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Abstract: We propose a new benchmark, UAVNLT (Unmanned Aerial Vehicle Natural Language
Tracking), for the UAV-view natural language-guided tracking task. UAVNLT consists of videos taken
from UAV cameras from four cities for vehicles on city roads. For each video, vehicles’ bounding
boxes, trajectories, and natural language are carefully annotated. Compared to the existing data sets,
which are only annotated with bounding boxes, the natural language sentences in our data set can be
more suitable for many application fields where humans take part in the system for that language,
being not only more friendly for human–computer interaction but also capable of overcoming the
appearance features’ low uniqueness for tracking. We tested several existing methods on our new
benchmarks and found that the performance of the existing methods was not satisfactory. To pave the
way for future work, we propose a baseline method suitable for this task, achieving state-of-the-art
performance. We believe our new data set and proposed baseline method will be helpful in many
fields, such as smart city, smart transportation, vehicle management, etc.

Keywords: UAV; tracking; tracking by language

1. Introduction

With the advancement of industrial technology, unmanned aerial vehicles (UAVs)
have become increasingly prevalent and have seen significant development across multiple
fields [1–5]. Compared with traditional fixed cameras, UAVs offer unique advantages in
the video field due to their distinctive high-altitude perspective, high mobility, and the
ability to move vertically. UAVs can cover a wide area, possess flexible and variable
postures, and have adjustable flying heights, making them uniquely valuable in security
monitoring [6], facility inspection [7], aerial photography [8] and object detection [9,10].
Moreover, UAVs also perform well in robot arms [11], grippers [12], rescue and delivery [13],
and so on. Therefore, in terms of single-object tracking, tracking carried out by UAVs is
currently a hot research topic [14–16].

Despite the significant potential for research in UAV tracking, it still faces many
challenges. Just like traditional single-object tracking, UAV tracking often starts by using a
bounding box (bbox) to identify the tracking target in the first frame of the video. However,
the tracking with the bbox setting suffers from two limitations. (i) Sometimes, the objects
are hard to annotate with bounding boxes, as the UAV flies fast and objects can be very
small from a UAV view. (ii) Only the appearance features of the target can be delineated in
the bbox, leaving actions and contextual elements such as the environment undescribed.
This limitation can lead to misjudgments in UAV videos, which often contain multiple
similar objects.

Many researchers [17–19] have recently added natural language descriptions to single-
object tracking videos, introducing the concept of tracking with the language specification.
Research in this area can be divided into two main categories, based on the tasks that they
address: Tracking by natural language (TNL) and vision-language tracking (VLT). The
TNL system provides natural language descriptions for the target. Natural language is
more convenient and natural for humans than bounding boxes, as it can provide details
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about the object’s category, color, actions, and more attributes. Moreover, natural language
descriptions can identify the target to be tracked, avoiding the ambiguity that bounding
boxes may introduce. The VLT combines natural language with bounding boxes, treating
the natural language as auxiliary information to the bounding boxes. Therefore, we propose
the incorporation of natural language into UAV tracking: namely, natural language-based
UAV tracking.

Natural language-based UAV tracking effectively solves key issues in the field of UAV
tracking: (1) Describing targets with natural language avoids the problem of fixed initial-
ization in practical applications. Using natural language descriptions allows for accurate
target localization, greatly enhancing the practicality of UAV tracking in real-time scenarios.
(2) Natural language tracking can provide information on the target’s movement direction
and surrounding environment while describing the target’s appearance. This approach
helps to avoid the interference caused by numerous objects with similar appearances
from a high-altitude perspective. Although various researchers have introduced several
tracking-by-language data sets (OTB-Lang [17], LaSOT [18], TNL2K [19]), these primarily
focus on video data that are readily available from real-world scenarios, with almost no
coverage of the UAV video data. Moreover, the information provided in natural language
descriptions in these data sets is insufficient and lacks a unified standard. In complex UAV
tracking, these simplistic language descriptions often fail to accurately characterize the
targets, limiting the development of natural language-based UAV tracking technologies.

For this work, we collected a UAV video sequence of 2000 videos named UAVNLT (Un-
manned Aerial Vehicle Natural Language Tracking). These videos are composed of two
parts. One part consists of data collected from existing UAV tracking data sets such as
UAV123 [15], UAVDT [14], and VisDrone [16]. The other part consists of new videos we cap-
tured using a UAV in different cities. We offer 4K high-resolution video sequences, ensuring
that the captured images are clear enough for target recognition, even when the UAV is at a
higher flying altitude. We performed frame-by-frame intensive annotation of the tracking
targets in each video sequence. Furthermore, we provide natural language descriptions of
the tracking targets in the videos. Given the presence of numerous similar targets in UAV
videos, we provide information about the category, color, and position within the video
and the direction of movement of the targets in our natural language descriptions.

