaster PT7000 stepmill (StairMaster Health and Fitness Products, 

Inc., Kirkland, WA, USA). For all sedentary activities, participants were instructed to move as little as 

possible. Start and stop times for each activity were recorded on a data sheet by a research assistant, 

and any deviations from the activity protocol or equipment malfunction were noted. 
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Table 1. Activities and the order performed in the study. The order of activities is indicated 

by the number in parentheses located to the left of each activity name. 

Activity 

Category 
Activity Description of Activity 

Sedentary 

Activities 

(1) Lying down 

Participants lay still on a mat, with arms at sides and feet 

straight out and not crossed. Participants were not allowed 

to sleep. 

(2) Sitting reclined 

Participants leaned back in their chair, extending their legs 

in front of them (while still resting them on the floor) and 

keeping their hands in their laps. 

(3) Sitting straight 
Participants sat still in a chair with arms resting in their 

lap and feet flat on the floor. 

Ambulatory 

Activities 

(6) Walking slow  
Participants walked at 2.0 miles/hour on a treadmill without 

holding handrails. 

(9) Walking fast  
Participants walked at 4.0 miles/hour on a treadmill without 

holding handrails. 

(14) Jogging 
Participants jogged at 6.0 miles/hour on a treadmill without 

holding handrails. 

Lifestyle 

Activities 

(4) Standing 
Participants stood still, keeping feet together and arms at 

their sides. 

(7) Sweeping 

Participants swept confetti back and forth between two 

cones eight feet apart. Participants swept at a  

self-selected pace. 

(12) Stair 

climbing  

Participants climbed stairs on a stepmill exercise machine 

at a rate of 60 steps/min without holding handrails. 

Exercise 

Activities 

(5) Bicep curls 

Participants performed biceps flexion and extension at a 

self-selected pace while holding an unweighted broom 

handle and standing still. 

(8) Cycling slow 
Participants cycled on a cycle ergometer at 50 W  

(50 rpm and 1 kilopond resistance). 

(10) Squatting 

Participants started with an unweighted broom handle 

behind the head with feet shoulder width apart. Then, 

participants bent at the knee until 90° flexion before 

returning to an upright position. Squats were performed at 

a self-selected pace. 

(11) Cycling fast 
Participants cycled on a cycle ergometer at 75 W  

(75 rpm and 1 kilopond resistance). 

(13) Jumping 

jacks 

Participants started in a standing position with feet 

together and hands at their sides. Then, they jumped, 

spreading their feet to shoulder width and extending arms 

upward, clapping hands together above their head before 

jumping back to the original position. This was performed 

at a self-selected pace. 
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2.4. Data Reduction 

2.4.1. Artificial Neural Networks 

Artificial neural networks (ANNs) are a machine learning algorithm that models the complex 

relationships of one or more independent variables (x1, … xk) with some outcome variable (y), where k 

is the number of variables used to predict y [9]. As their name implies, ANNs consist of a set of 

mathematical functions, called artificial neurons (nodes), which are interconnected. Each node 

calculates a summation from the input variables, and each of the inputs is assigned different weights by 

a weight vector. Then, activation functions are applied to each summation and combined to derive the 

output variable (EE). The general form of an ANN model can be seen in Equation 1, where w are the 

weights that need to be estimated, U is the activation function      
  

     (which is a linear function) 

and H is the number of nodes in the hidden layer. 

                             

 

   

        

 

   

 (1) 

Artificial neural networks are nonlinear regression models, but their creation is similar to the 

creation of linear regression models, as described elsewhere [5]. In the current study, a leave-one-out 

validation approach was implemented for the training and testing of the ANNs. For this approach,  

the training phase consisted of the measured input and output variables from all but one participant and 

was used to estimate the weights corresponding to each input in the ANN. Then, the ANN was tested 

for its ability to estimate the outcome variable from the participant left out of training. This process is 

an iterative process and was repeated for each participant, so that every participant’s data were used 

once for testing the performance of the ANN. The accuracy of the ANN was computed for each of the 

iterations and then averaged to obtain summary statistics about the overall validity of the ANNs. 

In the current study, ANNs were created separately for the wireless network and the ActiGraph. 

