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Abstract: Binary Code Similarity Detection is a method that involves comparing two or more binary
code segments to identify their similarities and differences. This technique plays a crucial role in
areas such as software security, vulnerability detection, and software composition analysis. With
the extensive use of binary code in software development and system optimization, binary code
similarity detection has become an important area of research. Traditional methods of source code
similarity detection face challenges when dealing with the unreadable and complex nature of binary
code, necessitating specialized techniques and algorithms. This review compares and summarizes
various techniques and methods of binary code similarity detection, highlighting their strengths and
limitations in handling different characteristics of binary code. Additionally, the article suggests
potential future research directions. As research and innovation in this technology continue to
advance, binary code similarity detection is expected to play an increasingly significant role in fields
like software security.
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1. Introduction

With the expansion of software scale and complexity and the vast and varied codebases,
it is necessary to analyze, compare, and identify similarities within them, thereby achieving
greater accomplishments in the fields of software security. Binary code similarity detection
techniques compare two or more binary code fragments to find their similarities. These
similarities can be measured based on multiple aspects, such as the structure, syntax,
semantics, or behavior of the code.

Binary code similarity detection has a wide range of applications, such as bug hunt-
ing [1–16], malware detection [17–19], patch generation [20], cross-version information
porting [21,22], software composition analysis [23], and vulnerability detection [24]. How-
ever, determining binary code similarity is challenging. Firstly, the characteristics of binary
code make it more difficult to read and understand compared to source code. Secondly,
a significant amount of program semantic information, such as function names, variable
names, and data structures, is lost during the compilation process. Finally, the generated
binary code can undergo significant changes when using different compilers, changing
compiler optimization options, various optimization options, or when targeting different
operating systems and CPU architectures.

In summary, this paper makes the following contributions:

• This paper identifies and discusses the challenges faced by traditional source code
similarity detection methods when applied to binary code, such as code obfuscation,
constant software updates, patching, and differences in coding styles across projects.

• This paper provides a comprehensive summary of current research progress in binary
code feature extraction methods, including static analysis, dynamic analysis, hybrid
analysis, and deep learning techniques.
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• This paper suggests the development of new analysis strategies and technologies to
handle challenges like function inlining, obfuscated code, patch presence, and differ-
ences in coding styles across projects. It emphasizes the importance of improving the
accuracy and efficiency of binary code similarity analysis through advanced techniques.

The rest of the paper is organized as follows: Section 2 outlines the basic principles
of binary code. Section 3 discusses the challenges encountered in this domain. Section 4
introduces methods of analysis, including static, dynamic, and hybrid approaches that
combine both static and dynamic analysis, as well as learning-based approaches. Section 5
explores the potential impact of recent research in this field and proposes possible future
research directions. Through in-depth study, we aim to gain a better understanding of
the core issues in binary code similarity detection and provide effective support for the
advancement of this field.

2. The Basic Concepts of Binary Code Similarity Detection

Binary Code Similarity Detection (BCSD) refers to the technique of comparing and
analyzing semantic differences in binary files or executable programs. This technique aims
to compare the semantic differences between two binary programs, rather than merely
relying on byte-level comparisons. BCSD attempts to understand the meaning and behavior
of programs, which helps in identifying code reuse, plagiarism, software piracy, malware
variants, or even assessing the impact of software patches and updates, thereby playing a
role in fields such as software development, reverse engineering, and security analysis.

However, binary code similarity analysis is fundamentally different from source code
similarity analysis. In binary code similarity analysis, the only input source may be an
executable binary file or program, which significantly limits the amount of information
available for analysis. The binary code generation process encompasses multiple stages,
involving the conversion from source code to the final executable file, a process influenced
by factors such as the compiler, optimization options, and target platform, as shown in
Figure 1 [24]. The specific steps and their potential impacts on generating a binary file are
as follows:

1. Source Code Input: The initial step involves inputting the source code, which may be
written in C, C++, or another programming language.