Additionally, we offer a simple yet effective baseline for the UAVNLT data set. This
baseline comprises a visual grounding module responsible for locating objects based on
natural language, an object tracker module that handles the object tracking, and a global–
local switcher module that determines when to switch modules. This baseline provides a
reference for future research. The data set and baseline method will be publicly available at
https://github.com/Lich-King000/UAVNLT (accessed on 2 April 2024).

The contributions of this paper can be summarized in the following aspects:

• We propose the UAVNLT data set, providing bounding box and language annotations
for 2000 video sequences. This data set aims to offer robust support for developing
and testing natural language-based UAV tracking technologies.

• We propose a benchmark method that utilizes the global–local switcher module
to alternate between the visual grounding and object tracker components flexibly.
The method paves the way for future research.

• We conduct extensive experiments using state-of-the-art trackers on our proposed
natural language-based UAV tracking data set, aiming to provide a comprehensive
benchmark for future research.

2. Related Work
2.1. Tracking with Bounding Box

In object tracking, classical methods have been instrumental in tracking the position
of target objects within a video sequence using a template annotated with a bounding box.
Among these, Siamese network-based trackers are notable for using annotated templates
to locate target objects by matching these templates against regions within video frames.

https://github.com/Lich-King000/UAVNLT
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Techniques such as those introduced in SiamFC [20], SiamRPN++ [21], SiamRPN [22],
and SiamFC++ [23] have demonstrated effectiveness in adapting to changes in appearance
and motion, setting competitive standards in the field.

A novel approach within this domain is SiamPIN [24] (Siamese Parallel Interaction
Network). It leverages a Siamese parallel interaction network to intricately capture global
and local scene information, enhancing the distinction between the target and its sur-
roundings. Furthermore, RTUSC [25] (Robust Tracking via Uncertainty-Aware Semantic
Consistency) introduces an uncertainty-aware strategy for visual tracking, employing data-
driven techniques to generate features cognizant of uncertainty, thereby achieving more
robust tracking outcomes.

AES [26] proposes a simple and robust reliable memory model. In this method,
an adaptive evaluation strategy (AES) is proposed to combine the confidence of the tracker
predictions and the similarity distance between the current predicted result and the existing
tracking results. Based on the reliable results of AES selection, we designed an active–frozen
memory model to store reliable results.

Recent innovations have seen the advent of transformer-based trackers, such as
TRTR [27] and TransT [28], which utilize encoder–decoder architectures equipped with self-
and cross-attention mechanisms. These models, including STARK [29], MixFormer [30],
and OSTrack [31], employ transformer-based techniques for tracking, enabling the cap-
ture of global feature dependencies through a unified framework for feature extraction
and fusion.

Despite these advancements, bounding box-based tracking methods face challenges,
including the need for human calibration and the potential for deviation from user habits.
These limitations have inspired research into alternative strategies to refine tracking perfor-
mance and overcome conventional methods’ inherent constraints.

2.2. Tracking with Natural Language Description

Tracking objects in videos using natural language descriptions challenges models to
not only extract pertinent image features but also comprehend and integrate language de-
scriptions. This task demands a sophisticated blend of visual and linguistic understanding,
along with the capability to fuse these modalities effectively in later stages. Research in this
area can be divided into two main categories, based on the tasks they address: tracking by
natural language (TNL) and vision-language tracking (VLT).

For the TNL task, the pioneering work TNLS [32] introduced the concept and de-
veloped a linguistic specification attention network, marking the beginning of targeted
efforts in this direction. RTTNLD [33] adopted a tracking-by-detection strategy, using the
language description to generate relevant proposals during the detection phase. Building
on this, GTI [34] approached the problem by breaking down the TNL task into tracking,
grounding, and integration sub-tasks, employing a grounding model for object location
and the RT-score method for deciding when to switch to tracking for improved predictions.
TNL2K [19] introduced Adaswitcher, optimizing the selection process between ground-
ing and tracking model outputs, while CTRNLT [35] proposed a unified framework that
integrates local and global search methods in cross-modal retrieval.

In the VLT task, various methodologies have been explored to leverage linguistic de-
scriptions alongside visual information for enhanced tracking. SNLT [36] utilizes language
descriptions as convolutional kernels for feature aggregation, whereas DAT [37] (Describe
and Attend to Track) focuses on generating proposals driven by combined visual and lin-
guistic cues. VLTTT [38] developed ModaMixer for a unified approach to vision-language
representation learning. OVLM [39] (One-stream Vision-Language Memory Network for
Object Tracking) introduces a model that augments visual features with linguistic inputs,
and MMtrack [40] re-conceptualizes vision–language tracking by treating it as a token
generation task, combining language and bounding box information into a cohesive model.

