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Abstract: With the construction and development of the smart grid, the power business puts higher
requirements on the communication capability of the network. In order to improve the energy effi-
ciency of the space–air–ground-integrated power three-dimensional fusion communication network,
we establish an optimization problem for joint air platform (AP) flight path selection, ground power
facility (GPF) association, and power control. In solving the problem, we decompose the problem
into two subproblems, one is the AP flight path selection subproblem and the other is the GPF
association and power control subproblem. Firstly, based on the GPF distribution and throughput
weights, we model the AP flight path selection subproblem as a Markov Decision Process (MDP) and
propose a multi-agent iterative optimization algorithm based on the comprehensive judgment of GPF
positions and workload. Secondly, we model the GPF association and power control subproblem as a
multi-agent, time-varying K-armed bandit model and propose an algorithm based on multi-agent
Temporal Difference (TD) learning. Then, by alternately iterating between the two subproblems, we
propose a reinforcement learning (RL)-based joint optimization algorithm. Finally, the simulation
results indicate that compared to the three baseline algorithms (random path, average transmit power,
and random device association), the proposed algorithm improves an overall energy efficiency of
the system of 16.23%, 86.29%, and 5.11% under various conditions (including different noise power
levels, GPF bandwidth, and GPF quantities), respectively.

Keywords: space–air–ground-integrated network (SAGIN); Low Earth Orbit (LEO) satellites; dy-
namic resource allocation; multi-agent reinforcement learning (RL); Markov Decision Process (MDP);
K-armed bandit

1. Introduction

Against the backdrop of the widespread application of the Fifth Generation (5G)
mobile communication technology, the Sixth Generation (6G) mobile communication tech-
nology has gradually become a research hotspot for scholars around the world, and the
research direction in this field has demonstrated significant commercial potential, attract-
ing extensive attention from the industrial sector, including the State Grid Corporation of
China [1]. With the rapid development of new power systems and the widespread coverage
of the smart grid, the flexible and random access of massive and diverse entities put higher
requirements on power communication. Different business requirements arise in a variety
of typical power application scenarios, many of which generate a large amount of real-time
data that need to be uploaded to cloud server data centers promptly for grid regulation
and control [2,3].

In the blind area of traditional network coverage or power emergency communication
scenarios especially, when ground networks experience damage, faults, or lack signal cov-
erage, the ground network data collection methods may fail to meet the data transmission
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requirements of GPFs. The establishment of the space–air–ground-integrated power three-
dimensional converged communication network, as one of the technological visions for
6G network design, can effectively supplement the existing ground power communication
systems and provide reliable support for power data transmission. It will become an
effective solution for achieving secure, reliable, and flexible transmission of power business
data in the future.

The SAGIN can be divided into three parts: a space-based network, an air-based
network, and a ground-based network [4]. In the space-based network, satellite constel-
lation systems led by LEO satellites [5] can achieve seamless and extensive coverage and
provide cloud server data processing services for GPFs. In the air-based network, auxiliary
communication airborne platforms, such as Unmanned Aerial Vehicles (UAVs), can serve
as amplifiers in satellite–ground communication, completing operations related to power
amplification and forwarding signals. They can also act as microbase stations for the
temporary storage and processing of data.

To further enhance the application potential of the SAGIN in power emergency com-
munication scenarios, in this paper, we propose an algorithm based on RL for the joint
optimization of AP trajectories, GPF associations, and power control strategies under
classification-based throughput constraints. The algorithm aims to ensure the completion
of communication tasks and maximize the long-term overall system energy efficiency. The
main contributions of this paper are as follows:

(1) We integrate APs with the SAGIN to categorize the communication requirements of
the GPF into real-time data transmission and non-real-time data transmission. For real-
time data transmission, the priority is to maximize system throughput and ensure that
communication latency is low enough for the data from the GPFs to be relayed by the
APs and eventually uploaded to the cloud server on the LEO satellite for processing.
For non-real-time data transmission, the goal is to maximize overall system energy
efficiency by storing as much data as possible in the APs. After the communication
task is completed, the APs fly to the corresponding ground management facility for
data unloading.

(2) To solve the optimization problem, this paper employs an RL algorithm that models
the AP flight paths as an MDP and proposes a multi-agent iterative optimization
algorithm based on comprehensive assessments of GPF positions and communication
workload. The GPF associations and power control are modeled as a multi-agent K-
armed bandit problem, and we propose an algorithm based on multi-agent Temporal
Difference learning to solve this aspect. The two algorithms alternate iterations,
ultimately solving for maximum overall system energy efficiency.

(3) We verify the performance of the algorithms through simulation, and the results
indicate that the proposed algorithm outperforms several benchmark algorithms, and
it is effective in improving long-term overall system energy efficiency.

The remainder of this paper is organized as follows. Section 2 introduces the related
work in recent years. Then, Section 3 introduces the system model and problem formulation.
Section 4 presents the solution approach, and Section 5 verifies the algorithm performance
through simulation. Finally, Section 6 provides conclusions and future prospects.

2. Related Work

Currently, research on the SAGIN has made significant progress and produced valu-
able results. In terms of satellite-fused communication, reference [6] proposed using
satellites as cloud servers to provide remote computing services for ground users and
jointly optimized communication and computing resources to minimize overall system
energy consumption. Reference [7] investigated the feasibility of seamless and efficient
connections between ground communication systems and satellite networks. In terms of
UAV trajectory optimization, reference [8] proposed an algorithm that utilizes the succes-
sive convex approximation (SCA) technique to optimize UAV trajectories and minimize
overall system energy consumption. Reference [9] introduced an algorithm to discretize the
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UAV and user movement process in a multi-UAV scenario to maximize the minimum user
transmission rate. Reference [10] presented a trajectory optimization algorithm for mini-
mizing the number of UAVs deployed in a vehicular network by solving the optimization
problem using the SCA technique. Reference [11] proposed an algorithm using RL with
the Q-learning algorithm to optimize the trajectory of a single UAV to minimize average
communication latency.