2. Compiler Selection: A suitable compiler is selected based on compilation requirements,
such as GCC, Clang, VC, etc. For example, the compiler can inline functions (replace
function calls with the function body itself), eliminate dead code (unused code),
reorder instructions or merge loops, etc.

3. Optimization Options Configuration: Optimization levels (e.g., O0, O1, O2, O3, Os)
are chosen based on requirements, affecting the performance and size of the compiled
product. Selecting varying optimization levels directly impacts the performance
and size of the compiled outputs. For instance, advanced optimization settings like
O3 can enhance execution efficiency, yet they might also lead to an increase in the
size of the generated binaries. Conversely, optimizations designated by Os focus on
minimizing the file size, which could potentially compromise execution performance
to some extent.

4. Target Platform Specification: The target platform for the compilation is specified,
including the operating system (such as macOS, Linux, Windows), CPU architecture
(such as x86, ARM, MIPS), and word size (32-bit or 64-bit). Cross-version binaries may
not only alter the syntax of a program but can also change its semantics, presenting
an additional significant challenge for binary similarity analysis.

5. Compilation Process: Using the selected compiler and settings, the source code
is compiled into assembly code, generating target files for the specified platform.
However, obfuscation techniques may also be applied during compilation, further
increasing the complexity and uncertainty of the code.

6. Linking Process: The compiled target files and all dependencies, such as library files,
are linked together to produce the final executable file. Modern software frequently
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relies on dynamic link libraries (DLLs). Changes in these libraries may result in varia-
tions in the binary representation of the same code, thereby impacting the accuracy of
binary similarity detection.

Figure 1. The compilation process.

The source code goes through a series of complex processing steps before it can be
converted into a binary program that can be directly executed by a machine. The choices and
settings within the entire compilation chain directly impact the performance, functionality,
and compatibility of the final product. During the entire compilation process, differences
in the choice of compiler, optimization configurations, target platform, CPU architecture,
and bitness can result in significantly varied binary code from the same source code.
These factors collectively make cross-platform binary code similarity analysis a highly
challenging task. Each step in the process may introduce changes that cause the final binary
to be structurally and functionally different from its original source code. Although the
aforementioned improvements contribute to enhancing program performance, they also
escalate the complexity involved in analyzing the similarity of binary code.

3. Key Technical Challenges

In this section, we summarized the following key technical challenges on binary code
similarity detection.

3.1. Information Loss

It is evident that in the process of compiling source code into binary code, due to
optimizations, structural reorganizations, and the removal of redundant information per-
formed by compilers, the resulting binary code is likely to lose a significant amount of
crucial information from the source code [24]. For example, binary code typically does
not contain human-readable identifiers and explanatory information such as function
names, variable names, and comments, which increases the difficulty of understanding
and analyzing the code.

Moreover, when binary code lacks debugging information, even developers with a
deep understanding of the programming language face significant challenges. Debugging
information provides vital details about the program’s structure, variables, functions, etc.,
which are essential for developers to understand the internal working principles and logical
architecture of the program. The absence of debugging information means that analysts
cannot easily track the execution process of the code or identify connections between
different code segments, making the analysis and debugging of binary code more difficult
and complex.

In summary, given the characteristics of binary code and the lack of crucial information,
analyzing and understanding binary code indeed poses greater challenges and complexities
compared to source code.

3.2. The Impact of Instruction Set Architecture

In the x86 architecture, the instruction set consists of a series of specific instructions
used for executing particular computations and operations. The x86 system also has
unique registers and memory access patterns, such as the use of stack pointers. In contrast,
the ARM architecture significantly differs from x86 in terms of its instruction set, register
set, and memory access patterns. Likewise, the MIPS architecture possesses its distinct
instruction set, register layout, and memory access mechanisms.
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The variations in architectures imply that the same source code may yield completely
different binary code representations when compiled under different systems. This di-
versity in code manifestations introduces complexity in comparing binary files across
platforms. Therefore, it is essential to meticulously evaluate the discrepancies in instruction
sets, register configurations, and memory access processes across various architectures to
guarantee both the precision and reliability of such comparisons.