Each ANN was created to predict EE as the outcome variable, but we used a different number of inputs 

to estimate EE for each ANN. In our previous work, we found that using the mean (M) and standard 

deviation (SD) from each axis of the collected accelerometer data as the input variables allowed for a 

high accuracy for classifying 14 different activities [23]; therefore, we used M and SD from each 

accelerometer axis as the input variables in the current study. Additionally, body size is known to 

affect EE; thus, participant height and weight were included as input variables. In total, the wireless 

network ANN had 14 total input variables (3 accelerometers × 2 axes/accelerometer × 2 inputs/axis, 

participant height and participant weight), and the ActiGraph ANN had eight total input variables  

(1 accelerometer × 3 axes/accelerometer × 2 inputs/axis, participant height and participant weight).  

In accordance with previous research, we included 13 nodes in the hidden layer [23]. A pictorial 

representation of the ANNs created in the current study can be seen in Figure 1. Calculation of the 

input variables and creation and testing of the ANNs was conducted using MATLAB statistical 

software (MathWorks, Inc., Natick, MA, USA). 
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2.4.2. Oxycon and Accelerometer Data Collection and Processing 

Oxycon-measured VO2 data were collected breath-by-breath and then reintegrated to 30-second 

windows for analysis. Relative VO2 was converted to METs using the following equation: 

     
                   

   
 (2) 

To ensure that the data reflect steady-state MET values for each activity, only data from minutes  

2:30–4:30 were used for each of the 14 activities. 

First, M and SD from each accelerometer axis were computed in 30-second windows to allow direct 

comparison to EE. Raw acceleration data from the wireless system motes were collected at a sampling 

rate of 10 Hz, and the ActiGraph data were collected in raw mode at a sampling rate of 30 Hz. Thus,  

in each 30-second window, the wireless network motes recorded 300 data points, each and the 

ActiGraph recorded 900 data points with which to calculate M and SD for each axis of measurement. 

2.5. Statistical Analyses 

Average predicted EE values (in METs) from the wireless network and ActiGraph ANNs were 

calculated and compared to the measured EE for each activity. Differences between predicted and 

measured EE were evaluated using paired t-tests, and a Bonferroni correction was used to account for 

multiple tests being conducted. 

In order to determine the validity of the wireless network for predicting EE, Pearson correlation 

coefficients (r) and root mean square error (RMSE) values were calculated for each ANN by 

computing the predicted EE from the ANN and comparing it to the measured EE (from the metabolic 

analyzer) for the data from the participant left out of the ANN creation. This was repeated for each 

iteration of the leave-one out validation, and the r and RMSE statistics computed in each iteration were 

averaged to obtain summary statistics of the ANN’s performance for measuring EE. The validity of the 

ActiGraph ANN was determined similarly. The higher the r values and the lower the RMSE values, 

the better the accuracy of the ANNs. To directly compare the validity of the wireless network to the 

validity of the ActiGraph, paired t-tests were conducted separately for RMSE and for r values. Since 

Pearson correlations are negatively skewed, we first normalized the r values using a Fisher’s Z 

transformation before performing the paired t-test. An alpha level of 0.05 was set for the current study; 

thus, p-values of p = 0.05 were used to determine significant differences in accuracy between the 

wireless network and the ActiGraph ANNs. 
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Figure 1. Artificial neural networks were created for predicting energy expenditure (EE) 

from the wireless network and the ActiGraph. (a) The artificial neural network (ANN) created 

for the wireless network; and (b) the ANN created for the ActiGraph accelerometer. Note 

that the numbers of input and output variables shown match the number used in the study, 

but only three hidden units are shown in the figure for simplicity. The ANNs in this study 

had 13 hidden units in the hidden layer. 
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3. Results 

The demographic characteristics of the sample are shown in Table 2. Of the original 30 participants, 

five participants had significant data loss from the Oxycon (due to a faulty sampling tube or battery 

malfunction) and two had significant data loss from the wireless network (due to a battery 

malfunction); therefore, only 23 were included in the final analysis. Females excluded from the final 

analysis weighed significantly more than females included in the analysis, causing the total sample 

excluded to have a significantly higher weight than those included in the final analysis. Otherwise, 

those included and excluded were not significantly different in terms of demographic characteristics. 