In addition to the research directions mentioned in the above literature, another fo-
cus is on optimizing device association and power control strategies to enhance system
performance and communication quality. Reference [12] proposed an algorithm based
on block coordinate descent (BCD) and SCA theory for the joint optimization of device
association, UAV trajectories, and power control to maximize the minimum user rate.
Reference [13] described an energy consumption minimization algorithm that jointly opti-
mized user association matching and power allocation using BCD and SCA theory. In the
aforementioned studies, optimizations were conducted considering parameters such as
energy consumption, throughput, minimum user rate, and average communication latency
in communication systems. However, the analyses were limited to models with a single
constraint and lacked consideration of specific business communication requirements in
practical scenarios. For instance, in power emergency communication scenarios, different
services may have varying communication throughput requirements while considering sys-
tem energy consumption. Consequently, a comprehensive optimization of system efficiency
considering both throughput and energy consumption becomes an effective solution. Refer-
ence [14] proposed an algorithm utilizing the genetic algorithm and simulated annealing to
separately optimize device association and power selection to maximize the overall system
energy efficiency. Reference [15] presented a method for power allocation and wireless
backhaul bandwidth allocation under specific quality of service (QoS) constraints, aiming
to maximize the system energy efficiency of downlink heterogeneous networks.

Most of the resource allocation optimization algorithms mentioned above employ
traditional heuristic algorithms or SCA techniques based on BCD, requiring multiple it-
erations for solving, leading to a significant increase in the computational complexity of
the system. Additionally, as the network scale increases, the high-speed dynamic charac-
teristics of the SAGIN result in continuous changes in wireless environment parameters,
and the adaptability of algorithms becomes a challenge. Considering the use of RL al-
gorithms to solve the resource allocation problem as an effective solution, reference [16]
proposed an algorithm utilizing RL to jointly optimize UAV paths, user device selection,
and power allocation, ensuring fairness in user throughput. Reference [17] employed
the Q-learning algorithm to jointly optimize UAV paths, user selections, and power allo-
cation to maximize network capacity. Reference [18] proposed a power control scheme
based on the Deep Q Network (DQN) to improve the system-level energy efficiency of
two-layer 5G heterogeneous and multi-channel cells. Reference [19] proposed an inno-
vative algorithm generalization method based on incremental reinforcement learning to
enable UAVs to adjust their control strategies in dynamic environments. Reference [20]
proposed a new multi-agent recurrent deterministic policy gradient algorithm to control
the navigation actions of multiple UAVs. Reference [21] introduced the state-of-the-art tech-
nologies for UAV-assisted maritime communications, discussed the physical layer, resource
management, cloud/edge computing, and caching UAV-assisted solutions in maritime
environments and grouped them according to their performance objectives. Reference [22]
presents a deep reinforcement learning-based method based on the design of a multi-head
heterogeneous attention mechanism to facilitate the learning of a policy that automatically
and sequentially constructs the route, while taking energy consumption into account.

There are also some highly effective research results in further integrating the SAGIN
system model. Reference [23] made a proposal to leverage LEO satellites and APs to
provide edge computing services for ground users. In reference [24], on the other hand,
transmitted user tasks to cloud servers on LEO satellites for processing through UAV relay
were proposed. The aforementioned literature focuses on the relevant research of UAV
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trajectory and user resource allocation algorithms in the SAGIN, but joint optimization
research specifically for emergency communication scenarios in the power industry is
still limited.

3. System Model and Problem Modeling

In this section, we analyze the business requirements of GPFs in the network and
construct the space–air–ground-integrated power three-dimensional fusion communication
network system model applied to power emergency scenarios. Then, we propose a com-
munication model and an energy consumption model. Finally, the optimization problem
is modeled.

3.1. System Model

We consider the uplink transmission in the wireless communication system depicted
in Figure 1. The system comprises a single LEO satellite, and N GPFs serve as users and M
auxiliary communication airborne platforms serve as APs. In this configuration, the GPFs
initiate power data transmission tasks, and the LEO satellite s, functioning as a space-based
cloud server base station, replaces ground stations to receive signals.
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Figure 1. System model.

Some GPFs periodically generate a substantial volume of real-time power business
data, which is time sensitive and needs to be immediately transmitted to the cloud server
within the 5G base station for processing. However, in power emergency scenarios where
public network communication facilities are damaged or malfunctioning, the 5G base
station signals cannot cover the area. So, LEO satellites are employed as substitutes for
ground stations to fulfill the corresponding communication services. Due to the consider-
able distance between LEO satellites and the Earth’s surface, the direct connection speed of
the GPF is relatively low, and the communication delay may not meet the needs of power
businesses. To address this limitation, APs are utilized to relay and amplify certain signals,
thereby enhancing communication transmission rates.

Additionally, some GPFs generate data involving non-real-time business operations
that require large amounts of data transmission. Since this type of business operation is
insensitive to time constraints, and considering efficiency and communication resource op-
timization, the data can be temporarily offloaded on APs. After completing communication
tasks, the APs can fly to the nearest 5G ground station cloud server for data processing. In
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the system model tailored to the data transfer requirements of various business types, APs
serve a dual role. They act as relay nodes for ground-to-satellite communication, facilitating
signal forwarding [9]. Simultaneously, APs can function as short-term data storage devices,
providing diversified services to meet the data transfer needs of GPFs [8].

N GPFs are represented by the set N = {1, · · · , n, · · · , N}, while M APs are denoted
by the setM = {1, · · · , m, · · · , M}. The system employs a quasi-static model, dividing
a coverage cycle into T time slots of length ∆t, with T = {1, · · · , t, · · · , T}. It is assumed
that the positions of the GPFs are known and remain approximately constant throughout
the task duration. The location of GPF n is represented as qn = [xn, yn]

T . The APs fly at
a fixed height of approximately Ha above the ground, with negligible height differences
between them to prevent collisions. Within each time slot, the horizontal position of AP m
is considered constant and denoted as qm(t) = [xm(t), ym(t)]

T .

3.2. Communication Model and Energy Consumption Model

In this paper, Frequency Division Multiple Access (FDMA) technology is employed for
communication to prevent interference between signals from different devices [15]. Binary
variables an,m(t) are used to represent the association between GPF n and AP m within
each time slot. Binary variables an,s(t) are used to represent the association between GPF
n and LEO satellite s within each time slot. an,m(t) = 1 denotes that in the current time
slot, GPF n chooses to upload data to AP m; otherwise, an,m(t) = 0. an,s(t) = 1 indicates
that in the current time slot, GPF n opts for a direct connection to LEO satellite s for data
upload; otherwise, an,s(t) = 0. Each device can choose only one data transmission mode in
the same time slot, either connecting to the LEO satellite or a specific AP, and each device is
subject to constraints as follows:

∑M
m=1 an,m(t) + an,s(t) ≤ 1, ∀t ∈ T (1)

According to [12], the connection between GPFs and LEO satellites, as well as APs,
is characterized by Line-of-Sight (LoS) transmission links. Therefore, the channel gain
between GPF n and LEO satellite s is defined as

hn,s = g0·(Hs)
−θ , (2)

where g0 = Gtr
n ·Gre

s ·
(

λ
4πd0

)−θ
represents the channel power gain between GPF n and LEO

satellite s at a unit distance d0 = 1m. Gtr
n denotes the transmit antenna gain of GPF n, Gre

s
denotes the receive antenna gain of LEO satellite s, λ = c

f represents the carrier wavelength,
c represents the speed of light, f represents the carrier frequency, and θ represents the
distance attenuation factor.