3.3. The Impact of Compilers

Significant differences exist between control flow graphs generated by different com-
pilation configurations, including compilers, optimization options, and target platforms.
These differences are primarily determined by the optimization strategies of compilers and
the characteristics of target platforms. Different compilers can apply distinct optimization
treatments to the same source code, resulting in variations in the structure of the gener-
ated machine code. Additionally, modifications in optimization settings can significantly
influence code generation. Specific optimization preferences might induce changes or
enhancements in control flow, thus modifying the structure of the final control flow graph.

Moreover, the unique architecture and instruction set of different target platforms
necessitate compilers to generate specific machine code tailored to each. For example,
a compiler might optimize for the characteristics of the x86-64 architecture, while for the
MIPS architecture, it would generate machine code suited to that system.

3.4. The Impact of Obfuscation

The impact of obfuscation techniques is profound as they can significantly alter the
original Control Flow Graph (CFG) of a program, thereby increasing the difficulty of per-
forming binary code similarity analysis [25]. Techniques such as function-level obfuscation
(-fla), instruction substitution (-sub), and control flow flattening (-bcf) are employed to
enhance the complexity of analyzing and understanding binary code, offering a degree
of protection against reverse-engineering efforts. These obfuscation methods not only
increase the complexity of the code but also significantly raise the challenge of analyzing
and understanding the program’s structure.

This presents a considerable obstacle for binary similarity analysis. Traditional binary
similarity matching techniques, which often rely on static analysis, depend on the structural
features of CFGs to identify similarities between code fragments. However, obfuscation
techniques, by altering the structure of CFGs, can cause even binaries derived from the
same source code to differ substantially due to obfuscation, making it challenging for
conventional matching techniques to recognize them as similar.

Therefore, in the face of obfuscation techniques, the field of binary similarity detection
necessitates more advanced analytical methods. These could include, but are not limited to,
machine learning technologies capable of learning deeper features from obfuscated code,
or dynamic analysis methods that analyze the runtime behavior of programs directly. Such
approaches can circumvent the effects of static code obfuscation, enabling a more accurate
match for similarity. This advancement in analytical techniques underscores the ongoing
challenge and response between the development of obfuscation methods and the efforts
to effectively detect and analyze obfuscated binary code.

3.5. The Impact of Dynamic Link Libraries and External Dependencies

In binary similarity detection, managing Dynamic Link Libraries (DLLs) and external
dependencies introduces significant technical challenges due to the uncertainty of external
library versions, dynamic loading mechanisms that complicate static analysis, and varia-
tions in DLL versions that impact execution and dependencies. Additionally, dependencies
on specific operating systems, hardware configurations, or environmental conditions can
influence program behavior, affecting the reliability of detection methods.

Therefore, to tackle these challenges, approaches such as dynamic analysis and ad-
vanced deep learning techniques are essential. These strategies help in accurately identify-
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ing and comparing binary files amidst the complexities introduced by DLLs and external
dependencies, highlighting the need for sophisticated technologies in effective binary
similarity detection.

3.6. The Impact of Function Inlining

Inline functions enhance program execution efficiency by replacing function calls with
the actual code of the function, thus eliminating the overhead of function calls. This is
particularly effective for frequently called small functions. However, inline functions do
not differ significantly in code structure from regular functions, making their identification
highly challenging. At the assembly level, instructions of inline functions are often inter-
mingled with surrounding code rather than being isolated in a separate code block like
regular functions, which complicates the precise identification of the start and end points
of inline functions at the assembly level.

Furthermore, the challenge of recognition increases when the instructions of inline
functions are not sequentially arranged due to instruction alignment and pipeline opti-
mization. This is because compiler optimizations can cause the code to be rearranged
and reorganized to leverage the processor’s pipeline and cache features, resulting in the
instructions of inline functions being potentially non-contiguous in memory. Addition-
ally, within binaries, there are no established expert patterns, such as prologue/epilogue
instructions, for inline functions [26].

