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Abstract: Web3.0, as the link between the physical and digital domains, faces increasing security
threats due to its inherent complexity and openness. Traditional intrusion detection systems (IDSs)
encounter formidable challenges in grappling with the multidimensional and nonlinear traffic data
characteristic of the Web3.0 environment. Such challenges include insufficient samples of attack
data, inadequate feature extraction, and resultant inaccuracies in model classification. Moreover,
the scarcity of certain traffic data available for analysis by IDSs impedes the system’s capacity to
document instances of malicious behavior. In response to these exigencies, this paper presents
a novel approach to Web3.0 intrusion detection, predicated on the utilization of cycle-consistent
generative adversarial networks (CycleGANs). Leveraging the data transformation capabilities of its
generator, this method facilitates bidirectional conversion between normal Web3.0 behavioral data
and potentially intrusive behavioral data. This transformative process not only augments the diversity
and volume of recorded intrusive behaviors but also clandestinely simulates various attack scenarios.
Furthermore, through fostering mutual competition and learning between the discriminator and
generator, the approach enhances the ability to discern the defining characteristics of potential
intrusive behaviors, thereby bolstering the accuracy of intrusion detection. To substantiate the
efficacy of the CycleGAN-based intrusion detection method, simulation experiments were conducted
utilizing public datasets, including KDD CUP 1999 (KDD), CIC-DDOS2019, CIC-IDS2018, and SR-BH
2020. The experimental findings evince the method’s remarkable accuracies across the four datasets,
attaining rates of 99.81%, 97.79%, 89.25%, and 95.15%, respectively, while concurrently maintaining
low false-positive rates. This research contributes novel insights and methodologies toward the
advancement of Web3.0 intrusion detection through the application of CycleGAN technology, which
is poised to play a pivotal role in fortifying the security landscape of Web3.0.

Keywords: Web3.0; CycleGAN; intrusion detection; deep learning; data augmentation

1. Introduction

As one of the most significant technological trends of the 21st century, Web3.0 has
profoundly impacted human life and work. With the interconnection of various physical
devices, sensors, and embedded systems, we have entered a new digital era where the
interaction of smart devices and data sharing have become crucial. The essence of Web3.0
lies in its decentralization and the concept of user-controlled data, making data security
and privacy protection focal points. However, the rapid development of Web3.0 has also
brought about a series of serious security challenges, necessitating continuous exploration
of innovative solutions to ensure its sustainable development and security [1].
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The SolarWinds supply chain attack was one of the most notable events between
2020 and 2021, affecting thousands of companies and government organizations. Hackers
successfully infiltrated many customers’ network systems by tampering with SolarWinds’
software updates. This event serves as a significant warning for the security of Web3.0.
While Web3.0’s decentralized nature and smart contracts offer innovative potential, they
also bring new security challenges.

Web3.0 encompasses decentralized networks, smart contracts, digital assets, and other
areas, facing various security challenges including, but not limited to, the security of
decentralized networks, smart contract vulnerabilities, the secure management of digital
assets, and supply chain attacks [2]. Therefore, the demand for Web3.0 security technologies
continues to grow. By integrating intrusion detection technologies, potential intrusions
and attacks in Web3.0 networks can be effectively monitored and defended against. This
integration enables Web3.0 networks to better protect user data, smart contracts, and digital
assets, thereby enhancing network security and trustworthiness [3]. Currently, cutting-edge
security technologies include blockchain [4], edge computing [5], threat intelligence [6], and
intrusion detection techniques. intrusion detection systems (IDSs) can monitor sensitive
data [7], prevent the leakage of private data, detect DoS attacks [8], and reduce the risks of
data misuse [9] and privacy violations [10].

Intrusion detection systems are crucial in today’s Web security field for monitoring
and identifying potential network intrusions and security threats. Although intrusion
detection technologies have made significant progress in recent decades, they still face
multiple challenges and limitations that affect performance, accuracy, and availability.
False positives and false negatives [11] frequently occur, reducing the credibility and
effectiveness of the system. Traditional intrusion detection systems typically rely on known
attack patterns and signatures to detect threats , but zero-day vulnerabilities and advanced
persistent threats (APTs) use new attack methods [12], making it difficult for traditional
approaches to identify these threats. To address these issues, machine learning and deep
learning techniques have been introduced to improve the accuracy and adaptability of
intrusion detection systems to better handle diverse threats.

This research proposes a Web intrusion detection system based on cycle-consistent
adversarial network models [13], which have outstanding capabilities in anomalous traffic
detection and data augmentation. The model maps the process of data anomalies caused
by network traffic attacks to the generator’s process of converting normal data into anoma-
lous data, achieving the goal of data augmentation. Meanwhile, the adversarial learning
between the discriminator and generator improves the discriminator’s ability to identify
anomalous data.

Experiments have verified that the proposed method can accurately detect various
attacks on the Web. We evaluated the model on the KDD99 [14], CIC-IDS2018 [15], CIC-
DDOS2019 [16], and SB-RH 2020 [17] datasets. On the KDD99 dataset, the model achieved
a high accuracy of 99.81%; on the CIC-DDOS2019 dataset, the accuracy reached 97.79%; on
the CIC-IDS2018 dataset, it was 89.25%; and on the SR-BH 2020 dataset, it was 95.15%. The
results demonstrate that compared to LSTM, RNN, MLP, and other deep learning models,
this model significantly improves performance.

The main contributions of this paper are as follows:
(1) Network traffic analysis is often limited by insufficient attack samples. To address

this data scarcity issue, this model introduces cycle-consistent adversarial networks (Cy-
cleGAN) to convert data across domains. In attack detection tasks, normal network traffic
and malicious attack traffic are viewed as two domains, and CycleGAN enables mutual
conversion between them to generate more training samples. In this way, the training
dataset is effectively expanded, improving the model’s generalization capability.

(2) CycleGAN is utilized not only for data augmentation, but also for feature learning
and transfer. This model trains a CycleGAN model to convert normal traffic into feature
representations of malicious traffic, then uses these feature representations to train the
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intrusion detection model. This allows the model to learn richer features from malicious
traffic and improves detection performance.

(3) For novel attacks with unknown attack patterns and signatures, such as zero-day
vulnerabilities and advanced persistent threats (APTs), the discriminator of this model can
distinguish between normal network traffic and unknown attack traffic by learning the
characteristics of normal traffic.

(4) The methodology proposed in this paper exhibits excellent performance. Simula-
tion experiments were conducted using public datasets, namely KDD CUP 1999 (KDD),
CIC-DDOS2019, CIC-IDS2018, and SR-BH 2020. The experimental results demonstrate high
accuracy rates on these datasets, reaching 99.81%, 97.79%, 89.25%, and 95.15%, respectively,
with concurrently low false-positive rates.