Furthermore, since the distance between the GPFs and the LEO satellite is far away,
the distance between LEO satellite s and GPF n is simplified to the altitude of the LEO
satellite, denoted as Hs. The direct communication transmission rate between GPF n and
LEO satellite s is given by

Rn,s(t) = W·log2

(
1 +

pn(t)·hn,s

σ2

)
, (3)

where W represents the allocated fixed bandwidth for communication between GPFs and
LEO satellites and σ2 denotes the variance of Additive White Gaussian Noise (AWGN).
pn(t) represents the transmission power of GPF n during time slot t, which is subject to
the constraint imposed by the maximum transmission power pmax of the power facility
as follows:

pn(t) ≤ pmax, ∀n ∈ N , t ∈ T , (4)
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when the immediate communication workload µn,immediate required by GPF n is substantial,
due to the constraints on the transmission rate pmax, the direct transmission rate Rn,s may
not be able to complete the communication task of GPF n within the coverage time.

In such cases, the GPFs will consider completing the communication task using the
relay forwarding assistance of APs. In time slot t, the channel gain between GPF n and AP
m is defined as

hn,m(t) = g1·(dn,m(t))
−θ = g1·

 1√
∥qm(t)− qn∥

2 + H2
u

θ

, (5)

where g1 = Gtr
n ·Gre

m ·
(

λ
4πd0

)−θ
represents the channel gain at a unit distance. Gre

m denotes
the receive antenna gain of AP m. According to Shannon’s formula, the transmission rate
for communication between GPF n and AP m is defined as

Rn,m(t) = W·log2

(
1 +

pn(t)·hn,m(t)
σ2

)
, (6)

and relays through AP m. According to [14], the transmission rate between GPF n and LEO
satellite s is defined as

Rn,m,s(t) = W·log2

(
1 +

γn,m(t)·γm

1 + γn,m(t) + γm

)
, (7)

where γn,m(t) = pn(t)·hn,m(t)
σ2 represents the Signal-to-Noise Ratio (SNR) between GPF n

and AP m, γm = pm ·hm
σ2 is the SNR between AP m and LEO satellite s, and pm is the

fixed forwarding power of AP m. It is evident that when the AP has a sufficiently large
forwarding power pm, the transmission rate Rn,m,s(t) of GPF n will significantly improve
compared to the direct satellite transmission rate Rn,m(t).

In conclusion, the actual data transmission rate of GPF n for immediate communication
tasks in time slot t can be expressed as

Rn,immediate(t) = ∑M
m=1(an,m(t)·Rn,m,s(t)) + an,s(t)·Rn,s(t) (8)

where the first item ∑M
m=1(an,m(t)·Rn,m,s(t)) represents the rate at which the GPF estab-

lishes a connection with an AP and an,s(t)·Rn,s(t) represents the rate at which the GPF
communicates directly with the LEO satellite. In (1), we can see that the GPF can only
establish one connection in a single time slot. The actual data transmission rate of GPF n
during time slot t for non-immediate communication tasks is

Rn,non−immediate(t) = ∑M
m=1(an,m(t)·Rn,m(t)) (9)

The actual communication energy consumption generated by GPF n during time slot
t is

En(t) =
[(

∑M
k=1 an,k(t) + an,s(t)

)
·pn(t)

]
·∆t = pn,k(t)·∆t, (10)

where pn,k(t) represents the user transmission power when associated with the kth device.
If the actual transmission rate of GPF n at any time t is Rn(t), according to [18], the long-
term system total energy efficiency is defined as

η = ∑T
t=1

∑N
n=1 Rn(t)·∆t

∑N
n=1 En(t)

= ∑T
t=1

∑N
n=1 Rn(t)

∑N
n=1 pn,k(t)

. (11)
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3.3. Problem Modeling

Let the set of association factors between GPFs and LEO satellites be denoted as
as = (an,s(t) : ∀n ∈ N , t ∈ T ). The set of association factors between GPFs and APs is
denoted as am = (an,m(t) : ∀n ∈ N , m ∈ M, t ∈ T ). The set of horizontal positions of APs
in each time slot is denoted as Q = (qm(t) : ∀m ∈ M, t ∈ T ), and the set of transmission
powers of GPFs in each time slot is denoted as P = (pn(t) : ∀n ∈ N , t ∈ T ). N represents
the GPF set,M represents the AP set, and T represents the time slot set.

In this paper, we conduct joint optimization of the device association factors as and
am, AP flight trajectories Q, and GPF transmission powers P to maximize the long-term
system total energy efficiency η. The optimization problem is expressed as follows:

(P1) max
as,am,Q,P

η

s.t. C1 ∼ C9.
(12)

C1: an,s(t) ∈ {0, 1}, ∀n ∈ N , t ∈ T ;
C2: an,m(t) ∈ {0, 1}, ∀n ∈ N , m ∈ M, t ∈ T ;
C3: ∑M

m=1 an,m(t) + an,s(t) ≤ 1, ∀n ∈ N , t ∈ T ;
C4: ∑N

n=1 an,m(t) ≤ LM, ∀m ∈ M, t ∈ T ;
C5: ∑M

m=1 ∑N
n=1 an,m(t) + ∑N

n=1 an,s(t) ≤ LS, ∀t ∈ T ;
C6: 0 ≤ pn(t) ≤ pmax, ∀n ∈ N , t ∈ T ;
C7: ∑T

t=1(Rn,immediate(t)·∆t) ≥ µn,immediate, ∀n ∈ N ;
C8: ∑T

t=1(Rn,non−immediate(t)·∆t) ≥ µn,non−immediate, ∀n ∈ N ;
C9: ∥qm(t + 1)− qm(t)∥2 ≤ (vmax·∆t)2, ∀m ∈ M, t ∈ T .
C1 and C2 represent binary variables, indicating the association factors between GPFs

and LEO satellites and APs, respectively. C3 indicates that any GPF can only choose
a single AP or LEO satellite for data transmission in any time slot. C4 and C5 denote
upper limits on the number of GPFs that APs and LEO satellites can associate with in any
time slot. C6 represents an upper limit on the total transmission power of GPFs in any
time slot. C7 indicates that each GPF needs to meet its respective minimum immediate
communication workload requirement. C8 signifies that each GPF needs to satisfy its
respective minimum non-immediate communication workload requirement. C9 denotes
that the position variation of APs in each time slot is constrained by their maximum
flight speed.