Table 2. Demographic characteristics of the sample. (a) Participants included in the final 

analysis. (b) Participants excluded from final analysis. Values are reported as the mean 

(standard deviation). Significant differences (p < 0.05) between the participants that were 

included and excluded are represented by an asterisk (*). 

 

a. Participants Included in Final Analysis b. Participants Excluded from Final Analysis 

Total Sample 

(n = 23) 

Females  

(n = 16) 

Males  

(n = 7) 

Total Sample  

(n = 7) 

Females  

(n = 4) 

Males  

(n = 3) 

Age (years) 20.8 (1.4) 20.5 (1.4) 21.4 (1.4) 21.0 (0.8) 20.8 (0.5) 21.3 (1.2) 

Height (cm) 168.5 (10.0) 163.0 (5.1) 181.1 (5.9) 173.1 (6.6) 169.3 (5.9) 178.1 (3.5) 

Weight (kg) 66.0 (13.9) 58.3 (5.1) 83.4 (11.3) 77.4 (8.9) * 76.0 (11.3) * 79.3 (5.8) 

BMI (kg/m2) 23.0 (2.6) 21.9 (1.5) 25.4 (3.0) 25.9 (3.3) 26.6 (4.4) 25.0 (1.4) 

Percent fat (%) 23.9 (4.3) 26.1 (2.9) (2.2) 21.5 (6.9) 25.9 (3.9) 15.7 (5.7) 

Figure 2. Measured EE and predicted EE from the wireless network and hip accelerometer 

for each activity. * Indicates significant difference from the measured EE (p < 0.05). 

METs, metabolic equivalents. 

 

The predicted METs from the wireless network and ActiGraph ANNs compared to the measured 

METs can be found in Figure 2. There were no significant differences between predicted and measured 

METs for the wireless network or the ActiGraph ANNs for any of the activities, although the 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

E
n

e
rg

y 
E

xp
e

n
d

it
u

re
 (

M
ET

s)

Measured

Wireless 
Network

Hip



Electronics 2014, 3 215 

 

 

differences approached significance (p < 0.10) for the estimated EE from the ActiGraph ANN for 

sitting reclined, sitting straight and jogging, with all three activities trending toward being 

underpredicted compared to the measured EE. Furthermore, differences between predicted and 

measured EE for bicep curls approached significance (p < 0.10) for the wireless network ANN 

(trending toward overprediction). 

Figure 3 shows the overall performance of the wireless network and the ActiGraph ANNs for 

predicting EE. The wireless network ANN had an average correlation of r = 0.95 (95% confidence 

interval (CI): 0.94–0.96) for predicted vs. measured EE. Correlations were significantly lower for the 

ActiGraph ANN, with an average correlation of r = 0.88 (95% CI: 0.87–0.90). The wireless network 

ANN also had a significantly lower average RMSE (1.34 METs; 95% CI: 1.04–1.64 METs) than the 

ActiGraph ANN (1.97 METs; 95% CI: 1.74–2.20 METs). Both ANNs showed extremely high RMSE 

values for Participant 23, which was surprising, given that the correlations for each ANN with this 

participant’s measured EE were only slightly below the average. The RMSE for Participant 23 fell 

well outside three standard deviations from the mean and was considered an outlier [30]. Therefore, we 

ran our analyses with and without Participant 23. Exclusion of Participant 23 lowered the average 

RMSE values for both the wireless network and ActiGraph ANNs (1.20 and 1.87 METs, respectively), 

but had no effect on the statistical significance of the differences seen between the wireless network 

and ActiGraph ANNs. 

Figure 3. Correlation coefficients and root mean square error (RMSE) values for predicted 

METs from the wireless system and hip-mounted ActiGraph ANNs, compared to the 

measured METs. An asterisk (*) indicates significant differences from the hip-mounted 

ActiGraph ANN (p < 0.05). 

 

4. Discussion 

The purpose of our study was to evaluate the performance of a wireless network of accelerometers 

for estimating EE using a wide range of sedentary, ambulatory, exercise and lifestyle activities.  