The remainder of this paper is organized as follows: Section 2 will elaborate on the
background and motivations of this research in detail to highlight the rationale behind
the CycleGAN-based intrusion detection method. Section 3 will introduce the proposed
methods in detail, including the technical details of CycleGAN-based data augmentation
and feature learning, as well as attack detection methods. Section 4 will present the
experimental results, comprehensively evaluating the performance of the CycleGAN-based
intrusion detection system in depth and comparing it with traditional methods. Finally,
Section 5 concludes the paper, objectively summarizing the limitations, contributions, and
future research directions.

2. Background and Related Work
2.1. DNN and CycleGAN

Deep neural networks (DNNs) are a biologically inspired machine learning model
that mimic biological neural networks. They consist of multiple stacked layers of neural
units, with each layer containing multiple neurones interconnected through adjustable
weight connections. The early origins of neural networks can be traced back to the
1950s–1960s, including Frank Rosenblatt’s perceptron [18] and Marvin Minsky and Sey-
mour Papert’s research on the limitations of perceptrons [19]. However, progress on early
DNNs was limited until Yann LeCun proposed the convolutional neural network (CNN)
model LeNet-5 in 1998 [20], which was trained using backpropagation. However, DNNs
underperformed compared to traditional machine learning algorithms and training deep
networks was challenging. In 2012, Alex Krizhevsky’s AlexNet [21] marked a major break-
through for DNNs, successfully introducing deep neural networks to the field of image
recognition and completely transforming the field. AlexNet overturned traditional image
classification, and DNNs started to emerge, followed by many network architectures like
VGGNet [22], GoogleNet [23], and ResNet [24]. These models have superior classification
capabilities, and are used to analyze network traffic to identify malicious attacks, such as
Swarna Priya R.M. et al. [25] using deep neural networks to classify and predict unknown
network attacks.

Since they were first proposed in 2014, generative adversarial networks (GANs) [26]
have been widely applied in anomaly detection. GANs are a deep learning model composed
of a generator and discriminator that compete with each other, continuously adjusting
parameters so the generator can produce more realistic data to improve the discriminator’s
accuracy. In 2016, researchers proposed the pix2pix model [27], which utilizes adversarial
training similar to GANs and can convert input images to associated output images, such
as converting line drawings to colored images. However, pix2pix requires paired training
data, making it unsuitable for some cases. The key innovation of cycle-consistent GANs
(CycleGAN) is the ability to achieve unpaired cross-domain image translation, converting
images from one domain to another without paired datasets. Compared to DiscoGAN [28],
proposed in the same year, which can also perform cross-domain translation, DiscoGAN
requires paired training data. In addition to anomaly detection capabilities, CycleGAN has
the unique ability of data-type conversion. CycleGAN represents an important milestone
in the development of GANs, enabling more practical and efficient data-type conversion
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through continuous improvements and optimizations. Compared to other deep learning
models, such as LSTM, AE [29], CNN, and GCN [30], which can also be used for anomaly
detection tasks, CycleGAN also enables exceptional cross-domain conversion.

2.2. Intrusion Detection Based on Deep Learning

The concept of intrusion detection was first proposed by James Anderson [31] in 1980,
who described a method to monitor and detect anomalous activities in computer systems,
which can be seen as an early intrusion detection system prototype. Another early work
was the host-based intrusion detection model proposed by Dorothy Denning [32] in 1987,
which focused on detecting abnormal or anomalous behaviors in computer systems.

In the 1990s, researchers began to use traditional neural networks such as MLPs [33]
for anomaly detection in networks. With the rise in deep learning, the performance of
deep neural network-based intrusion detection systems has greatly improved and has
become a major approach. In recent years, many deep neural network intrusion detection
systems have emerged, such as the system by Ghulam Muhammad et al. [34], which
combines autoencoders and deep neural networks, learns features unsupervised, and then,
supervised, trains the DNN to extract deep features for classification.

Yanqing Yang et al. [35] proposed the SAVAER-DNN intrusion detection model, using
the SAVAER decoder, to generate low-frequency and unknown attack samples, increasing
data diversity and balancing the dataset. The model can detect both known and unknown
attacks, improving the detection rate for low-frequency attacks. Neelu Khare et al. [36]
combined deep learning and machine learning, improving detection performance by
optimizing the dataset. Chaofei Tang et al. [37] proposed the SAAE-DNN intrusion
detection model, using the SAAE encoder to automatically extract features and initialize
DNN weights, improving detection accuracy.

Mohammad Al-Fawareh et al. [38] proposed the PCA-DNN model to detect anoma-
lous network behaviors, addressing issues like high false alarm rates, long detection times,
and zero-day attacks. Ankit Thakkar et al. [39] analyzed the impact of L1, L2, elastic
net regularization and dropout techniques on DNN intrusion detection performance. K.
Narayana Rao et al. [40] proposed a two-stage hybrid approach, where in the first stage L1
regularization sparsifies the autoencoder, and in the second stage the DNN predicts and
classifies attacks, achieving high detection rates.

E. Balamurugan et al. [41] proposed the IDSGT-DNN framework, which incor-
porates attacker and defender mechanisms to process attack and normal data. Ankit
Thakkar et al. [42] proposed a new feature selection technique by integrating differences,
fusing the differences between standard deviation, mean, and median to improve DNN-IDS
performance. The following year, Ankit Thakkar et al. [43] used a machine learning-driven
deep neural network to classify unbalanced intrusion data, addressing the class imbalance
issue in intrusion detection datasets.

Since its advent in 2014, generative adversarial networks (GANs) have gained much at-
tention; although initially used for image tasks, they have expanded into multi-disciplinary
research. In network security, they are especially used for intrusion detection tasks dealing
with imbalanced datasets [44]. As data samples are mostly imbalanced in most cases,
causing intrusion detection models to be biased towards majority classes, to address this,
Vikash Kumar et al. [45] proposed a Wasserstein conditional GAN (WCGAN) combined
with an XGBoost classifier. They used gradient penalty with WCGAN to stabilize model
training, enabling the model to generate highly similar minority class samples.

Recent related research shows that, on the one hand, some researchers adopt deep
neural networks (DNNs) to analyze Web3.0 network traffic to improve the ability of
intrusion detection systems to distinguish between normal and malicious traffic. On
the other hand, researchers combine machine learning and deep learning algorithms to
improve detection performance. In addition, some researchers focus on techniques like
regularization and dropout to improve DNN model performance. Finally, to address
imbalanced dataset issues, some researchers use generative adversarial networks (GANs)
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to simultaneously handle sample generation and attack behavior detection. The explanation
table for the relevant work is shown in Table 1.