4. Reinforcement Learning-Based Joint Optimization Strategy for Flight Path and
Resource Allocation

In this section, we split the problem into two subproblems and modeled them as an
MDP and a multi-agent time-varying K-armed bandit model, respectively. The reinforce-
ment learning algorithm is used to solve the subproblems and iterate alternately to find the
optimal strategy of agents.

4.1. Problem Description and Decomposition

The objective of this paper is to maximize the overall energy efficiency of the system
within a given operational cycle T (referred to as an episode). We optimize the position of
the APs in each time slot, as well as the device association and power control strategies
for GPFs. The optimization problem can be decomposed into subproblem P2 for the
optimization of the AP flight paths and the joint optimization subproblem P3 for GPF
device association and power control as follows:

(P2) max
Q

η

s.t. C9 : ||qm(t + 1)− qm(t) ||2 ≤ (vmax·∆t)2, ∀m ∈ M, t ∈ T .
(13)
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(P3) max
as,am,P

η

s.t. C1 ∼ C8.
(14)

C1: an,s(t) ∈ {0, 1}, ∀n ∈ N , t ∈ T ;
C2: an,m(t) ∈ {0, 1}, ∀n ∈ N , m ∈ M, t ∈ T ;
C3: ∑M

m=1 an,m(t) + an,s(t) ≤ 1, ∀n ∈ N , t ∈ T ;
C4: ∑N

n=1 an,m(t) ≤ LM, ∀m ∈ M, t ∈ T ;
C5: ∑M

m=1 ∑N
n=1 an,m(t) + ∑N

n=1 an,s(t) ≤ LS, ∀t ∈ T ;
C6: 0 ≤ pn(t) ≤ pmax, ∀n ∈ N , t ∈ T ;
C7: ∑T

t=1(Rn,immediate(t)·∆t) ≥ µn,immediate, ∀n ∈ N ;
C8: ∑T

t=1(Rn,non−immediate(t)·∆t) ≥ µn,non−immediate, ∀n ∈ N .
Subproblem P2 assumes that the connection of devices and their transmit power are

given in each time slot. The APs need to consider the communication task requirements of
GPFs and the total channel gain that they can provide to GPFs to determine their movement.
We propose an online path optimization algorithm based on RL to address this problem.

Subproblem P3 assumes that the positions of the APs are given in each time slot.
GPFs need to choose an appropriate device association and provide transmit power for
data transmission within each time slot. From the constraints of the subproblem, it can be
observed that each GPF can only choose one device for association in each time slot, and
each device has a maximum connection limit, leading to the issue of connection competition.
After determining the associated device, GPFs further optimize their transmit power to
achieve maximum throughput. We propose a joint optimization sub-algorithm for device
association and power control based on RL to address this problem.

4.2. Aerial Platform Flight Path Optimization Algorithm

In this paper, each AP makes independent decisions in each time slot based on the
value of each state provided by environmental feedback. The environment changes based
on the decisions made and the rewards obtained in each state, eventually forming a finite
MDP within an episode. Therefore, the MDP can be employed to model this subproblem.

In this model, each AP is considered as an intelligent agent. The system can be
described using a quadruple Φ = {M,S ,a,R}, where M represents the number of
agents, S represents the states in which each agent is located, a represents the actions
chosen by the agents in those states, and R represents the rewards obtained from the
actions of the agents in those states.

Based on the four elements mentioned above, the definition of the agent’s state space,
action space, and reward function is as follows:

(1) State Space: The entire two-dimensional coordinates within the communication task
range of all APs are discretely represented. The obtained set of two-dimensional coor-
dinates constitutes the state space of the agents. The position qm(t) = [xm(t), ym(t)]

T

of each agent in each time slot represents the agent’s state Sm.
(2) Action Space: we simplify the Computational complexity in this algorithm by consider-

ing the agent’s maximum speed constraint (vmax∆t) and selecting a set of equidistant
fixed displacement values λk, k = 1, · · · , K. By applying these fixed displacement
values to both the x and y coordinates of the two-dimensional state positions, a com-
bination of K2 attainable target positions in one time slot is generated. The selection
of all fixed displacement values for the x and y axes constitutes the action space of the
agent.

(3) Reward Function: The reward function Rm(am|sm) for AP m is defined as the weighted
sum of the channel gains of various GPFs at the target position based on their commu-
nication workload. This sum is then added to a function of the distances between the
AP and other APs and multiplied by a certain proportionality factor ρ. The expression
is as follows:

Rm(Am|Sm) = ∑N
i=1 γihi,m(t) + ρ·log2

(
1 + ∑M−1

j=1,j ̸=m dj,m

)
(15)
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where γi serves as the weighting factor for the workload of GPFs. hi,m(t) represents
the channel gain between GPF i and AP m. dj,m denotes the distance between AP m
and other APs. The purpose of the second term is to prevent prolonged path overlap
between different APs. Based on the proposed model, we present a comprehensive
sub-iteration multi-agent iterative AP path optimization algorithm that considers both
the positions and workload of GPFs. The specific algorithm procedure is illustrated in
Algorithm 1.

Initially, the maximum training episodes Nepi are initialized, and the initial state
sm(0) is given for each AP (Step 1). In each time slot within an episode loop (Step 2), the
algorithm calculates the reward function for each reachable state of each AP (Step 2a).
According to a greedy strategy, the APs move and update their states sm(t) (Step 2b). In
the overall algorithm flow, the weights of the reward function are updated based on the
remaining communication workload for GPFs derived from Algorithm 2 (Step 2c). After
completing one training episode, the primary algorithm parameters are initialized, and
the next training episode is executed (Step 3). This process is repeated until all training
episodes are completed (Step 4).