Despite the advancements in both TNL and VLT tasks as highlighted by works such
as [19,32–35], a gap remains in optimizing these methods specifically for the TNL chal-
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lenge. Our approach leverages the CLIP model’s robust feature extraction and alignment
capabilities to handle complex scenarios, aiming to set a new benchmark in the field.

2.3. UAV Video Data Sets

The utilization of UAVs for visual tracking has garnered significant attention in recent
years, leading to the development and employment of various UAV video data sets. These
data sets serve as benchmarks to evaluate and enhance the performance of tracking algo-
rithms under diverse conditions and scenarios specific to aerial footage. Notable data sets
in this domain include VisDrone, UAV123, UAVDT, and UAV20L, each offering unique
challenges and characteristics.

VisDrone, introduced by Zhu et al. [41], comprises images and video sequences
captured over various urban and rural areas. It is designed to evaluate object detection,
object tracking, and single-object tracking in drone-based surveillance. This data set
stands out due to its diversity in scenarios, including varying weather conditions, lighting,
and object densities, making it a comprehensive benchmark for UAV-based vision tasks.

UAV123, presented by Mueller et al. [15], consists of 123 video sequences totaling more
than 110K frames. This data set emphasizes low-altitude UAV operations, featuring a wide
range of real-world scenarios that challenge both the detection and tracking algorithms
due to the high dynamics of the UAVs and the small size of the objects being tracked.

UAVDT, by Du et al. [14], focuses on object detection and tracking, offering a rich set
of aerial videos. It includes attributes such as scale variation, occlusion, and illumination
changes, specifically tailored for evaluating algorithms in urban environments. The UAVDT
data set is instrumental in understanding how environmental factors influence tracking
and detection performance in UAV footage.

DTB70, introduced by Li et al. [42], is a data set specifically designed for evaluating
the performance of UAV tracking algorithms. It comprises 70 high-quality video sequences,
encompassing challenges such as fast motion, scale changes, occlusion, and low resolution.
This diversity makes DTB70 an essential benchmark for testing the robustness of UAV
tracking algorithms under various dynamic and complex conditions.

UAVTrack112, proposed by Fu et al. [43], is another valuable data set for the UAV-
tracking community. It includes 112 video sequences with over 100,000 frames, covering
various scenarios, including urban landscapes, vehicles, and people. The data set is charac-
terized by its emphasis on small object tracking, a common challenge in UAV surveillance
and monitoring applications. The comprehensive range of scenarios of UAVTrack112,
from densely populated areas to challenging weather conditions, makes it a robust bench-
mark for advancing UAV tracking technologies.

Lastly, UAV20L, a subset of the UAV123 data set, is specifically curated by Mueller
et al. [15] to focus on 20 long-duration sequences. This subset challenges tracking algorithms
over extended temporal spans, testing their endurance and ability to maintain consistent
tracking performance over time.

3. Proposed Benchmark

Our benchmark aims to benefit research focused on applying natural language-based
tracking technologies in the UAV domain by integrating natural language tracking with
UAV tracking technologies. To this end, we introduce the UAVNLT data set, which com-
bines detailed natural language descriptions with high-quality UAV video data to foster the
advancement and widespread application of natural language-based UAV tracking tech-
nologies. In the following sections, we will provide a detailed overview of the composition
and annotation details of the UAVNLT data set.

3.1. Data Collection and Annotation

The UAVDT data set comprises 6 h of original video material, from which 2000 video
sequences are extracted, totaling approximately 900,000 frames. The number of frames per
video sequence ranges from 117 to 1461. The construction of the data set involved two main



Electronics 2024, 13, 1706 5 of 19

steps. First, 280 video sequences were selected from existing UAV tracking data sets,
including UAV123 [15], UAVDT [14], and VisDrone2019-SOT [16], which already provide
tracking data based on bounding boxes. To these sequences, we added natural language
descriptions of the tracking targets to enrich the UAV data sets. Second, an additional
1720 video sequences were collected through UAV filming over traffic arteries in various
cities. All videos were shot and recorded at 30 frames per second (fps) with a resolution of
3840 × 2160 (4K), ensuring high image clarity.

As illustrated in Figure 1, this paper introduces a novel UAV video tracking data set,
UAVNLT, enriched with natural language descriptions of tracking targets. The UAVNLT
data set includes annotations for various types of vehicles, such as cars, SUVs, motorcycles,
etc. In the UAVNLT, intensive bounding box annotations are made on videos captured by
UAVs, ensuring the precise annotation of every tracking target in each video frame. For each
frame’s annotation, the left upper corner point (x1, y1), width (w), and height (h) of the
target’s bounding box are utilized as the ground truth, recorded in the format [x1, y1, w, h].
Furthermore, detailed natural language descriptions are provided for each tracking target
in the videos. These descriptions include information such as the category, color, specific
location, and direction of movement, offering a comprehensive data foundation for the
application and research of natural language-driven UAV tracking technologies.