Table 1. Related work.

IDS Dataset Supervised/
Unsupervised

Application
Scenarios Advantages Disadvantages Algorithm

Complexity Accuracy

Stacked
Autoencoder-
Based IDS [36]

KDDCup99,
NSL-KDD, Aegean

Wi-Fi intrusion Dataset
Semi-supervised Financial

Transactions

Has made innovative con-
tributions in the field of
financial transactions and
achieved high results in
this area.

It has a high model complex-
ity and therefore requires a
lot of time and data to train.

High 94.2%,
99.7%, 99.9%

SAVAER-
DNN [37]

NSL-KDD,
UNSW-NB15 supervised Network

Monitoring

More effective in detect-
ing low-frequency and un-
known attacks.

The data augmentation
scheme is unstable. And
it requires a large amount
of training set data.

High 89.4%, 93.0%

SMO-DNN [38] KDD Cup 99,
NSL-KDD supervised Network

Monitoring
Can use less training data
and achieve better results.

The generalization of the
model is low. Middle 99.4%, 92.0%

SAAE-
DNN [39] NSL-KDD supervised Simulation and

Simulation Low model complexity. Low accuracy. Low 87.7%

PCA-DNN [40] CSE-CI-UNB 2018 supervised Network
Monitoring

Less computational resources
required, strong model gener-
alization ability.

When subjected to a large
number of attacks, its per-
formance will be weakened.

Middle 97.0%

SAE-
DNNL1 [42] UNSW-NB15 Semi-supervised Network

Monitoring

Applying sparsity regular-
ization to weights enables
compressed feature extrac-
tion for more comprehen-
sive feature capture.

Complex transformations of
data features can lead to
poor generalization ability
of the model.

High 99.9%

IDSGT-
DNN [43] CICIDS-2017 supervised Cloud

Computing

Collecting models and poli-
cies can effectively reduce
training resources.

The applicability of the strat-
egy needs to be considered. Middle 97.9%

DNN- feature
selection

technique [44]
NSL-KDD, UNSW

_NB-15, CIC-IDS-2017 supervised Network
Monitoring

A simplified feature subset
composed of features with
high distinguishability and
bias can be derived.

None. Middle
99.84%,
89.03%,
99.80%

Ours
KDDCup99,

CIC-DDOS2019,
CIC-IDS2018, SR-BH

2020
Semi-supervised Network

Monitoring

The required amount of
training data is small, the
training time is short, and
the training resources are
limited.

Weak generalization ability
and lack of interpretability. Low

99.81%,
97.79%,
89.25%,
95.15%

3. Intrusion Detection Framework

In this section, we will introduce the intrusion detection framework proposed in this
paper and its functionality in the context of Web3.0. Web3.0 applications involve inter-
actions with decentralized networks, smart contracts, and digital assets, which generate
network traffic that may contain malicious payloads. The model proposed in this paper
analyzes this Web3.0 traffic by extracting features, performs data augmentation, and detects
malicious activities. The reference architecture of the intrusion detection model for Web3.0
proposed in this paper is as shown in Figure 1.

Device
Data source--Traffic Log

Feature

Extraction

IDS based on CycleGAN
Data 

Augmentation

Alarm

Figure 1. The architecture of Web intrusion detection methods.

3.1. Dataset Definition

In this paper, normal data are defined as the source domain, represented by dataset
X : {xi}N

i=1; anomalous data are defined as the target domain, represented by dataset
Y :

{
yj
}M

j=1. Taking the KDD99 dataset as an example, data with the normal label are
considered the source domain, data with the Back attack-type label are considered the
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target domain, and data of other attack types are considered other domains, represented by
the Other dataset: {otheri}N

i=1.

3.2. Cycle-Consistent Generative Adversarial Network

The intrusion detection model proposed in this research is based on an unsupervised
learning method, using cycle-consistent adversarial networks (CycleGANs). CycleGAN
is an image-to-image translation method that does not require paired training data. For
given datasets from two domains, CycleGAN can translate between the two domains
without needing to match data pairs one-to-one. It works by learning to map data from one
domain to the other, and then back to the original domain, while preserving consistency
between the original data and reconstructed data. This adversarial generative network-
based technique enables CycleGAN to achieve high-quality cross-domain data translation.
Due to its superior generalization even on small datasets, it can outperform traditional
methods. In this paper, we apply this method to attack-type conversion, translating normal
data to anomalous data, in order to effectively augment the dataset.

LGAN(G, DY, X, Y) is the generator loss, LGAN(F, DX , Y, X) is the discriminator loss,
and Lcyc(G, F) is the cycle consistency loss in the overall objective function of the cycle-
consistent adversarial network:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F) (1)

3.3. Intrusion Detection Network Model

The cycle-consistent adversarial network in this paper consists of two discriminators
and two generators, all implemented using the same multilayer perceptron (MLP) network
structure for training. The generator includes three hidden layers with 128, 256, and
512 neurons, respectively, and the input and output layers have equal numbers of neurons.
The discriminator has two hidden layers with 512 and 256 neurons, respectively, and the
output layer has 1 neuron. The two generators achieve data translation from the source
domain to the target domain and vice versa. The two discriminators judge whether the
data belong to the source or target domain.

In this paper, the intrusion detection dataset is divided into normal traffic dataset
X : {xi}N

i=1 and anomalous traffic dataset Y :
{

yj
}M

j=1, which have a non-paired relationship.
The goal of the network model is to learn a mapping GX→Y : X → Y so that the generator
can continuously optimize to eventually translate samples X to Y; meanwhile, it learns
an inverse mapping DGY→X : Y → X to reconstruct X from Y, GY→X(GX→Y(X)) ≈ X.
Discriminators DX and DY are introduced, where DX distinguishes between data {x} and
{GY→X(y)}, and DY distinguishes between {y} and {GX→Y(x)}. To ensure that the core
content is transferred during translation instead of just the type, a cycle consistency loss
function Lcyc(GX→Y, GY→X) is added to preserve the key information of X. Data from
other domains do not participate in the translation, and discriminators E and F distinguish
target domain data from other domain data by learning the features of Other:{otheri}N

i=1.
The model training process is illustrated in Figure 2.