Therefore, accurately identifying inline functions requires in-depth static code analysis
and a profound understanding of the assembly level. By analyzing the context around
function call sites and conducting a detailed review of the assembly code, it is possible
to explore which functions are suitable for inlining and how to optimize inline code to
enhance performance.

4. Methods of Binary Code Similarity Detection

This article categorizes the current works on binary code similarity detection based on
the methodologies for extracting binary code features, including static analysis-based ap-
proaches, dynamic analysis-based approaches, hybrid analysis-based approaches, and learning-
based analysis approaches, as shown in Table 1.

4.1. Static Analysis-Based Approaches

Static analysis methods extract structural information by disassembling binary code
and analyzing control flow graphs for similarity measurement. This approach facilitates
an in-depth analysis based on the code’s structure, syntax, and semantics without exe-
cuting the program. The algorithms involve graph matching and analysis of static code
fragments, making them well suited for post-compilation code analysis. While static anal-
ysis exhibits a degree of robustness in handling code transformations and obfuscations,
most methods predominantly focus on the syntactic aspects of instructions rather than
their semantics. Furthermore, graph matching algorithms not only demand significant
computational efforts but also struggle to guarantee the optimality of matches, leading
to limited accuracy. Currently, a significant portion of research on binary code similarity
employs static analysis techniques.
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Table 1. Classification of binary code similarity analysis method.

Category Method Type Method Accuracy Efficiency Recall Precision Security Scalability Resource
Consumption

Graph-based Matching Multi-MH [3], discovRE [4], Genius [6]

Static Analysis
Static Slicing

Esh [5], GitZ [10], Zeek [27], Xmatch [9],

BinGo [7], FirmUP [12]

High High Low High Low Low Low

Runtime Behavior IMF [28], MockingBird [29], CoP [30]
Dynamic Analysis

Dynamic Program Slicing BinSim [31]
High Low High High High Low Low

Hybrid Analysis Simulation
BinGo-E [32], CACompare [33],

BinMatch [34], Patchecko [35]
High Modern High High Modern Low Low

Statistical Feature Learning

Gemini [11], αDiff [14], VulSeeker [15],

IoTSeeker [36], VulSeeker-Pro [37],

BiN [38], FIT [39], TikNib [40]

Machine Learning

Automatic Feature Learning

Asm2Vec [41], InneyEye [42], SAFE [43],

MIRROR [44], Instr [45], OrderMatters [46],

Trex [47], PalmTree [48], DeepBinDiff [49],

COMBO [50], jTrans [51], kTrans [52]

High High High High Low High High
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4.1.1. Graph-Based Comparison Methods

This method involves converting binary code into a graphical representation and
then applying various comparison algorithms (such as edit distance, longest common
subsequence, etc.) to assess similarity, as shown in Figure 2. Techniques in this category
include Multi-MH [3], discovRE [4], and Genius [6], et al. The initial graph-based compari-
son method was introduced by researchers at Zynamics in 2006 with BinDiff [53], which
matches functions by performing a series of graph isomorphism checks on call graphs and
utilizes control flow graphs (CFGs) for matching basic blocks. Building on these studies,
Binslayer introduced the Hungarian algorithm in 2013 to optimize the graph matching
process, thereby enhancing the precision of the matching results [54].

Figure 2. Flowchart of graph-based comparison methods.

4.1.2. Static Slicing (Strands)

This method involves decomposing a graph into smaller, comparable components for
subsequent comparison, as shown in Figure 3. Examples of this method include Esh [5],
GitZ [10], Zeek [27], Xmatch [9], BinGo [7], and FirmUP [12], et al. In 2014, David Y and
Yahav E introduced a tracelet-based code search technique that transforms control flow
graphs (CFGs) into a series of fixed-length paths [1]. These fixed-length paths, known as
tracelets [1], capture the control flow characteristics of a program, making them available
for further analysis, matching, or comparison. Subsequently, these tracelets are matched
using rewriting techniques.

Figure 3. Flowchart of static slicing (strands).