Algorithm 1: Aerial Platform Path Optimization Algorithm Based on Comprehensive Evaluation
of GPF Position and Workload

(1) Initialization: Maximum training episodes Nepi, for any AP m, given its initial position state
sm(0).
(2) For each iteration in episode Nepi, t = 1, 2, . . . , T, instruct each AP to independently execute
the following steps:

(a) Based on the positions of each GPF, remaining workload, and the current state of the AP
in this time slot, update the reward function for each reachable target state of AP m using the
following expression:

Rm(Am|Sm)←∑N
i=1 γihi,m(t) + ρ·log2

(
1 + ∑M−1

j=1,j ̸=m dj,m,
)

calculate the reward function for the reachable target positions of AP m in the current time slot;
(b) According to a greedy strategy, each AP will move towards the target state with the

highest reward and update its state sm(t);
(c) Conduct the iteration of Algorithm 2 for each GPF, update the weight γi for the remaining

workload of each GPF, return to step (a), and proceed to the next iteration until completion.
(3) Set Nepi = Nepi − 1.
(4) Repeat steps (1) to (3) until Nepi = 0.

4.3. Device Association and Power Control Algorithm

In this paper, when GPFs make action selections, the moving strategy of APs is not
considered. Only the current position of APs at the current time slot is taken as the
environmental state. Therefore, the decision-making process for device association and
power control of GPFs can be modeled as a time-varying K-armed bandit model with
multiple intelligent agent states. The action selection of the intelligent agent is considered
not to affect changes in the environmental state.

This model regards GPFs as intelligent agents, and the system can be represented by a
quadruple Φ = {M,S ,a,R}. The definition of the agent’s state space, action space, and
reward function is as follows:

(1) State Space: To simplify the algorithm complexity, in the proposed algorithm, the
distances between APs and intelligent agents are discretized into L state distributions
based on the provided channel gain. The distances between each AP and intelligent
agent constitute a state space with LM elements.

(2) Action Space: Defined as the device association and power control schemes that
agents can choose. Agents determine their action choices based on the current state
matrix and the policy π specified by the algorithm at the current time.
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(3) Reward Function: The reward function for the agent n at time slot t is defined as the
instantaneous throughput and instantaneous energy consumption as follows:

Rn(s(t), a(t)) = Rn(t)·∆t, (16)

Pn(s(t), a(t)) = En(t), (17)

where Rn(t) represents the transmission rate of the agent n in time slot t and En(t)
represents the actual communication energy consumption generated by the agent n
in time slot t.

Let Qk
n(s, a) represent the estimated value of the action chosen by intelligent the agent

n in state s after k− 1 selections, which is expressed as follows:

Qk
n(s, a) =

R1
n + R2

n + · · ·+ Rk−1
n

k− 1
, (18)

Qk+1
n (s, a) = Qk

n(s, a) +
1
k

(
Rk

n −Qk
n(s, a)

)
(19)

Let Pk
n(s, a) represent the estimated cost of the agent n choosing action a in state s after

k− 1 selections, which is expressed as follows:

Pk
n(s, a) =

P1
n + P2

n + · · ·+ Pk−1
n

k− 1
, (20)

Pk+1
n (s, a) = Pk

n(s, a) +
1
k

(
Pk

n − Pk
n(s, a)

)
, (21)

then, the efficiency estimation function for the agent n choosing action a in state s for the
k-th time can be expressed as

ηk
n(s, a) =

Qk
n(s, a)

Pk
n(s, a)

=
R1

n + R2
n + · · ·+ Rk−1

n

P1
n + P2

n + · · ·+ Pk−1
n

. (22)

The policy for the action selection of the agent n is represented as

At
n = argmax

a

[
ηk

n(s, a)
]
. (23)

This signifies that the agents always choose the strategy that maximizes the current
estimated energy efficiency. However, to balance exploration and exploitation, there is
a probability ε ∈ (0, 1) for exploration to discover better actions. The specific policy is
expressed as follows:

πϵ
n
(

At
n
∣∣s) = {

1− ε, At
n = argmax

a

[
ηk

n(s, a)
]

ε, otherwise
, (24)

and to enhance the algorithm’s overall performance and expedite the convergence speed
of iterations, ε can be set as a linear function related to the iteration episodes Nepi, as
shown below:

ε = 0.5− ρepi·Nepi, (25)

where ε represents the exploration rate and ρepi denotes the rate at which the exploration
rate decreases with Nepi. When ε = 0, the training process will conclude, yielding the
corresponding training results.

Based on the aforementioned model, we propose a device association and power con-
trol algorithm based on the multi-agent K-armed bandit. The specific algorithm procedure
is illustrated in Algorithm 2.
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Firstly, we initialize the maximum training episodes Nepi, exploration parameter ε,
state-action value function Q1

n(s, a), and energy consumption estimation function P1
n(s, a),

along with the positions and initial workload µn = (µn,immediate, µn,non−immediate) for each
GPF (Step 1). In each time slot within an episode loop (Step 2), it is determined whether
GPFs have immediate data tasks based on µn. If immediate tasks exist, execute policy
πn,immediate (Step 2a), which means that GPFs will upload real-time data to the nearest AP at
maximum power. If the optional APs have reached the maximum number of connections,
they will be directly connected to the LEO satellite. If only non-immediate data tasks
remain, select action an(t) based on policy πϵ

n (Step 2b). Then, calculate the instantaneous
reward Rn(s(t), a(t)) and instantaneous cost Pn(s(t), a(t)) based on action an(t), update the
remaining workload, and use the remaining workload as a state change for the iteration of
Algorithm 1 in the next step (Step 2c). Update the state-action value function Qk

n(s, a) and
energy cost estimation function Pk

n(s, a) using Rn(s(t), a(t)) and Pn(s(t), a(t)), and compute
the energy efficiency estimation function ηk

n(s, a) for the current time t (Step 2d). After
completing one training episode, initialize the main algorithm parameters and execute
the next training episode (Step 3). Repeat the above process until all training episodes are
completed (Step 4).

Algorithm 2: Algorithm for Device Association and Power Control Based on Multi-Agent
K-Armed Bandit

(1) Initialization: Maximum training episodes Nepi, exploration parameter ε, state-action value
function Q1

n(s, a) = 0, and energy cost estimation function P1
n(s, a) = 0.

(2) For GPF n, given its position and initial workload µn =
(
µn,immediate, µn,non−immediate

)
.