In order to enhance the diversity of scenarios in our UAVNLT data set as shown in
Figure 2, we selected four cities with distinct geographical environments for video shoot-
ing: Nanjing, Qinhuangdao, Anyang, and Taizhou. With the help of UAV123, UAVDT,
and VisDrone-2019SOT, the locations of UAVNLT not only vary in their geographic fea-
tures but also allow us to capture the essence of different seasons—spring, summer, fall,
and winter—thus ensuring a broad temporal span in our data set. During the process of
bounding box annotation, three experts were invited to carry out detailed and intensive
data annotation, aiming to ensure the accuracy and reliability of the data. All annotation
tasks were performed in high resolution (4k) to guarantee the highest clarity of the collected
data. In order to minimize annotation errors, another expert reviewed and proofread each
frame’s annotation to ensure absolute accuracy. Any errors detected were corrected and
supplemented by the expert, followed by a final check to ensure the high quality of the
bounding box annotations.

(a) The gray car traveling from right to left on the right side of the picture.
Figure 1. Cont.
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(b) The black car traveling from right to left on the right side of the picture.

Figure 1. Presentation of the UAVNLT (Unmanned Aerial Vehicle Natural Language Tracking) data
set in this paper. In addition to providing bounding box annotations for UAV tracking targets, we
also detail the category, color, location, and direction of movement of the tracking targets using
natural language. The red box represents the groundtruth label.

(a) Nanjing: Fall. (b) Qinhuangdao: Winter.

(c) Wenzhou: Spring. (d) Other: Summer.

Figure 2. The figures illustrate the diversity of video data in our data set, captured across different
cities and seasons. Sub-figures (a–c) showcase video data from Nanjing in fall, Qinhuangdao in
winter, and Wenzhou in spring, respectively. Sub-figure (d) represents additional video data acquired
from UAV123 [15].

Using densely annotated bbox and natural language description, we successfully
constructed a UAV-view natural language-guided tracking data set named UAVNLT. This
data set effectively addresses the gap in natural language tracking within the UAV domain,
contributing to advancing the practical application of natural language-based tracking
technologies in UAV applications.
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3.2. Comparison with Existing Data Sets

While there are some data sets available in both the UAV tracking [14–16,42,43] and
tracking by language fields [17–19], there are still some shortcomings when it comes to
joint UAV and natural language tracking. As shown in Table 1, UAV-tracking data sets
such as UAV123, UAV20L, UAV123@10FPS, UAVDT, and VisDrone2019-SOT include a
variety of weather and traffic scenarios, providing diverse training data for object tracking
from a UAV perspective. However, their shortcomings in terms of data set size pose
a significant barrier to further development in the field. Moreover, the relatively low
video resolution offered by these data sets limits the possibility of developing and testing
tracking algorithms in high-resolution scenarios. As for TNL data sets [17–19], the TNL
data set offers a large-scale single-object tracking data set with a wealth of natural language
annotations, significantly advancing the TNL task. However, the lack of UAV-related video
data in the TNL data set hinders the development of natural language-based UAV tracking.
Additionally, the absence of a uniform standard for natural language annotation could
impede accurate target identification. Similarly, the low resolution of the videos provided
by these data sets is a common flaw shared with UAV tracking data sets.

Table 1. Comparison with other UAV tracking data sets and TNL data sets. # denotes the number
of corresponding items, and NL denotes natural language annotations. The ✗ denotes without NL
annotations, while the ✓ indicates data set with NL annotations.

Data Sets Resolution #Video #Min #Max #Total NL

UAV123 720p 123 109 3085 113 K ✗

UAV20L 720p 20 1717 5527 59 K ✗

UAV123@10FPS 720p 123 36 1362 38 K ✗

UAVDT 540p 100 82 2969 80 K ✗

VisDrone2019-SOT 756p 132 329 2789 109 K ✗

DTB 720p 70 68 699 15 K ✗

UAVTrack112 400p 112 - 1000 - ✗

OTB-99 432p 99 71 3872 59 K ✓

LaSOT 360p 1400 1000 11,397 3.52 M ✓

TNL2K 720p 2000 21 18,488 1.24 M ✓

UAVNLT 2160p 2000 117 1461 900 K ✓

Our proposed UAVNLT data set specifically addresses the challenges within the
current UAV tracking and tracking using language technology domains. By offering
2000 videos totaling approximately 90,000 frames of UAV tracking data, this data set signif-
icantly expands the scale of training data for UAV tracking technology, providing robust
support for its development. Moreover, the standardized natural language annotations for
UAV videos—including detailed descriptions of the tracking target’s category, color, spe-
cific location, and direction of movement—facilitate more accurate and convenient target
identification and localization in complex scenarios. The introduction of natural language
improves the tracking initialization process and overcomes the limitations encountered in
practical applications of UAV tracking. Most importantly, all videos are provided in 4K
ultra-high resolution, contributing to the progression of UAV tracking technology toward
higher definition and practicality.