Normal Attacks

 𝑌→𝑋𝐺

 𝑋→𝑌𝐺

 𝑋𝐷  𝑌𝐷

normal
fake:

attack

 𝑌→𝑋𝐺

fake:
normal 𝑋→𝑌𝐺

cycle consistency loss

 𝑋𝐷

fake:
normal

fake:
attack

 𝑌𝐷

attack

 𝑋→𝑌𝐺

 𝑌→𝑋𝐺

cycle consistency loss

Figure 2. Model training process diagram.
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The mean squared error (MSE) and L1 loss functions are used in this paper. MSE
is a commonly used loss function in regression tasks that measures the average squared
difference between the predicted and actual values. A lower MSE value indicates smaller
differences between predicted and true values, and better model performance.

MSE =
1
n ∑(xi − yi)

2 (2)

The L1 loss function is known as minimizing absolute error. It has good robustness
and is not overly affected by data with large errors. In this paper, the cycle consistency loss
function Lcyc is represented using the L1 loss function.

MAE =
1
n ∑|xi − yi| (3)

While the generators translate between the target and source domains, the key in-
formation should not be lost. Therefore, this paper chooses to train the two generators
together with the cycle consistency loss function.

LG(GX→Y, GY→X, DX, DY) = MSE(DX(GY→X(y)), 1) +MSE(DY(GX→Y(x), 1))

+MAE(GY→X(GX→Y(x)), x) +MAE(GX→Y(GY→X(y)), y)
(4)

The loss function of discriminator DX is used to train discriminator DX’s ability to
distinguish between normal data and data of other types.

LDX = MSE(DX(x), 1) + MSE(DX(y), 0)

+ MSE(DX(GY→X(y)), 0) + MSE(DX(other), 0)
(5)

The loss function of discriminator DY is used to train discriminator DY’s ability to
distinguish between anomalous data and data of other types.

LDY = MSE(DY(y), 1) + MSE(DY(x), 0)

+ MSE(DY(GX→Y(x)), 0) + MSE(DY(other), 0)
(6)

Through this method, the ability of generator GX→Y(x) to convert normal data into
anomalous data can be enhanced, thereby expanding the anomalous data training set. At
the same time, it also enhances generator GY→X(y)’s ability to convert anomalous data into
normal data, expanding the normal dataset.

After training, discriminators DX and DY can distinguish between normal and anoma-
lous data on the test set. For test data, discriminators DX and DY are used to judge the
category of traffic data, respectively. If DX(data) > DY(data), the data are judged as
normal; if DX(data) < DY(data), they are judged as anomalous.

As indicated in the Algorithm 1 provided, before inputting data into the model, the
training set is first divided into normal data X : {xi}N

i=1, a specific type of anomaly data
Y : {yi}N

j=1, and other types of anomaly data {otheri}N
i=1. Then, the generator GX→Y,

inverse mapping GY→X(y), and discriminators DX and DY are defined. The dataset is then
fed into the model, where the parameters of generators GX→Y and GY→X(y) are optimized
using optimizer LG, and the parameters of discriminators DX and DY are optimized
using loss functions LGX and LGY . In step 2, two already trained generators are used
for data augmentation to expand the dataset. In step 3, the trained dataset is used for
data classification, where if DX(Data) > DY(Data), the data are classified as normal; if
DX(Data) < DY(Data), they are classified as anomalous data.
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Algorithm 1 CycleGANIDS Data training

1: Input: X and Y, Other (X : {xi}N
i=1, Y :

{
yj
}N

j=1, {otheri}N
i=1)

2: Train: Generator (GX→Y), Inverse mapping (GY→X(y)), Determiner (DX and DY)
3: Step1 Training network
4: while i < iterations do
5: Optimize the parameters of generators GX→Y and GY→X(y): LG(GX→Y, GY→X, DX, DY)
6: Optimize the parameters of discriminator DX : LDX
7: Optimize the parameters of discriminator DY: LDY
8: end while
9: Step2 Using generative networks for data augmentation and expansion of datasets

g_back = GX→Y(x), g_normal = GY→X(y),

10: Step3 Use judgment network
11: When data are fed into the discriminator, if DX > DY the data are normal, if DX < DY the

data are anomalous.

3.3.1. Data Augmentation of the Model

Data augmentation refers to techniques that transform or make small modifications
to existing data to synthesize new data, thereby expanding the dataset capacity. Data
augmentation is commonly used to alleviate insufficient data issues in deep learning, and
has been widely applied in image and natural language processing, expanding to intrusion
detection [46]. Domestic and foreign researchers have adopted various data augmentation
techniques, such as adding noise, rotating, flipping, cropping images, etc. [21]. However,
existing methods are limited to processing image and speech data, and cannot effectively
expand network traffic data.

To address the above issues, the model proposed in this research adopts CycleGAN
technology to achieve conversion from normal traffic to attack traffic, thereby generating
more diverse attack data. This method not only expands the dataset scale, but also enhances
the model’s ability to detect new attacks. The inspiration comes from the infection mecha-
nism of computer viruses [47]: after being infected, the computer loses normal functionality
due to some reason and is controlled by the virus to attack other computers, but can resume
normal operation after cleanup. Similarly, this paper maps the “infection” and “cleanup”
processes to generators DX and DY. Generator DX can infect normal data to expand the
anomalous dataset, while inverse generator DY can purify anomalous data to generate new
normal data, expanding the normal dataset. This traffic conversion based on adversarial
networks can effectively augment the data needed for intrusion detection systems. The
data augmentation process is illustrated in Figure 3.

3.3.2. Model Discrimination

Intrusion detection is the core functionality of the model in this paper, and it is used to
monitor and detect potential intrusive behaviors. As an active security protection technol-
ogy, intrusion detection can monitor internal attacks, external attacks, and misoperations
in real time and take interception and response measures before the network system is
threatened.

The discrimination process of this model has two approaches. The first approach is
used to distinguish between a single attack type and normal data, for example, training
a single discriminator to differentiate between normal data and Back attack, or between
normal data and Pod attack. The second approach involves training multiple discriminators,
with each discriminator corresponding to one attack type. Then, unknown data are fed
sequentially into the multiple discriminators, and the discriminator associated with the
maximum value is output, thereby determining the attack type of the unknown traffic.
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(1) Single-category attack detection

For detecting a single type of attack traffic, such as backdoor attack, the model trains
an adversarial discriminator Dy. The discrimination objective of Dy is to distinguish
between normal traffic X and anomalous traffic Y, where Y refers specifically to backdoor
attack traffic. Through adversarial learning, Dy obtains feature expressions of normal
traffic to identify differences between normal traffic X and traffic Y containing backdoor
attack features. After training, Dy can discriminate new unknown network traffic, judging
whether anomalous backdoor attack features exist based on its determination.