(3) For each iteration in episode Nepi, t = 1, 2, . . . , T, prioritize GPFs based on the type and
quantity of the remaining workload. Then, instruct each GPF to independently execute the
following steps:

(a) Check if immediate data tasks still exist; if yes, execute policy πn,immediate;
(b) If only non-immediate data tasks remain, select action an(t), based on policy πϵ

n;
(c) Based on the executed action an(t), obtain instantaneous reward Rn(s(t), a(t)), and

instantaneous cost Pn(s(t), a(t)), update the remaining workload, and use the remaining
workload as a state change for the iteration of Algorithm 1 in the next step;

(d) Update the state-action value function Qk
n(s, a) and energy cost estimation function

Pk
n(s, a) based on the instantaneous reward and cost, and update the energy efficiency estimation

function ηk
n(s, a) for the current time.

(4) Set Nepi = Nepi − 1.
(5) Repeat steps (2) to (4) until Nepi = 0.

4.4. Overall Algorithm Flow

Combining Algorithm 1 and Algorithm 2, we propose a joint optimization strategy
for flight path and resource allocation based on RL, as shown in Algorithm 3. In each time
slot, the algorithm first runs Algorithm 1 based on the remaining throughput of GPFs to
obtain the current coordinates of APs for that time slot (Step 2b). Subsequently, each GPF
obtains the state of the current time slot. Based on the trained energy efficiency estimation
matrix, Algorithm 2 is executed to select the optimal resource allocation strategy (Step 2c).
The specific flow is illustrated in Figure 2.
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The concept of the proposed algorithm draws on the Monte Carlo method and the
single-step Temporal Difference method. It updates the value at a single moment and
selects actions through a soft greedy strategy to balance exploration and optimization.
It only requires a certain sampling sequence, that is, from the environment. Using the
sequence of states, actions, and benefits sampled, we can iterate to the optimal strategy.
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Algorithm 3: A Joint Optimization Strategy for Flight Path and Resource Allocation Based on RL

(1) Input: GPFs set N , APs setM, each algorithm parameter, Environmental state information,
GPFs’ workload µ, the upper limit of transmission power of GPFs pmax.
Output: Optimal Flight Path strategy Q and optimal device association and power control
strategy as,am,P .
(2) for each training episodes Nepi do

a. for each time slot t do
b. Based the GPFs’ workload and position obtained from Algorithm 2 in time slot t, decide the

Flight Path strategy Q(t) according to Algorithm 1.
c. Based on Flight Path strategy Q(t) obtained from Algorithm 1 in time slot t, the device

association and power control strategy as,am,P is decided using Algorithm 2.
d. Update Environmental state information.
e. t = t + 1.
f. end for
g. until t > T.

(3) Nepi = Nepi − 1.
(4) end for
(5) until Nepi ≤ 0.
(6) Return Q,as,am,P .

5. Simulation Results

The main simulation parameters are listed in Table 1 [14,16,18]. The simulation
environment in this paper is based on MATLAB and is employed for computational
simulation to validate the effectiveness of the proposed algorithm. It is assumed that in a
square area with an extent denoted as 500 m× 500 m, GPFs are randomly distributed. Each
GPF is characterized by specific real-time and non-real-time communication throughput
requirements. Three APs are assumed to fly within this area at an altitude denoted as
Hu = 100 m, aiming to establish LoS communication with GPFs. Additionally, an LEO
satellite serves as a cloud server data center, processing real-time power business data
from GPFs. Specifically, the APs depart from a predefined starting position and, within
a specified time denoted as T, fulfill the communication requirements of all GPFs. The
specific simulation parameters are detailed in Table 1.

Table 1. System model simulation parameters.

Parameter Value Parameter Value

N 10 W 50 kHz
M 3 pmax 41 dBm
Hu 100 m T 100 s

vmax 10 m/s Hs 250 km
g0 1.4× 10−4 LM 3
σ2 −110 dBm Ls 10
pm 47 dBm ∆t 1 s

µn,immediate 3.5 ∼ 6.5 Mbit µn,non−immediate 55 ∼ 67 Mbit

The number of algorithm iterations Nepi, discretization state parameters K and L, and
distance scaling factors ρ in Tables 2 and 3 are reasonably set, taking into account factors
such as the size of the simulation environment equipment, computer computing power,
and simulation time.
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Table 2. Algorithm 1 simulation parameters.

Parameter Value

Nepi 300
K 17
ρ 6× 10−9

Table 3. Algorithm 2 simulation parameters.

Parameter Value

Nepi 300
L 5

ρepi 1.67× 10−3

Figure 3 depicts the flight paths of three APs in the system when accommodating
10 GPFs. It can be observed that the APs tend to move towards regions with denser GPF
positions. Additionally, the three APs predominantly serve distinct groups of GPFs. As
the remaining throughput requirements of GPFs change, the APs continuously adjust their
positions. While meeting the demands of the majority of GPFs, efforts are made to consider
GPFs with a higher remaining throughput. This indicates that through optimized flight
paths, APs can enhance service provision for GPFs, consequently improving the overall
system energy efficiency.
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In Figure 4, the variation of the overall system energy efficiency with the number of
training episodes is compared under different exploration rates. To visually represent this
variation more intuitively, Figure 5 averages the obtained actual energy efficiency values
every 10 episodes to obtain the corresponding fluctuation curve. It can be observed in the
graph that when the exploration rate is relatively high, the algorithm converges to a lower
maximum energy efficiency value. However, the exploration of possible action strategies is
more thorough. As the exploration rate decreases, the convergence speed of the algorithm
decreases, but it can converge to higher energy efficiency values. The proposed algorithm
incorporates a decreasing exploration rate with an increasing number of training episodes.
It initially sacrifices energy efficiency to enhance convergence speed, and after a sufficiently
thorough exploration of the policy, it converges to the globally optimal energy efficiency
value, aiming to improve the algorithm’s performance.



Electronics 2024, 13, 1792 15 of 21

Electronics 2024, 13, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 3. The positions of GPFs and the flight paths of APs in the simulated scenario. 

In Figure 4, the variation of the overall system energy efficiency with the number of 
training episodes is compared under different exploration rates. To visually represent this 
variation more intuitively, Figure 5 averages the obtained actual energy efficiency values 
every 10 episodes to obtain the corresponding fluctuation curve. It can be observed in the 
graph that when the exploration rate is relatively high, the algorithm converges to a lower 
maximum energy efficiency value. However, the exploration of possible action strategies 
is more thorough. As the exploration rate decreases, the convergence speed of the 
algorithm decreases, but it can converge to higher energy efficiency values. The proposed 
algorithm incorporates a decreasing exploration rate with an increasing number of 
training episodes. It initially sacrifices energy efficiency to enhance convergence speed, 
and after a sufficiently thorough exploration of the policy, it converges to the globally 
optimal energy efficiency value, aiming to improve the algorithm’s performance. 