3.3. Data Set Analysis

In order to explore the characteristics of the UAVNLT data set further, we conducted
a detailed statistical analysis of the data set. As shown in Figure 3, we analyzed the
following aspects:

1. Object aspect: As shown in Figure 3a, the distribution of the aspect ratios of objects
is displayed. Most objects have an aspect ratio of 0.5 to 1.5, indicating that smaller
vehicles, such as cars or SUVs, are common in the UAVNLT data set. Additionally,
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a portion of objects have an aspect ratio of around 2, signifying the presence of larger
vehicles, such as buses and trucks, in the data set.

2. Object scale: Figure 3b illustrates the distribution of object sizes, defined as the
proportion of the video frame occupied by the object. It can be observed that most
objects are of a smaller scale, primarily concentrated below 0.05. This is mainly
because our videos are mainly shot from heights of greater than 70 m, thus including
many small-sized targets and bringing new challenges to UAV tracking.

3. Object position: As shown in Figure 3c, the heatmap illustrates the spatial distribution
of target bounding boxes within video frames. The bright areas indicate locations with
a high frequency of target appearances. The primary directions of target movement
are either upwards, downwards, left, or right, a characteristic that indicates our data
set was mainly captured in areas such as intersections and other traffic hubs, capturing
typical movement patterns within these regions.

4. Video length: Figure 3d presents the distribution of tracking sequence lengths. Most
of the videos are centered around the 400 to 800 frame range, but a few videos are
shorter than 200 or longer than 1000 frames. The distribution indicates that our data
set offers a wide range of sequence lengths, from short to medium, which is beneficial
for evaluating the performance of tracking algorithms across different temporal spans.

Figure 3. Sub-figures (a–c) illustrate the distribution of tracking targets in the video sequences
concerning aspect ratio, scale ratio, and positional distribution. Sub-figure (d) details the distribution
of video lengths within the UAVNLT data set.

Furthermore, when providing natural language descriptions for videos, our data
set utilizes a standardized language pattern, specifically detailing the object’s type, color,
location, and direction of movement within a single sentence. For instance, “The blue
truck at the bottom traveling from bottom to top”. Thus, as shown in Figure 4, our pro-
posed UAVNLT contains 65 English words that detail the object’s category, color, location,
and direction of movement.
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Figure 4. Word cloud for UAVNLT data set descriptions.

In summary, the characteristics of the UAVNLT data set benefit the training and
evaluation of UAV tracking algorithms across various scenarios. It encompasses targets
ranging from small to medium sizes with diverse aspect ratios. Moreover, the data set
includes sequences from short to relatively long lengths, allowing researchers to test the
persistence of tracking algorithms. The high-altitude footage results in a wealth of small-
sized targets, expanding the applicability of UAVs and presenting new challenges to the
field of UAV tracking. Moreover, we provide standardized natural language annotations,
which enable a clearer description of targets in natural language-based UAV tracking tasks.

3.4. Evaluation Protocols

In order to provide a large-scale UAV tracking training and test set simultaneously, we
divided the 2000 UAV tracking video sequences into two parts: 1300 videos for training and
700 videos for testing. In order to maintain diversity as much as possible, we proportionally
selected UAV video sequences based on different filming locations and scenarios, ensuring
that the test set includes all locations and scenarios in the data set. Furthermore, we
ensured an even distribution of the three seasons across the training and test sets as much
as possible.

Regarding the evaluation metrics, we maintained consistency with previous stud-
ies [17–19]. Specifically, we utilized the success plot, represented by the area under the
curve (AUC), and precision.

AUC is the Area Under Curve (AUC) of the success plot. Specifically, dividing
threshold t into multiple equidistant points t0, t1, ..., tn across the range from 0 to 1. For each
threshold ti, compute the Intersection over Union (IoU) between the bounding box and
the ground truth. Count the frames where the IoU is greater than or equal to the threshold
ti as a proportion of the total number of frames, yielding the accuracy ratio S(ti) at that
threshold. By calculating the accuracy ratio at various thresholds, the success plot can be
generated with thresholds on the horizontal axis and the accuracy ratio on the vertical axis.
AUC is represented by the following formula:

AUC =
n−1

∑
i=0

S(ti) + S(ti+1)

2
× (ti+1 − ti), (1)

where ti denotes the discrete thresholds, and S(ti) represents the accuracy ratio at thresh-
old ti.