A secondary aim was to compare the accuracy of the wireless network to a hip-mounted  

ActiGraph accelerometer. 
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Overall, the wireless network ANN had high correlations for estimating EE, with an overall 

correlation of r = 0.95. This correlation between measured and predicted EE from the wireless network 

is similar to correlations found when predicting EE using the other monitoring systems. In one study, 

Zhang et al., found a correlation of r = 0.97 between measured and estimated EE from the IDEEA 

monitor [14]. However, Zhang’s study used a smaller number and less diverse set of activities (11 total, 

eight of which were treadmill walking or jogging), which could contribute to their slightly higher 

correlation. In a separate study by Rothney et al. [11], the IDEEA monitor had a correlation of r = 0.91 

with the measured EE in a free-living type scenario performed in a room calorimeter [11]. Together, 

these studies provide evidence that our wireless network can achieve similarly high accuracy for EE 

prediction to the IDEEA without the burden of using five sensors or a wired architecture. 

Conversely, the RMSE values achieved in this study compare less favorably to the results of 

previous studies. Rothney et al.’s [11] study found an RMSE of 0.67 METs for the IDEEA, which is 

half of what we achieved with our wireless network. Staudenmayer et al. [7] achieved RMSE values of 

1.22 METs for a hip-mounted accelerometer ANN when estimating EE for 18 activities, which is 

slightly lower than that achieved by our wireless network and much lower than the RMSE of  

1.97 METs achieved with our ActiGraph ANN. It may be that our smaller sample size allowed us less 

data with which to train the ANNs compared to Rothney et al.’s and Staudenmayer et al.’s studies 

(which had 102 and 48 participants, respectively), resulting in a poorer application of the model to 

those not used for training. However, this seems unlikely, as an inadequate sample size would have 

also negatively affected our correlation coefficients. A more likely explanation of the high RMSE 

values, and a limitation of using RMSE for evaluating model performance when comparing among 

different studies, is that RMSE is not a standardized metric. Thus, a higher intensity protocol would 

elicit higher MET values and likely have a higher RMSE for predicting METs, simply because there is 

more room for error above and below the predicted value. Conversely, with protocols consisting 

mainly of low-intensity activities, MET values elicited by participants will stay in a relatively narrow 

range, resulting in smaller RMSE values. Therefore, we believe that dividing RMSE by the average EE 

elicited is a more appropriate metric with which to compare among studies. The average MET value 

achieved throughout our study protocol was 5.02 METs. This is a high MET value for a protocol 

lasting 70 min and is likely higher than those seen in many other studies. For example, Rothney et al.’s 

study [11] evaluated the performance of the IDEEA for estimating EE during a 24-h visit that took 

place in a room calorimeter. Their average caloric expenditure in their study was about 2250 kcal/day, 

and the average body weight in their sample was 75.7 kg, which calculates as an average of 1.18 METs 

over the 24-h span. Thus, their RMSE was 56.8% of their average EE, while our average RMSE was 

only 26.7% of the average RMSE, indicating superior performance by our wireless network compared 

to the IDEEA. 

As previously noted, direct comparisons of the performance of the wireless network to other studies 

is difficult, since the number of activities and the sample characteristics will have an effect on model 

performance. Therefore, in the current study, we had participants wear a hip-mounted ActiGraph 

accelerometer in addition to the wireless network, so that we could directly compare the model 

accuracy. The wireless network ANN outperformed the ActiGraph ANN, yielding significantly higher 

correlations with EE and lower RMSE values compared to the ActiGraph. With an average correlation 

of r = 0.95, the wireless network ANN accounted for 90% of the variance observed with the measured 
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EE, while the ActiGraph ANN accounted for only 73% of the variance in the measured EE. When 

comparing RMSEs between the ANNs, the wireless network ANN had an average RMSE 32% lower 

than the ActiGraph ANN. 