 
Figure 4. Actual energy efficiency variations during training under different exploration rate 
strategies. 

Figure 4. Actual energy efficiency variations during training under different exploration rate strategies.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 5. Average energy efficiency variations during training under different exploration rate 
strategies. 

To illustrate the effectiveness of the proposed algorithm in this paper, the algorithm 
is compared with the following three algorithms: 
(1) Random Path Algorithm (RP algorithm): Within the state space defined in Algorithm 

1, the movement of each AP is set to move towards a random GPF in each time slot. 
To facilitate comparison, the device association and power control strategy of 
Algorithm 2 remain unchanged. 

(2) Random Device Selection Algorithm (RS algorithm): All GPFs are randomly 
associated with available APs. The path selection for APs and power control strategy 
for GPFs remain consistent with the proposed algorithm. 

(3) Equal Transmit Power Algorithm (EP algorithm): All GPFs set their transmission 
power to the same fixed value, ensuring that each GPF meets its throughput 
requirement. The path selection for APs and device association strategy for GPFs 
remain consistent with the proposed algorithm. 
Figure 6 depicts the curve of total system energy efficiency against noise power 

variations. The energy efficiency of all four algorithms decreases with the increase in noise 
power. Higher noise power leads to a significant reduction in the transmission rates of 
GPFs, and when the noise power is excessive, the system energy efficiency decreases 
substantially, as GPFs must increase their maximum transmit power to meet throughput 
requirements. It is evident that, under all noise power conditions, the performance of the 
proposed algorithm is superior to the other three algorithms. The curve of the energy 
efficiency of the proposed algorithm changing with noise power is improved by 17.23%, 
162.87%, and 4.45%, respectively, compared with the RP algorithm, EP algorithm, and RS 
algorithm. 

Figure 5. Average energy efficiency variations during training under different exploration rate strategies.

To illustrate the effectiveness of the proposed algorithm in this paper, the algorithm is
compared with the following three algorithms:

(1) Random Path Algorithm (RP algorithm): Within the state space defined in Algorithm
1, the movement of each AP is set to move towards a random GPF in each time slot. To
facilitate comparison, the device association and power control strategy of Algorithm
2 remain unchanged.

(2) Random Device Selection Algorithm (RS algorithm): All GPFs are randomly associ-
ated with available APs. The path selection for APs and power control strategy for
GPFs remain consistent with the proposed algorithm.

(3) Equal Transmit Power Algorithm (EP algorithm): All GPFs set their transmission
power to the same fixed value, ensuring that each GPF meets its throughput require-
ment. The path selection for APs and device association strategy for GPFs remain
consistent with the proposed algorithm.

Figure 6 depicts the curve of total system energy efficiency against noise power
variations. The energy efficiency of all four algorithms decreases with the increase in
noise power. Higher noise power leads to a significant reduction in the transmission rates
of GPFs, and when the noise power is excessive, the system energy efficiency decreases
substantially, as GPFs must increase their maximum transmit power to meet throughput
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requirements. It is evident that, under all noise power conditions, the performance of the
proposed algorithm is superior to the other three algorithms. The curve of the energy
efficiency of the proposed algorithm changing with noise power is improved by 17.23%,
162.87%, and 4.45%, respectively, compared with the RP algorithm, EP algorithm, and
RS algorithm.
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Figure 7 illustrates the curve of total system energy efficiency with respect to variations
in bandwidth allocation for GPFs. The total system energy efficiency increases with the
increase in channel bandwidth allocated to GPFs. Higher channel bandwidth provides
GPFs with higher transmission rates, leading to an overall improvement in system energy
efficiency. It can be observed that, under all scenarios of GPF channel bandwidth allocation,
the performance of the proposed algorithm is superior to the other three algorithms. The
curve of the energy efficiency of the proposed algorithm changing with channel bandwidth
for ground devices is improved by 16.63%, 116.42%, and 4.96%, respectively, compared
with the RP algorithm, EP algorithm, and RS algorithm.
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Figure 8 depicts the variation curve of total system energy efficiency with respect
to the throughput load rate of APs. Constrained by their flying altitude, APs have a
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limited maximum throughput they can provide to GPFs in each time slot. The throughput
load rate is defined as the ratio of the total GPF throughput demand to the maximum
throughput that the APs can provide. In the graph, it can be observed that when the load
rate is below 100%, the system’s total energy efficiency remains relatively stable. However,
when the load rate exceeds 100%, it shows a decreasing trend and may exhibit a sharp
decline under excessively high load rates. This is due to the inability of APs to meet the
throughput demands of GPFs, forcing an increase in the transmission power level of GPFs
and resulting in a decrease in the overall system energy efficiency. This can be improved by
adjusting the altitude of APs or allocating a larger bandwidth to each GPF. Under any load
rate condition, the performance of the proposed algorithm is superior to the other three
algorithms. The curve of the energy efficiency of the proposed algorithm changing with
throughput load rate is improved by 7.92%, 34.71%, and 6.79%, respectively, compared
with the RP algorithm, EP algorithm, and RS algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 21 
 

 

the load rate exceeds 100%, it shows a decreasing trend and may exhibit a sharp decline 
under excessively high load rates. This is due to the inability of APs to meet the through-
put demands of GPFs, forcing an increase in the transmission power level of GPFs and 
resulting in a decrease in the overall system energy efficiency. This can be improved by 
adjusting the altitude of APs or allocating a larger bandwidth to each GPF. Under any 
load rate condition, the performance of the proposed algorithm is superior to the other 
three algorithms. The curve of the energy efficiency of the proposed algorithm changing 
with throughput load rate is improved by 7.92%, 34.71%, and 6.79%, respectively, com-
pared with the RP algorithm, EP algorithm, and RS algorithm. 

 
Figure 8. Total system energy efficiency with respect to throughput load rate. 

Figure 9 illustrates the variation curve of total system energy efficiency with respect 
to the number of GPFs. In the graph, the number of GPFs starts from six and incrementally 
increases up to thirteen. When the number of GPFs is low or too high, the performance of 
each algorithm decreases. This may be attributed to a mismatch between the scaling factor 𝜌 in Algorithm 1 and the number of GPFs. Validation confirms that adjusting the scaling 
factor 𝜌 can improve algorithm performance. The algorithm achieves its maximum per-
formance when the number of GPFs equals the sum of the maximum connectable devices 
for each AP. As the number of GPFs gradually increases, the total system energy efficiency 
shows a decreasing trend. This is due to intensified competition for connections among 
GPFs in each time slot as the number of GPFs increases, leading to some GPFs being una-
ble to establish connections with APs. Improvement can be achieved by increasing the 
number of APs or enhancing the number of connectable devices for each AP. It is evident 
that, under most scenarios of device numbers, the performance of the proposed algorithm 
is superior to the other three algorithms. The curve of the energy efficiency of the proposed 
algorithm changing with the number of ground devices is improved by 7.13%, 31.15%, 
and 4.23%, respectively, compared with the RP algorithm, EP algorithm, and RS algorithm. 