Precision typically refers to the proportion of frames in which the average Euclidean
distance between the center of the tracking box and the center of the true target box is less
than a certain threshold (for example, 20 pixels). It is an intuitive metric used to measure
the accuracy of tracking. The calculation formula is as follows:

Precision =
1
N

N

∑
i=1

I
(
∥ppred,i − pgt,i∥2 < threshold

)
(2)
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where I(·) is the indicator function, which is 1 when the condition inside is met and
0 otherwise; ∥·∥2 denotes the Euclidean distance; ppred,i and pgt,i represent the center
coordinates of the tracking box and the true target box for the ith frame, respectively; and
threshold is the predefined distance threshold.

4. Method

The UAVNLT task aims to generate bounding boxes to track the designated target
across each frame in a video sequence, leveraging the descriptions provided in natural
language. To elaborate, for a given sequence of video frames denoted as {I1, I2, . . . , In}
accompanied by a textual description L of the target, the UAVNLT approach is tasked with
forecasting the bounding boxes that encapsulate the target in every frame, represented as
{o1, o2, . . . , on}:

{o1, o2, . . . , on} = UAVNLT({I1, I2, . . . , In}, L) (3)

In this study, we propose a simple yet effective baseline for the UAVNLT task, pro-
viding a reference for future research. The framework introduces an integrated model
consisting of a visual grounding module for target location based on natural language,
an object tracker for subsequent tracking and a global–local switcher for switching be-
tween the two based on spatio-temporal and language features. The framework is shown
in Figure 5. In the following sections, we will introduce the visual grounding module,
the object tracker, and the global–local switcher module.

Figure 5. The overall framework of our method. It contains three modules: (1) The visual grounding
module, which locates the target based on natural language descriptions. For the first frame of the
video, the visual grounding module locates the target and crops it to serve as a template. (2) The object
tracker, which utilizes the template to perform tracking on subsequent images. (3) The global–local
switcher module evaluates the tracking results by integrating spatio-temporal and linguistic features
to assign a score. Moreover, based on the score, it chooses whether to switch modules.

4.1. Visual Grounding Module

The visual grounding module is structured to employ a pre-trained CLIP model,
incorporating both image and text encoders, to pinpoint the target’s location within a
specified frame. As depicted in Figure 5, this module comprises the CLIP image and text
encoders, a multi-modal feature adapter known as M-Adapter, and an auto-regressive head
that is responsible for predicting the target’s position.
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This way, we adopt the transformer-based CLIP text encoder for natural language
processing. Given a language sentence L, the CLIP text encoder first tokenizes the language
description L to obtain language tokens. Subsequently, it adds positional embeddings
to these tokens, incorporating information about the position of each token within the
sentence. Finally, the tokens are fed into a transformer encoder, resulting in the language
embeddings Fl .

In the image encoding sector, we employed the architecture of the CLIP image encoder.
We selected ResNet50 [44] as the backbone architecture to balance the processing speed
and computational efficiency. When processing the input image Iz, the image encoder
is primarily responsible for extracting spatial features from the image. Inspired by the
design philosophy of the feature pyramid network (FPN) [45] to capture more refined multi-
scale spatial features, we further integrated an FPN structure. For the last three feature
maps generated by the FPN, {z3, z4, z5}, we performed up-sampling and conducted a deep
feature fusion, aiming to optimize the effectiveness of the final feature representation:

Fz = FPN(z3, z4, z5) (4)

The primary function of the visual grounding module is to utilize input from both
image and language modalities to achieve cross-modal localization within the image.
Therefore, this module must possess excellent multi-modal semantic alignment capabilities
to accurately understand and match the relationships between image content and language
descriptions. In the transformer decoder [46], the cross-attention mechanism facilitates
the effective interaction of multi-modal information, thereby significantly enhancing the
model’s multi-modal semantic alignment capabilities. Therefore, we employed a standard
transformer decoder as our multi-modal fusion model, which we refer to as M-Adapter.
M-Adapter utilizes cross-attention to process and integrate information from image and
language inputs, incorporating the language priors into the visual features.

More specifically, we input the image features Fz obtained from the image encoder and
FPN, and the language features Fl into the M-Adapter. In this setup, Fz serves as the query,
while Fl acts as both the key and value, facilitating effective interaction and fusion between
image and language features to obtain fusion features FM. This design enables M-Adapter
to precisely locate and interpret image content while retaining language features, enhancing
multi-modal semantic alignment capabilities:

FM = MAdapter(q = Fz, k = Fl , v = Fl) (5)

Inspired by the Pix2Seq [47] model, we propose an autoregressive transformer decoder
as our prediction head named ARhead. This autoregressive model treats tracking as a task
of interpreting coordinate sequences, where the prediction of the current state is influenced
by the previous state, forming a sequence decoding process. Compared to traditional
template matching-based trackers, this approach is more straightforward, eliminating the
need for complex customized localization heads and post-processing steps. The fused
features FM and query embeddings qh are fed into the transformer decoder, aiming to
predict the sequence of target bounding boxes. After the predictions are completed, these
sequences are input into a feed-forward network (FFN) to predict the final coordinates Oz:

Oz = ARhead(q = qh, k = FM, v = FM) (6)

4.2. Object Tracker

While the visual grounding model can achieve multi-modal alignment and locate the
target, solely relying on the grounding model may not be sufficient due to potential inter-
ference from global background information. Hence, we also employed a traditional object
tracker. The object tracker uses the result located using the visual grounding module in the
first frame of the video as a template, then begins tracking the target in subsequent video
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frames. Considering both model performance and tracking speed, we used MixVIT [30] as
our tracking module.

4.3. Global–Local Switcher Module

The visual grounding model locates the target from a global linguistic perspective,
while the object tracker tracks the target using local image spatial features. Combining both
is essential for effectively completing tracking based on natural language descriptions. We
propose the global–local switcher model to facilitate a more effective switch between global
and local models. This model is designed to integrate the advantages of global grounding
and local tracking, ensuring that the tracking process is accurate and contextually relevant
to the natural language input.

As shown in Figure 5, our proposed global–local switcher module comprises three
components: local attention, global attention, and FFN. We introduce a learnable token
Sl , which initially learns the local image features of the test image through the local
attention module. Subsequently, it learns the historical temporal features from memory and
global features from language by using the global attention module. Finally, Sg predicts the
tracking score S of the tracking image via the FFN. Based on the score S and a predetermined
threshold, we decide whether to switch the tracking module to the grounding module.

More specifically, after the object tracker completes tracking the target, we collect
the final feature map of image features fc, along with the tracking result B = [x, y, w, h].
Subsequently, we apply the ROI pooling [48] algorithm to crop fc based on the position
and size of B, thereby obtaining a token Tc, corresponding to the specific region of the test
image targeted by the tracking result. Subsequently, we use a learnable score Sl as the
query to compute self-attention with Tc, thereby capturing the local appearance features in
the current prediction result.

In the global attention module, we employ memory techniques to enhance the model’s
efficiency in utilizing historical information. We established a memory that stores a set of
ROI pooling features from historical frames TH = {Tn1 , Tn2 , · · · , Tnh}. These features repre-
sent the appearance information of the target captured at different time points, providing
the model with rich temporal context information. In addition to temporal features, natural
language features also serve as a crucial source of global feature information. Therefore,
we incorporate the natural language embeddings Fl into the global attention module to
further provide semantic guidance. Through the global attention mechanism, the token
Sg, carrying local feature information of the test image, can further integrate the historical
temporal features and semantic features provided by natural language.

Finally, a token that integrates local image features with global temporal and language
features is input into an FFN to predict the quality score S of the object tracker’s result
on the test image. This score reflects the accuracy and reliability of the tracking result,
providing a basis for determining whether to switch to the grounding module:

S = FFN(GAM(LAM(Sl , Tc), [TH , Fl ])) (7)

In the end, if S is below a set threshold, we activate the visual grounding module
to localize the test image. This approach allows for corrections using the global ground-
ing model when local tracking proves inaccurate, thereby enhancing the accuracy and
robustness of tracking. After this process, the object tracker resumes its tracking task.

4.4. Implementation Details

In the visual grounding module, we utilized the pre-trained models provided by CLIP [49]
as the image and text encoders. Initially, the images were resized to 224 × 224 pixels before be-
ing input into the image encoder. Subsequently, the features extracted from the feature maps
are {z3 ∈ R49×2048, z4 ∈ R196×1024, z5 ∈ R784×512}. Through the up-sampling process, we
obtained multi-scale features Fz. Meanwhile, the text encoder is responsible for extracting
features from natural language, obtaining the language embedding Fl ∈ R1024. Subse-
quently, we input the image features Fz and language features Fl into the M-Adapter for
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feature fusion. Through this fusion process, we obtained the fused feature FM with dimen-
sions R49×768. Lastly, the FM was input into the autoregressive head (ARhead), sequentially
predicting the target’s coordinates [xg, yg, wg, hg].

In the object tracker, once we obtained the predicted co-ordinates [xg, yg, wg, hg], for the
first frame, we cropped the image by enlarging it 1.5 times around the center point of these
co-ordinates to create the tracking template. Both the template and the test image were
resized to 224 × 224 pixels. After the object tracker completes tracking, it outputs the target
coordinates [xt, yt, wt, ht].