Overall, both the wireless network and ActiGraph ANNs provided unbiased estimates of EE for 

each of the 14 activities, with predicted EE that was not significantly different than the measured EE. It 

is worth noting that for sitting reclined, sitting straight and jogging, there was a trend (that approached 

statistical significance) for the ActiGraph ANN to underpredict the EE of these activities. Previous 

work has shown that hip-mounted accelerometers are not as accurate in measuring sedentary behaviors 

as thigh accelerometers [31]; therefore, the trend toward underprediction using the ActiGraph ANN for 

two of the three sedentary activities (standing is not a seated or supine activity, so it is not considered 

sedentary [32]) indicates that placing accelerometers on parts of the body other than the hip may be 

preferable for measuring sedentary behavior. 

Since the hip accelerometers generally have lower accuracy for measuring the EE of  

non-ambulatory activities [8], we expected the ActiGraph ANN to show biased EE estimates for 

sweeping, jumping jacks, stair climbing, bicep curls and cycling, but this was not the case. In fact, a 

somewhat surprising finding was the trend toward overprediction of the EE cost of bicep curls with the 

wireless network ANN. Since the bicep curls were performed with an unweighted broom handle, the 

activity involved significant arm movement, but a minimal increase in the EE cost of the activity (as is 

shown in Figure 2). It is likely that the increased movement detected by the wrist accelerometer in the 

wireless network resulted in increased EE prediction; thus, the use of a higher resistance would likely 

improve the EE estimates of bicep curls using the wireless network. Furthermore, while we did not 

observe an overall bias for the ActiGraph ANN for the non-ambulatory activities, the ActiGraph did 

tend to have a larger individual error in EE prediction, which is represented by the significantly higher 

RMSE seen with the ActiGraph ANN compared to the wireless network ANN. 

Considering the superior correlations with the measured EE and the lower RMSE achieved with the 

wireless network ANN, our study provides strong evidence that a wireless network of accelerometers 

can provide improved measurement of EE compared to a single, hip-mounted accelerometer across a 

variety of activities. Our results are supported by a recent study conducted by Intille et al. [19] that 

found dramatically improved estimates of EE with their three-piece wireless accelerometer system 

compared to single-accelerometer regression equations. However, our study builds off of Intille et al.’s 

finding, because we assessed the EE over small time windows (every 30 s), whereas Intille et al. only 

evaluated the total EE. Additionally, Intille et al.’s study did not use ANN for their estimation of EE. 

Given the promising results in recent studies for classifying the activity type with ANNs, we felt that 

the application of these algorithms to multi-sensor systems was a vital step toward the improvement of 

the EE measurement. There are several limitations of the current study that should be considered. First, 

our sample was small and relatively homogeneous, limiting the use of our ANNs for assessing other 

populations with different demographic characteristics than our sample. Second, our study was 

conducted under highly controlled settings, where participants were instructed how to perform 

activities and performed each activity for the same amount of time. Additionally, we used only  

steady-state EE data, yet the steady state is rarely achieved in real-world settings. Finally, our included 

results cannot necessarily be applied to other lifestyle or exercise activities not tested in the current 

study. There are also several notable strengths of this study. First, our main purpose was to provide an 
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initial validation of the wireless network for estimating EE for a variety of activities and a range of 

intensities. In this respect, we created our models using many common activities, as well as activities 

that are traditionally not measured well using hip-mounted accelerometers (i.e., cycling slow and fast, 

sweeping, bicep curls, squats, stair climbing) [33], allowing us to determine if the wireless system is 

able to improve the EE prediction for these types of activities. Additionally, by using a hip-mounted 

accelerometer and the wireless system simultaneously, we were able to draw direct comparisons 

between the accuracy of the two models. Finally, we used machine learning algorithms, but we also 

used simple-to-compute input features. The use of simple features is vital if these relatively complex 

data processing and analysis methods are to be adopted in a wider setting [7,9]. 

5. Conclusions 

The high accuracy achieved with the wireless network for estimating EE, coupled with our previous 

finding that the network has high accuracy for identifying the activity type [23], indicates that our 

wireless network of accelerometers is a useful measurement tool that can be used for accurately 

assessing EE and activity classification across a range of sedentary, ambulatory, exercise and lifestyle 

activities. We plan to implement this network in a free-living setting to evaluate its ability to estimate 

free-living EE. Additionally, we plan to expand the use of this accelerometer network to measure EE 

in children and adolescents. 
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