4.2. Dynamic Analysis Methods

Dynamic analysis methods assess the performance and functionality of software
applications by executing and monitoring their behavior. This approach primarily involves
conducting tests on the program in real or simulated environments using a specific set of
input cases to collect information on its input–output and behavioral data, including the
program’s input–output, system calls, memory access patterns, and exceptional events.
Dynamic analysis exhibits a higher tolerance for code transformation and obfuscation but
requires a balance between security and performance costs.

Early studies, such as Blanket Execution [55], execute two versions of binary functions
with the same inputs and calculate similarity based on the differences in their behavior.
The assessment of binary code similarity involves comparing outputs and state changes dur-
ing the function execution. BinHunt [56] and iBinHunt [57] utilize symbolic execution and
theorem proving techniques to verify the equivalence of different basic blocks or strands.
Symbolic execution, which substitutes concrete variables with symbolic representations
and performs symbolic operations to explore program execution paths, aids in detecting
equivalence between codes. Dynamic analysis is further subdivided into runtime behavior
analysis and dynamic program slicing techniques.
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4.2.1. Runtime Behavior Analysis

Techniques such as IMF [28], Patchecko [35], MockingBird [29], and CoP [30] all em-
ploy runtime behavior analysis methods. IMF [28] and Patchecko [35] utilize fuzz testing to
evaluate the similarity of binary code, a technique that injects random or semi-random data
into programs to trigger potential vulnerabilities and anomalies, thereby revealing functional
and behavioral differences between codes. MockingBird [29] applies dynamic instrumenta-
tion, inserting monitors or trackers during program execution to obtain detailed information
about program behavior. This method is capable of logging function calls, memory access,
and system calls, providing a basis for assessing binary code similarity. Meanwhile, CoP [30]
employs symbolic execution to collect program behavior paths, symbolically representing pro-
gram paths and using symbolic reasoning to explore all potential execution paths, effectively
identifying behavioral differences and similarities between codes.

4.2.2. Dynamic Program Slicing Techniques

BinSim [31] utilizes system calls for dynamic program slicing and employs symbolic
execution to assess program equivalence. Dynamic slicing techniques extract relevant
code fragments from the execution path of a program, facilitating the comparison of
functionalities and behaviors across different program versions.

These methods employ a variety of technical strategies to collect and analyze program
behavior data, with the goal of evaluating similarities and functional differences between
binary codes. This process is crucial for revealing functional discrepancies, identifying
potential vulnerabilities, and detecting security risks.

4.3. Hybrid Analysis-Based Approaches

Hybrid analysis methods integrate dynamic and static analysis, aiming to comprehen-
sively consider code coverage, detection accuracy, and the scalability of the methods. These
methods strive to compensate for the respective limitations of static and dynamic analysis
to enhance the precision and robustness of detection. In the field of binary code similarity
detection, techniques such as BinGo-E [32], CACompare [33], and BinMatch [34] adopt
emulation strategies. After completing static analysis, they emulate the execution of target
functions to extract semantic features for similarity comparison. Throughout this process,
it is possible to capture the function execution paths, system call sequences, and other key
behavioral characteristics, allowing for a more comprehensive and precise assessment of
similarity between functions.

Particularly, Patchecko [35] employs a more complex hybrid analysis strategy. In the
static detection phase, candidate functions are selected through static analysis; then, dur-
ing the dynamic analysis phase, the execution trajectories of functions are captured using
runtime DLL injection and remote debugging technologies. With the results of these dy-
namic analyses, Patchecko [35] can quantify the similarity between functions and validate
the accuracy of static analysis.

In summary, hybrid analysis methods combine the advantages of dynamic and static
analysis, improving the accuracy and comprehensiveness of code similarity detection.
By supplementing static analysis with emulation or dynamic analysis, these methods more
effectively understand and compare the behavioral and structural differences between
binary codes, providing a more reliable solution for software security and vulnerabil-
ity identification.