(2) Multi-classification attack detection

For detecting multiple types of attacks, the model trains multiple adversarial discrimi-
nators {D1, D2, · · · Dn}, with each discriminator Di corresponding to a known attack type
Yi. During testing, new unknown network traffic is fed sequentially into each adversarial
discriminator Di for judgement. The discrimination probabilities of different Dis are com-
pared, and the attack type corresponding to the discriminator with maximum probability
Pmax is selected as the most likely attack type for that traffic flow. The detection process is
illustrated in Figure 4.
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Figure 3. Data augmentation.

By training discriminators that distinguish between normal traffic and various attack
traffic types, the model can detect known and zero-day attacks that may exist in unknown
traffic. Compared to simply matching attack signatures, this adversarial deep learning
discriminator-based approach can better detect complex network intrusion behaviors.

Suppose a cloud service provider is under a DDoS attack. Attackers use a large
number of zombie computers to send a massive amount of malicious traffic to the servers
of the cloud service provider, exhausting the bandwidth and resources of the servers and
preventing normal users from accessing the cloud service. A CycleGAN-based intrusion
detection system can be employed to detect such DDoS attacks. The system initially
monitors and analyzes the traffic entering the network of the cloud service provider in real
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time. It utilizes a pre-trained discriminator to classify the traffic, distinguishing between
normal and anomalous traffic.

y
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Figure 4. Classification detection.

In this scenario, the traffic sent by the attackers might exhibit certain characteristics,
such as a high volume of requests from geographically diverse IP addresses, abnormally
high request frequencies, and targets concentrated on specific services or ports. The system
uses the discriminator model to recognize and analyze these features, identifying traffic
that may likely be part of a DDoS attack.

Furthermore, the system can collect anomalous traffic, capturing its characteristics,
and through CycleGAN’s data augmentation transformation technology, learn the features
of similar anomalous traffic for better future detection and analysis.

Once the system detects an abnormal traffic pattern, it immediately takes measures to
address it. For example, the system can automatically tag the attacking traffic, diverting it
to a dedicated firewall or traffic scrubbing equipment for further analysis and mitigation.
Additionally, the system can alert network administrators and record detailed information
about the attack for subsequent investigation and analysis.

4. Performance Analysis

In this section, we mainly discuss the experiments we conducted to verify the binary
anomalous detection capabilities of the intrusion detection model. In the experiments, three
public datasets, including KDD, CIC-DDOS2019, CIC-IDS2018 and SR-BH 2020, were used,
and the data preprocessing process is shown in detail. Next, the metrics used to evaluate
model performance are introduced, and the performance results of the model are presented.
Finally, through comparison with the experimental results of LSTM, CNN, MLP, and other
models, the superiority of this model in performance is validated.
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4.1. Dataset

The first evaluation dataset used in this experiment is from the Third International
Knowledge Discovery and Data Mining Tools Competition in 1999, which aimed to build
robust intrusion detection systems. The dataset simulates 9 weeks of network connection
and system audit data to mimic various user types and different network traffic and attack
methods, making it close to real network environments. The dataset contains four anomaly
types: DOS, Probing, R2L, and others. Each traffic sample has 41 features, where 1–9
represent basic TCP connection features, 10–22 are content features of TCP connections,
23–31 are time-based network traffic statistical features calculated within a 2 s time window,
and 32–41 are host-based network traffic statistical features used to evaluate attacks lasting
more than two seconds, as shown in Figure 5.

KDD Attack Datasets

Normal DOS Probing R2L U2R

normal back Pod smurf ipsweep nmap Portsweep satan guess_password warezclient buffer_overflow

Figure 5. KDD99 dataset attack distribution.

The second evaluation dataset used in this experiment is the CIC-IDS2018 dataset
(2018 Intrusion Detection Evaluation Dataset) developed by the Canadian Institute for
Cybersecurity (CIC). The dataset provides raw data (PCAPs) as well as network traffic
analysis results based on timestamps, source IP, destination IP, source port, destination port,
protocol, and attack labels. The dataset includes abstracted behavior of twenty-five users,
based on HTTP, HTTPS, FTP, SSH, and email protocols. Brute force attack types include
FTP, SSH, DoS, Heartbleed, Web, infiltration, botnet, and DDoS. The table summarizes the
traffic information recorded each day. In this study, only samples from the Friday—2 March
2018, Wednesday—14 February 2018, and Friday—16 February 2018 datasets were used for
analysis, as shown in Table 2 [48].

Table 2. CIC-IDS2018 Dataset Attack Distribution.

File Name (Record Date) Attack Type

Thursday—1 March 2018 Benign, Infiltration
Friday—2 March 2018 Benign, Bot

Wednesday—14 February 2018 Benign, SSH-Bruteforce, FTP-BruteForce
Thursday—15 February 2018 Benign, DoS-GoldenEye, DoS-Slowloris

Friday—16 February 2018 Benign, DoS attack-hulk, DoS attacks-SlowHTTPTest
Tuesday—20 February 2018 Benign, DDoS attacks-LOIC-HTTP, DDoS-LOIC-UDP

Wednesday—21 February 2018 Benign, DDOS-LOIC-UDP, DDOS-HOIC
Thursday—22 February 2018 Benign, Brute Force-Web, Brute Force-XSS, SQL Injection

Friday—23 February 2018 Benign, Brute Force-Web, burte Force-XSS, SQL Injection
Wednesday—28 February 2018 Benign, Infiltration

The third evaluation dataset used in this experiment is the recently released CIC-
DDoS2019 DDoS evaluation dataset (2019) from the Canadian Institute for Cybersecurity
(CIC). The dataset underwent network traffic analysis using the CICFLOWMeter-V3 tool,
and the results contain traffic tokens based on timestamps, source IP, destination IP, etc. The
dataset covers various types of DOS attacks found in real network environments, including
LDAP, MSSQL, NetBIOS, Portmap, SYN, UDP, and UDALag, with a total of 88 features.
The CIC-DDoS2019 dataset is publicly available on the Canadian Institute for Cybersecurity
website in PCAP and CSV flow format, and can be used to evaluate the ability to detect the
latest DDoS attacks, as shown in Figure 6.
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Figure 6. CIC-DDOS2019 dataset attack distribution.

The final dataset utilized in this experiment is the SR-BH 2020 dataset, which is
designed to test and evaluate different algorithms and models. This dataset consists of Web
requests collected from a Wordpress Web server installed on a virtual machine and exposed
to the Internet during the period of 12 July 2020. It is a specialized multi-label dataset for
Web attack detection, comprising 907,814 requests, of which 525,195 are normal requests
and 382,619 are anomalous requests. Each record includes 24 distinct features and a set of
13 labels. Table 3 below provides detailed information about the classification of Web
requests under specific CAPEC categories.