Figure 8. Total system energy efficiency with respect to throughput load rate.

Figure 9 illustrates the variation curve of total system energy efficiency with respect to
the number of GPFs. In the graph, the number of GPFs starts from six and incrementally
increases up to thirteen. When the number of GPFs is low or too high, the performance
of each algorithm decreases. This may be attributed to a mismatch between the scaling
factor ρ in Algorithm 1 and the number of GPFs. Validation confirms that adjusting the
scaling factor ρ can improve algorithm performance. The algorithm achieves its maximum
performance when the number of GPFs equals the sum of the maximum connectable
devices for each AP. As the number of GPFs gradually increases, the total system energy
efficiency shows a decreasing trend. This is due to intensified competition for connections
among GPFs in each time slot as the number of GPFs increases, leading to some GPFs being
unable to establish connections with APs. Improvement can be achieved by increasing the
number of APs or enhancing the number of connectable devices for each AP. It is evident
that, under most scenarios of device numbers, the performance of the proposed algorithm
is superior to the other three algorithms. The curve of the energy efficiency of the proposed
algorithm changing with the number of ground devices is improved by 7.13%, 31.15%, and
4.23%, respectively, compared with the RP algorithm, EP algorithm, and RS algorithm.
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In the table below, we list the quantitative indicators of the proposed algorithm’s im-
provement in energy efficiency. It can be seen that the proposed algorithm has a significant
improvement compared with the EP algorithm, but the optimization effect is not obvious
compared with the other two algorithms. This may be because the number of APs in the
simulation scenario is small and the users are relatively close to each other, so the effect
of equipment selection and path optimization is not obvious enough. However, in future
work, we will study the larger number and distribution of users, and it is expected that
more ideal results can be obtained.

In addition to the analysis of simulation performance, we also analyze the limita-
tions and computational complexity of the algorithm. First of all, in terms of algorithm
limitations, compared with the RP algorithm, the proposed algorithm considers the path
optimization of the AP and will perform better in scenarios where the AP needs to move
in a large range. Compared with the AP algorithm, the proposed algorithm can optimize
the transmit power of GPFs, adapt to the different communication needs of each GPF, and
greatly improve the energy efficiency of the system. Compared with the RS algorithm,
the proposed algorithm can optimize the device selection of the GPF and ensure that the
system can perform better in scenarios where a large number of GPFs are connected to
the network. The proposed algorithm breaks through the limitations of GPF’s large-scale
distribution, multi-service communication, and large-scale access. Therefore, the proposed
algorithm has strong applicability. However, when dealing with larger-scale state space
and action space problems in the future, the proposed algorithm needs to perform a certain
discretization of the state space and action space, and the training time is long, and sensitive
to parameter selection. This is also the limitation of the proposed algorithm.

In this article, Algorithm 1 is used to optimize the flight path of APs, and its computa-
tional complexity is O(KTM), where K represents the number of iterations, T represents
the number of task slots, and M represents the number of APs. Algorithm 2 is used to
optimize the device selection and power control of GPFs, and its computational complexity
is O(KTN), where N represents the number of GPFs. The computational complexity of the
overall algorithm flow is O(KT(M + N)). As shown in Table 4, except for the slightly lower
complexity of the RP algorithm, the complexity of the other two benchmark algorithms is
consistent with the proposed algorithm.
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Table 4. Quantitative indicator of the energy efficiency increases in the proposed algorithm compared
with each algorithm.

Dependent Variable RP Algorithm EP Algorithm RS Algorithm

noise power 17.23% 162.87% 4.45%
channel bandwidth 16.63% 116.42% 4.96%

throughput load rate 7.92% 34.71% 6.79%
the number of ground devices 7.13% 31.15% 4.23%

average value 12.23% 86.29% 5.11%
computational

complexity O(KTN) O(KT(M + N)) O(KT(M + N))

6. Conclusions

In this paper, we study the energy efficiency optimization problem of the space–
air–ground-integrated power three-dimensional converged communication network in
emergency communication scenarios. On the basis of the system model, we establish
the optimization problems of joint AP flight path selection, GPF association, and power
control. The AP flight path is modeled as an MDP, and the AP path optimization algorithm
is proposed based on a comprehensive evaluation of GPF location and workload. The
GPF association and power control subproblem is modeled as a multi-agent, time-varying
K-arm bandit model. We propose a device association and power control algorithm based
on Temporal Difference learning to solve this problem. Combining these two algorithms,
we propose a joint optimization strategy for flight path and resource allocation based on
RL. Through the collaborative iteration of the two algorithms, the optimization of AP
flight paths, GPF association, and power control can be achieved, which can improve the
overall energy efficiency of the system while meeting certain throughput requirements.
Finally, through computer simulations and comparisons with three other benchmark
algorithms, the proposed algorithm’s effectiveness in enhancing the overall system energy
efficiency is validated. In practical scenarios, adjusting the scaling factor of the AP can
adapt to different numbers of GPFs to achieve optimal system performance under current
throughput requirements.

In future work, we will improve the settings of some parameters in the algorithm,
integrate deep learning content to further optimize the algorithm iteration process, train
neural networks as a framework for strategy selection, and conduct simulations in a larger-
scale environment compared with other classic algorithms in the field of reinforcement
learning to conduct a more in-depth analysis of the simulation results.
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Abbreviations

The following abbreviations are used in this manuscript:
GPF Ground Power Facility
AP Aerial Platform
MDP Markov Decision Process
SAGIN Space–Air–Ground-Integrated Network
LEO Low Earth Orbit
RL Reinforcement Learning
5G Fifth Generation Mobile Communications Technology
6G Sixth Generation Mobile Communications Technology
UAV Unmanned Aerial Vehicle
SCA Sequential Convex Approximation
QoS Quality of Service
FDMA Frequency Division Multiple Access
LoS Line of Sight
AWGN Additive White Gaussian Noise
SNR Signal-to-Noise Ratio
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