4.4. Learning-Based Analysis Approaches

Since the beginning of the 21st century, with the rapid development of technology and
the economy, fields such as computer science have seen swift expansion, with emerging
technologies like artificial intelligence and the metaverse gaining prominence. Deep learn-
ing, in particular, has become a hot topic of research. To date, numerous research teams and
companies have made significant contributions in the area of deep learning. The emergence
of various network models has not only offered new perspectives for problem-solving but
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has also brought convenience. Although attempts to apply machine learning algorithms in
early binary code similarity analysis work, such as Zeek [27], were made, these applications
were generally limited to serving as classifiers or filters and did not become the core tech-
nology. Since the introduction of the Gemini [11] model in 2017, deep learning algorithms
based on graph embedding, natural language processing, and self-attention networks have
been widely applied in the field of binary code similarity analysis, as shown in Figure 4.
These methods can be divided into those based on statistical feature learning and those
based on automated feature learning. Compared to traditional static and dynamic analysis
methods, learning-based approaches offer the following advantages:

1. Higher accuracy. By integrating various aspects of code, including syntactic, semantic,
and structural features, the precision of the analysis is enhanced.

2. Better scalability. Learning-based methods are more flexible than complex graph
matching algorithms or dynamic execution techniques, and the learning process can
be accelerated with GPUs, significantly increasing efficiency.

Figure 4. Flowchart of learning-based analysis approaches.

Therefore, these approaches have attracted widespread attention within the industry
and have become a major trend in recent research.

4.4.1. Learning Based on Statistical Features

The learning strategy based on statistical features primarily focuses on learning statisti-
cal information of nodes (i.e., basic blocks) within a graph and integrating this information
as node attributes into the graph, thus forming what is known as an Attributed Control
Flow Graph (ACFG). Subsequently, ACFGs are processed through graph neural networks
to extract the graph embedding vectors of functions, serving as representations of the func-
tions. Research projects such as Gemini [11], VulSeeker-Pro [37], α Diff [14], VulSeeker [15],
IoTSeeker [36], BiN [38], and FIT [39] have adopted methods similar to structural Word2vec
and Siamese networks for supervised learning to handle ACFGs and their derivatives.

4.4.2. Learning Based on Automated Feature Learning

In recent years, with the rapid advancement of machine learning and deep learning
technologies, a succession of network models has been introduced. To avoid biases that
may arise from manual feature selection, researchers have shifted towards automated feature
learning methods for extracting semantic features from target code automatically. Studies
such as Asm2Vec [41], InnerEye [42], Instr [45], SAFE [43], MIRROR [44], OrderMatters [46],
Trex, DeepBinDiff, jTrans [51], and kTrans [52] are dedicated to the automatic identification
of the code’s semantic features. In 2016, the Genius [6] model introduced by Feng utilized
spectral clustering techniques to group multiple ACFGs after their construction. Furthermore,
researchers have transformed ACFGs into vector representations using popular encoding
techniques (such as word2vec, CNNs, etc.), with the Gemini [11] model proposed in 2017
employing the graph embedding network Structure2Vec for vectorization. Subsequently,
researchers have begun applying advanced natural language processing technologies to the
field of binary code similarity detection. The core idea is to automatically learn feature vectors
representing the semantics and semantic relations from the raw bytes or assembly instructions
of binary code, such as Asm2Vec [41] using the PV-DM model to learn function embeddings,
and SAFE automating function embedding learning with self-attention networks. Recent
studies have shown that the Transformer model, as an efficient language representation
tool, performs excellently in understanding the semantics of binary code and supporting
downstream tasks, like jTrans [51] and kTrans [52]. Features obtained through automated
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learning methods are independent of manual reverse engineering and are not limited by the
skill level of manual reversing. This approach avoids biases that manual reversing might
introduce, more effectively capturing the target code’s characteristics, thereby achieving higher
accuracy in the final stage of the similarity comparison. In practical application scenarios,
a quintessential example is the development of BinaryAI, spurred by a paper published
by Tencent’s Keen Security Lab in 2020 [46]. This platform represents a cutting-edge bi-
nary security intelligence analysis tool. BinaryAI signifies a significant leap from function
similarity analysis to component similarity analysis, offering capabilities for Software Com-
position Analysis (SCA). It can precisely and efficiently identify third-party components
and their version numbers within binary files. Moreover, its support for function-level
matching and customizable comparison ranges provides unparalleled flexibility in dealing
with complex binary files. Currently, they have successfully upgraded BinaryAI to its
third generation. Compared to its predecessors, this approach significantly enhances the
accuracy of matching binary source code.