Table 3. Number of Web requests by CAPEC classification.

CAPEC Classification Number of Web Requests % of Total Requests

000-Noraml 525,195 57.85%
272-Protocol Manipulation 9153 1.00%
242-Code Injection 15,827 1.74%
88-OS Command Injection 7482 0.82%
126-Path Traversal 20,992 2.31%
66-SQL Injection 250,311 27.57%
16-Dictionary-based Password Attack 1847 0.20%
310-Scanning for Vulnerable Software 2718 0.30%
153-Input Data Manipulation 2272 0.25%
274-HTTP Verb Tampering 5437 0.60%
194-Fake the source of data 56,145 6.18%
34-HTTP Response Splitting 19,738 2.17%
33-HTTP Request Smuggling 1059 0.12%
TOTAL 918,176

4.2. Data Preprocessing

Before model training, training sets for three datasets need to be properly processed
to improve model performance. Specifically, character features first need to be processed,
since character data cannot be directly input into neural networks, such as the “LDAP” in
labels and “xxx-xxx-xxx” in time features. Next, numerical data are normalized.

1. The KDD99 and CICDDOS2019 datasets have 41 and 88 features, respectively, with
the final label features being character type. For ease of neural network training, these label
features need to be removed or converted to the numeric type. The CICIDS2018 dataset
has a timestamp as the third feature, containing the year, month, and day, so this character
feature was removed in this experiment.

2. Before data modeling and analysis, data are usually standardized to eliminate the
influence of different feature dimensions, and the standardized data are used for analysis.
The purpose of standardization is to make each feature have similar magnitudes and be
dimensionless. Data normalization is mainly used to solve the problem of features with
different properties, because directly summing indicators of different properties cannot
correctly reflect their combined effect. Through standardization, the data properties of
different features can be adjusted to make their impacts on the evaluation results more
consistent, in order to obtain the correct model.

x′ =
x − x̄

σ
(7)
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3. Before data analysis, normalization is also required to map feature values into the
range of 0–1, in order to compare and weight features of different magnitudes. Normal-
ization is a method to simplify computation by transforming the original dimensional
expression into a dimensionless expression, making it a pure quantity. This helps process
features with different units or magnitudes for unified calculation and analysis.

x′ =
x − min(x)

max(x)− min(x)
(8)

4.3. Evaluation Indicators

This paper adopts six performance metrics—precision, recall, F1-score, accuracy, false-
negative rate (FNR), and false-positive rate (FPR)—to evaluate model performance. These
metrics are calculated based on four measurements: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN):

True Positive (TP): correctly predict positive samples as positive classes.
True Negative (TN): correctly predict negative samples as negative classes.
False Positive (FP): mispredict negative samples as positive classes.
False Negative (FN): mispredict positive samples as negative classes.
The calculation formula for accuracy is the proportion of correctly predicted samples

to the total number of samples:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

The calculation formula for accuracy is the proportion of correctly predicted samples
to the total number of samples:

Precision =
TP

TP + FP
(10)

The recall rate refers to the probability of correctly predicting positive samples among
all positive samples, which is the ratio of correctly predicting the number of positive
samples to all positive samples. It reflects the proportion of actual positive classes predicted
as positive classes, and its formula is as follows:

Recall =
TP

TP + FN
(11)

The F1-score is a metric used in statistics to measure the accuracy of binary classifica-
tion (or multi-task binary classification) models. It takes into account both the precision
and recall of the classification model.

F1-score =
2 × Precision × Recall

Precision + Recall
(12)

The false-negative rate (FNR) and false-positive rate (FPR) are important metrics to
measure the performance of intrusion detection systems. The FNR refers to the probability
that the system mistakenly identifies normal behavior as intrusive under normal conditions.
The FPR refers to the probability that the system fails to correctly identify intrusive behavior
when intrusion is present.

FNR = FN
TP+FN = 1 − Precision

FPR = FP
TP+FP = 1 − Recall

(13)

4.4. Experimental Analysis

We divided the dataset’s normal and abnormal samples into training, validation,
and testing sets, respectively, with the number of abnormal samples being the same as
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the number of normal samples. The test set and training set in this study were both
obtained through random sampling from the KDD99, CIC-IDS2018, CIC-DDOS2019, and
SR-BH 2020 datasets. For each training, a specific number of anomalous samples and the
same number of normal samples were randomly selected from the training set for model
training, while the validation set was used to fine-tune model parameters, and finally the
test set was used to evaluate model performance. For example, 3000 “Neptune” attack
samples and 3000 “normal” samples were used to train the model, improving the model’s
ability to detect neptune attacks and perform normal–anomalous data conversion. Then,
500 “normal” samples and 500 “neptune” samples were extracted as the test set to evaluate
model performance, as shown in Tables 4–7.

Table 4. KDD99 dataset division.

Dataset Label Training Set Validation Set Test Set

KDD99

back 1900 302 302
neptune 3000 500 500

guess_passwd 3000 500 500
pod 230 30 30

teardrop 900 80 80
Portsweep 900 140 140
ipsweep 1000 246 246

satan 1300 285 285
nmap 205 25 25

warezclient 800 210 210
buffer_overflow 24 5 5

smurf 3000 500 500
Normal 16,259 2823 2823

Table 5. CIC-DDOS2019 dataset division.

Dataset Label Training Set Validation Set Test Set

CIC-DDOS2019

LDAP 3500 500 500
UDP 3500 500 500

MSSQL 4000 500 500
NetBIOS 4000 500 500
Portmap 4000 500 500
UDPLag 1100 250 250

SYN 4000 500 500
Normal 24,100 3250 3250

Table 6. CIC-IDS2018 dataset division.

Dataset Label Training Set Validation Set Test Set

CIC-IDS2018

Bot 3500 800 800
SSH-Bruteforce 3500 800 800
FTP-Bruteforce 3500 800 800

Dos attacks-Hulk 3500 800 800
DoS attacks-SlowHTTPTest 3500 800 800

Benign 17,500 4000 4000

Table 7. SR-BH 2020 dataset division.