5. Future Trends and Research Directions

Currently, the field of binary code similarity detection is in a phase of rapid develop-
ment. Despite facing numerous challenges, it also harbors significant opportunities. This
paper outlines several potential open research directions in this area.

5.1. The Application of Deep Learning

Since the beginning of the 21st century, deep learning has emerged as a hot research
area, with its application in binary code similarity detection gradually expanding. Espe-
cially, recent studies have shown that Transformer [58] models are capable of understanding
the semantics of binary code, aiding in various downstream tasks. The use of Transformer-
based binary code embedding techniques, leveraging their powerful self-attention mech-
anisms, effectively captures long-distance dependencies and complex patterns within
the code. Examples of such approaches include PalmTree [48], jTrans [51], COMBO [50],
and kTrans [51], which typically follow a pre-training and fine-tuning paradigm. They
learn general binary code representations from a vast amount of unlabeled data and then
fine-tune these representations for specific code analysis tasks.

Future research directions in deep learning for binary code similarity detection will
primarily focus on the following areas.

5.1.1. Exploring Larger Domain Models

Although the Transformer model is favored for its ability to capture long-distance
dependencies, high scalability, and capacity for transfer learning, it also presents some
non-negligible drawbacks, including its high complexity, the need for manual integration
of prior knowledge, and limitations in fully understanding instructions. Therefore, in the
task of binary code similarity detection, there is still room for improvement in the current
Transformer models. According to research on the scaling laws of Transformers by Jordan
Hoffmann and others [59], it is known that as the size of the model and the volume of
data increase, the scaling effect of the model becomes more significant. Hence, by fur-
ther advancing pre-training techniques, it is possible to construct more powerful models
specifically designed for binary code similarity detection tasks.

Such more powerful models have the potential to capture more complex patterns and
dependencies within binary code, thereby significantly enhancing the accuracy of binary
code similarity detection. By leveraging large datasets for pre-training, these models can
learn deeper representations of binary code, offering new approaches and methods to
address the challenges of binary code similarity detection.

5.1.2. Exploring More Cost-Effective Models

It is well-known that training and running large-scale language models often require
a significant amount of computational resources. Therefore, exploring cost-effective binary
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code embedding techniques has become a key research direction. In this context, there
are mainly two potential approaches: (1) Investigating transfer learning strategies, where
models pretrained on large general datasets are fine-tuned on smaller, binary code-specific
datasets. This approach leverages knowledge learned from a broader domain, allowing
the model to achieve better performance with lower computational resource consumption.
(2) Exploring efficient model training techniques, such as the teacher–student paradigm.
This method involves training a smaller, simpler model (the student model) to learn from a
larger, more complex model (the teacher model), thereby obtaining better performance for
the student model with reduced computational resources.

By adopting these cost-effective training methods, researchers and practitioners can
more easily develop and deploy binary code embedding models, thereby enhancing perfor-
mance and efficiency in tasks such as binary code similarity detection.

5.2. Enhancing the Accuracy of Reverse Engineering

In current research on binary code similarity analysis, widely used methods, including
but not limited to Genius [6], Gemini [11], and jTrans [51], commonly rely on mature
commercial disassembly tools like IDA Pro. Although IDA Pro is widely recognized as
a leading tool for binary reverse engineering, it inevitably has certain limitations and
shortcomings [60], mainly involving the following aspects:

5.2.1. For Entry Point and Function Boundary Identification

Most disassemblers rely on symbol tables to determine function boundaries and con-
struct control flow graphs. However, in certain cases, particularly when symbol tables are
inaccurate or missing, locating function boundaries becomes especially challenging. This issue
is pronounced in the analysis of binary firmware, where entry points and base addresses are
often unknown. Additionally, there may be functions with multiple entry points, necessitating
further identification efforts. This is especially true for programs that are complex in design or
utilize special compilation techniques; the lack of clear symbol information can lead to mis-
judgments and omissions during the disassembly process, thereby increasing the complexity
and difficulty of binary code analysis. Therefore, developing techniques and methods that can
effectively identify function boundaries and entry points without symbol table information
are crucial for enhancing the accuracy and efficiency of binary code reverse engineering.