Dataset Label Training Set Test Set

SR-BH 2020

272-Protocol Manipulation 4000 500
242-Code Injection 4000 500
88-OS Command Injection 4000 500
126-Path Traversal 4000 500
66-SQL Injection 4000 500
16-Dictionary-based Password Attack 1300 500
310-Scanning for Vulnerable Software 2200 500
153-Input Data Manipulation 1700 500
274-HTTP Verb Tampering 4000 500
194-Fake the Source of Data 4000 500
34-HTTP Response Splitting 4000 500
33-HTTP Request Smuggling 550 500

Through multiple experiments adjusting different parameters, the optimal model
parameter settings were obtained. During the experiments, it should be noted that due to
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the different feature dimensions of the three datasets, the number of neurons in the model’s
input layer needed to be adjusted accordingly before model training. For the KDD99,
CIC-IDS2018, CIC-DDOS2018, and SR-BH 2020 datasets, the input layer dimensions of the
model were set to 41, 76, 79, and 20, respectively. Next, the generators and discriminators
of the model were trained and tested for performance. The results found that when the
sample size was greater than 1500, a batch size of 64 gave the optimal model performance;
otherwise, a batch size of 32 was better, as shown in Table 8.

Table 8. Model parameters.

Parameter Generator Discriminator

Batch Size 64 or 32 64 or 32
Layers 3 4

Dropout 0.5 0.5
Learn Rate 0.00001 0.00001

Epoch 50 50

The experiments discovered that high-quality discriminators and generators can
provide high-quality feature expressions to improve model computation speed and avoid
gradient vanishing. Relu activation functions were used between the hidden layers of the
discriminators and generators. Through multiple experiments adjusting the number of
hidden layers, the results showed that four layers for the generator and three layers for the
discriminator achieved the best balance between accuracy and computational resources.

Taking the KDD99 dataset as an example, this study experimented with the relation-
ship between discriminator and generator performance and the number of network layers
under different batch sizes. The results show that when the batch size is 16, 32, and 64, the
generator with four layers and the discriminator with three layers strike the most suitable
balance between accuracy and efficiency in terms of network structure selection, as shown
in Figure 7.

(a) Generator (b) Discriminator
Figure 7. Performance of generator and discriminator batch sizes.

4.5. Experimental Result

First, this model was used to detect single anomaly types in the KDD99 and CIC-
DDOS2019 datasets to evaluate model performance in anomalous sample identification
and data augmentation. The results show that the model demonstrated good performance
in detecting various anomaly types. On the KDD99 test set, the model accuracy (ACC)
reached 100% at best, indicating perfect detection capability, while the lowest was 98.23%
for nmap attack detection. On the CIC-DDOS2018 test set, the lowest detection accuracy
of the model was 94.5% for SYN attack detection, while the highest was 99.81% for LDAP
attack detection. However, on the ICI-IDS2018 test set, the model performed relatively
poorly. Although precision reached 100%, the recall and overall accuracy (ACC) were only
about 93% for FTP-Bruteforce attack detection, as shown in Tables 9–11.
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Table 9. Single anomaly detection results for KDD99 dataset.

Dataset Label Accuracy Precision Recall F1-Score

KDD99

back 1.0 1.0 1.0 1.0
neptune 1.0 1.0 1.0 1.0

guess_passwd 1.0 1.0 1.0 1.0
pod 1.0 1.0 1.0 1.0

teardrop 1.0 1.0 1.0 1.0
Portsweep 0.9856 1.0 0.9712 0.9854
ipsweep 0.9979 1.0 0.9959 0.9969

satan 0.9965 1.0 0.9929 0.9964
nmap 0.9823 1.0 0.9611 0.9796

warezclient 1.0 1.0 1.0 1.0
buffer_overflow 1.0 1.0 1.0 1.0

smurf 1.0 1.0 1.0 1.0

Table 10. CIC-DDOS single classification detection results.

Dataset Label Accuracy Precision Recall F1-Score

CIC-DDOS2019

LDAP 0.9981 1.0 0.9962 0.9979
UDP 0.9960 0.9979 0.9940 0.9959

MSSQL 0.9890 0.9822 0.9960 0.9890
NetBIOS 0.9889 0.9803 0.9980 0.9891
Portmap 0.9980 1.0 0.9960 0.9979
UDPLag 0.9670 0.9499 0.9860 0.9676

SYN 0.9450 1.0 0.8900 0.9418

Table 11. CIC-IDS2018 single classification detection results.

Dataset Label Accuracy Precision Recall F1-Score

CIC-IDS2018

Bot 0.9956 0.9913 0.9962 0.9955
SSH-Bruteforce 0.9713 1.0 0.9425 0.9704
FTP-Bruteforce 0.9334 1.0 0.9334 0.9657

Dos attacks-Hulk 1.0 1.0 1.0 1.0
DoS attacks-SlowHTTPTest 1.0 1.0 1.0 1.0

As shown in Table 12, our model conducted experiments on the SR-BH 2020 dataset
targeting classical Web attacks. Due to the limited number of instances for labels such as
Dictionary-based Password Attack, Scanning for Vulnerable Software, Input Data Manip-
ulation, and HTTP Request Smuggling, each with fewer than 3000 instances, the test set
for each label comprised 500 samples. The model performed exceptionally well for the
single-label CAPEC classification within the SR-BH 2020 dataset. For most categories, it
achieved extremely high levels of accuracy, precision, recall, F1-score, and MCC value,
with some categories even reaching perfect scores. This indicates that the model possesses
robust capability to identify and classify various attack patterns, achieving a good balance
between precision and comprehensiveness. Overall, the model demonstrated satisfactory
results in the single-label CAPEC classification task, providing reliable tools and support
for attack detection and defense in the security domain.

Table 12. SR-BH 2020 dataset single-label CAPEC classification.

Dataset Label Accuracy Precision Recall F1-Score

SR-BH 2020

272-Protocol Manipulation 0.907 0.925 0.913 0.916
242-Code Injection 0.898 0.901 0.896 0.889
88-OS Command Injection 0.962 1.0 0.924 0.960
126-Path Traversal 0.998 1.0 0.996 0.998
66-SQL Injection 0.993 0.990 0.996 0.993
16-Dictionary-based Password Attack 0.973 0.949 1.0 0.974
310-Scanning for Vulnerable Software 0.999 0.998 1.0 0.999
153-Input Data Manipulation 0.999 1.0 0.998 0.999
274-HTTP Verb Tampering 0.993 0.995 0.990 0.993
194-Fake the Source of Data 0.980 0.962 1.0 0.981
34-HTTP Response Splitting 0.987 1.0 0.974 0.987
33-HTTP Request Smuggling 1.0 1.0 1.0 1.0

In addition, binary classification experiments were conducted on the KDD99, CIC-
IDS2018, and CIC-DDOS2019 datasets using this model, and performance was compared
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with mainstream deep learning models like LSTM AE, ResNet-101, and DNN on the test
sets. The results show that in binary classification tasks, the performance of this model
decreased to some extent compared to single anomaly detection, but was still superior.
Specifically, on the KDD99 dataset, this model significantly outperformed the other three
comparison methods in terms of precision, recall, F1-score, and accuracy. On the CIC-
DDOS2019 dataset, the accuracy (ACC), recall (Rec), and F1-score of this model were better
than other methods, but the precision was low, indicating the model may have misjudged
anomalous samples as normal, leading to higher false positives (FPs). On the CIC-IDS2018
dataset, the model’s performance was far from its performance in single anomaly detection
experiments. Although the metrics were higher than those in CNN and MLP models, the
accuracy and recall were lower than those in the LSTM model. The classification results are
shown in Tables 13–15.