5.2.2. Code Obfuscation/Transformation

To protect their creations, both legitimate/benign program authors and malicious soft-
ware developers may employ various technical measures, such as code obfuscation, encryp-
tion, or packaging. These measures are taken for several reasons; for example, legitimate
software authors might aim to protect intellectual property or prevent their software from
being illegally copied, modified, or republished as malware. On the other hand, malicious
software developers use obfuscation techniques to evade detection and analysis by security
analysis tools or researchers. These obfuscation and encryption techniques, serving different
purposes, significantly increase the complexity and challenge of binary code analysis. Cur-
rently, only specific obfuscation techniques, like Obfuscator-LLVM, take the impact of code
obfuscation into account. This implies that the vast majority of existing analysis tools and
techniques may have significant limitations in dealing with advanced obfuscation techniques,
especially the emerging and more complex methods of obfuscation.

Therefore, the development of advanced binary code analysis methods capable of
effectively identifying and handling various obfuscation techniques is particularly impor-
tant. This not only requires a deep understanding of the essence and trends of obfuscation
techniques but also the development of new analysis algorithms and techniques to enhance
the ability to decipher obfuscated code, thereby allowing for a more accurate analysis and
understanding of the true functionality and behavior of binary programs.
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5.3. Enhancing the Ability to Handle Different Configurations

While current binary code similarity analysis techniques have made remarkable
progress in handling cross-architecture, cross-compiler, and various compilation opti-
mization options, research in this field still faces a series of unresolved challenges. These
challenges include, but are not limited to, function inlining, code obfuscation, software
patch handling, and cross-project analysis.

Firstly, modern compilers’ function inlining optimization strategies significantly in-
crease the complexity of similarity analysis, as code fragments with similar functionalities
may be embedded within different functions during the compilation process, presenting
additional difficulties in accurately identifying similar code.

Secondly, the use of code obfuscation techniques by both malicious software de-
velopers and legitimate software authors also complicates analysis efforts. Obfusca-
tion aims to make the code difficult to understand, thereby increasing the challenge of
recognizing similarities.

Moreover, the constant updating and patching of software necessitate that similarity
analysis techniques are capable of adapting to software version iterations and identifying
changes introduced by patches. The cross-project analysis presents another significant
challenge, as different projects often utilize diverse coding styles and structures, requiring
similarity analysis techniques to have sufficient flexibility and adaptability.

To address these challenges, it is imperative to develop new analysis strategies and
technologies that enhance the ability to handle function inlining, obfuscated code, patch
presence, and differences in coding styles across projects, thereby improving the accuracy
and efficiency of binary code similarity analysis.

6. Conclusions

This paper comprehensively reviews the fundamental principles of binary code simi-
larity detection, addressing challenges such as information loss and multi-platform adapt-
ability. It summarizes the current progress in research on binary code feature extraction,
covering methods such as static analysis, dynamic analysis, and hybrid analysis, as well as
techniques that incorporate deep learning. Further, it outlines future research directions,
emphasizing the need for a deeper understanding of binary code semantics, capturing more
profound representations of binary code, enhancing the accuracy of reverse engineering,
overcoming existing technological limitations, and significantly improving the efficiency
and accuracy of binary code similarity detection. Key initiatives include strengthening the
identification of complex code obfuscation techniques, optimizing cross-version and cross-
platform code analysis strategies, and employing more complex deep learning models to
capture more intricate code features. By integrating and optimizing these strategies, binary
code similarity analysis technology is expected to play a more critical role in key areas
such as software security assessment, malicious code detection, and software composition
analysis, thereby advancing the development of this field.
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