Table 13. KDD99 dataset II classification.

Algorithm Accuracy Precision Recall F1-Score

LSTM [49] 0.9651 0.9723 0.9742 0.9768
CNN 0.9655 0.9872 0.9764 0.9633
MLP 0.9544 0.9682 0.9671 0.9534

Our Approach 0.9981 0.9969 1.0 0.9953

Table 14. CIC-DDOS2019 dataset II classification.

Algorithm Accuracy Precision Recall F1-Score

LSTM [50] 0.8850 0.8810 0.8780 0.8700
RNN 0.9642 0.9133 0.9340 0.9586
MLP 0.9250 0.8440 0.9420 0.8900

Our Approach 0.9779 0.9382 0.9780 0.9418

Table 15. Classification of CIC-ISD2018 dataset II.

Algorithm Accuracy Precision Recall F1-Score

LSTM [47] 0.9265 0.7862 0.8971 0.8381
CNN 0.8297 0.6260 0.4852 0.5471
MLP 0.8867 0.8746 0.8912 0.8827

Our Approach 0.8925 0.8915 0.8938 0.8926

As indicated in Table 16, we conducted an analysis and summary of the performance
metrics for various models on the SR-BH 2020 dataset. These models include the Two-phase
MultiOutput CatBoost, Customized model CatBoost, Two-phase MultiOutput LightGBM,
Single-phase Clas.Chain LightGBM, Single-phase Clas.Chain CatBoost, Customized model
LightGBM, Single-phase Binary Relevance CatBoost, Two-phase Binary Relevance CatBoost,
Single-phase Binary Relevance LightGBM, Two-phase Binary Relevance LightGBM, and
our model. Our model demonstrated exceptional performance on the SR-BH 2020 dataset,
exhibiting high levels of accuracy, precision, recall, and F1-score. This summary aids in
assessing the suitability of these models for specific tasks and serves as a reference for
selecting the best model.

This research used precision and recall to calculate the false-negative rate (FNR) and
false-positive rate (FPR) of the model on the KDD99, CIC-IDS2018, and CIC-DDOS2019
datasets. Through detailed study, we found that the FNR and FPR of the model were close
on the KDD99 and CIC-IDS2018 datasets, while the FPR was significantly higher than the
FNR on the CIC-DDOS2019 dataset. However, they remained below 10%, and even below
0.01% on the KDD99 dataset. This series of experimental results shows that the FNR and
FPR of the model are still maintained at a relatively low level, as shown in Figure 8.
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Table 16. Metrics in the SR-BH 2020 dataset.

Method Accuracy Precision Recall F1-Score

Two-phase MultiOutput CatBoost [51] 0.88445 0.89557 0.88829 0.88912
Customized model CatBoost 0.88436 0.88863 0.88790 0.88501

Two-phase MultiOutput LightGBM 0.88095 0.89137 0.88641 0.88615
Single-phase Clas.Chain LightGBM 0.87224 0.87610 0.87360 0.87227
Single-phase Clas.Chain CatBoost 0.87213 0.87876 0.87343 0.87171

Customized model LightGBM 0.85888 0.86108 0.86270 0.85874
Single-phase Binary Relevance CatBoost 0.84939 0.90279 0.85734 0.87221
Two-phase Binary Relevance CatBoost 0.85201 0.90515 0.85508 0.87680

Single-phase Binary Relevance LightGBM 0.84419 0.89927 0.85112 0.87204
Two-phase Binary Relevance LightGBM 0.84782 0.90075 0.85049 0.87216

Ours 0.95150 0.91689 0.99300 0.95343

Figure 8. FNR and FPR of the dataset.

5. Discussion and Conclusions

Web3.0’s extensive connectivity and data transmission provide potential attack chan-
nels for hackers, leading to serious issues such as personal privacy leakage, data breaches,
and system crashes. Therefore, ensuring the security and privacy protection of Web3.0
is crucial. Intrusion detection systems enhance the security of Web3.0 by analyzing data
sources such as network traffic and system logs to detect these attacks.

This study presents an intrusion detection model based on CycleGAN, which uti-
lizes the CycleGAN network as its foundation and employs deep neural network (DNN)
structured generators and discriminators. The interaction between the generators and
discriminators endows the generators with powerful data augmentation capabilities, while
the discriminators exhibit excellent detection abilities. The robust data augmentation capa-
bilities of these two generator models partially address the scarcity of certain anomalous
traffic data available for analysis by IDS, thereby enhancing the system’s ability to docu-
ment instances of malicious behavior. Simultaneously, the outstanding detection abilities of
the two discriminators also partially address issues, such as inadequate feature extraction
and inaccurate system classification results, typically encountered in traditional IDSs. The
intrusion detection system based on CycleGAN makes significant contributions to handling
the complexities of feature-rich, nonlinear traffic data in the Web3.0 environment.

To validate the detection performance of this approach, comprehensive performance
evaluations were conducted on four widely used intrusion detection benchmark datasets:
KDD99, CIC-IDS2018, CIC-DDoS2019, and SR-BH 2020 datasets. The results clearly demon-
strate that the proposed deep learning intrusion detection method is feasible and holds
practical application potential.

Future research can be directed towards several key areas. First of all, there is scope
to improve model performance by exploring advanced deep learning techniques and
algorithms. This exploration aims to improve the accuracy and efficiency of intrusion
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detection systems. Secondly, it is crucial to extend the applicability of the model to different
fields, such as industrial control systems and intelligent transportation systems. This
extension expands the scope of the model and increases its usefulness in different industries.
Finally, rigorous verification and practical application are essential. Working with IoT
device manufacturers to deploy the model in a real IoT environment will validate its
effectiveness and reliability in practical settings.

This study highlights the prospects of deep learning technology in the field of network
security, encouraging further research and application to continuously enhance the level of
network security and protect the digital world.
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