In the global–local switcher module, we set the learnable token Sl as Sl ∈ R1×768.
The features obtained from the object tracker are Tc ∈ R36×768. After processing using local
attention, we obtained Sg ∈ R1×768. In the global attention phase, we concatenated the
historical temporal features to form TH ∈ R9×768. The natural language feature Fl ∈ R1×768

was also input into the global attention module. After processing using global attention
and an FFN, we ultimately derived a quality score S ∈ R1×1. This score reflects the quality
of the tracking result. We set the threshold for the quality score at 0.3. When S is lower
than 0.3, it indicates that the object tracker’s tracking quality on the test image is poor.
Thus, we would then activate the visual grounding model to correct and enhance the
tracking process.

During the training phase, we adopted a strategy of training the visual grounding
module and the global–local switcher module separately. In the visual grounding module,
we implemented a simple cross-entropy loss:

Lg = −
4

∑
i=1

ωilogP(Ti|FM, Q1:i−1) (8)

where Q is the input queries of the decoder, and T is the output bounding box [xg, yg, wg, hg]
of the decoder. We set the initial learning rate for the grounding model at 1e-5. In order to
preserve the weights of the pre-trained model, we adjusted the learning rate for the image
encoder to one-tenth of that of the other parameters. The text encoder remained frozen
during training to preserve its pre-trained weights.

In the global–local switcher module, we set the memory length to 9, and the switching
threshold θ was 0.3. For the memory method, a first-in-first-out (FIFO) approach was
utilized. This approach means that the oldest historical features are replaced when the
number of stored historical features exceeds the memory capacity. In the training phase,
for each image in the training data set, we exploited the intersection over the union (IoU)
score between the tracking result and the ground truth as the training label. Moreover, we
employed the smooth L1 loss for training our global–local switcher module. The learning
rate in this phrase was set to 1 × 10−5.

5. Experiments
5.1. Performance on UAVNLT

In order to further demonstrate the value of our proposed UAVNLT data set, we
conducted tests with many advanced trackers on this data set. These tests aimed to evaluate
the performance of various tracking algorithms in handling UAV perspective target tracking
tasks based on natural language descriptions. Moreover, to facilitate a comprehensive and
quantitative comparison for the UAVNLT data set, we also incorporated large-scale tracking
from language data sets such as LaSOT and TNL2K. This approach enabled a broader
evaluation of the performance of object trackers across different data sets, highlighting the
unique challenges and opportunities for improvement that UAVNLT presents in the context
of language-driven tracking tasks. We categorized the tracking tasks on the UAVNLT data
set into three types: tracking by bbox, tracking by language, and tracking by joint language
and bbox. For tracking by bbox, the initialization only utilizes the manually annotated
bbox from the first frame. In tracking by language, the initialization relies solely on the
natural language description of the first frame. As for tracking by joint language and bbox,
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the first frame is initialized using the bbox to activate the object tracker. When the module
switches to the visual grounding module, it locates the target based on the natural language
description.

Tracking by bbox: In order to further evaluate the UAVNLT data set, we first selected
object trackers based on bounding boxes for testing. For a comprehensive comparison,
we chose several trackers based on CNN, including ATOM [50], DiMP [51], and Keep-
Track [52]. Additionally, we considered object-tracking algorithms based on the transformer
architecture, such as STARK [29], MixFormer [30], ODTrack [53], and ARTrack [54]. Based
on the performance of these trackers on the UAVNLT data set, we can infer that, when
compared to other data sets, existing object trackers still have room for improvement in
the comprehensive metric of AUC. This indicates that our UAV data set provides new
object-tracking challenges, suggesting further research and development opportunities to
enhance tracking algorithms.

Tracking by natural language: As for the tracking methods initiated by natural lan-
guage, as most existing methods have not been made open source, we show the results
of TNL2K-1 [19] and CTRNLT [35] on three data sets. Furthermore, to facilitate extensive
comparisons on the UAVNLT data set, we selected state-of-the-art object trackers such as
STARK [29], MixFormer [30], ARtrack [54], and ODtrack [53], denoted by an asterisk (*) in
Table 2. The tracking templates these trackers use are derived from the localization of the
video’s first frame, accomplished through our proposed visual grounding approach. While
existing natural language-based tracking methods perform well on other data sets, their
effectiveness on the UAVNLT data set requires improvement. In the LaSOT and TNL2K
data sets, objects within the videos are generally larger, and the tracking scenarios tend to
be simpler. However, in the UAVNLT data set, objects viewed from a drone perspective
are smaller and present a higher difficulty level. State-of-the-art trackers achieve good
results based on bounding boxes, but the performance is not as satisfactory when tracking
with templates located by the visual grounding model. This indicates that using natural
language to locate targets in the UAVNLT data set poses significant challenges.

Table 2. The performance of state-of-the-art tracking models on the UAVNLT (Unmanned Aerial
Vehicle Natural Language Tracking), LaSOT, and TNL2K data sets. * indicates that the template in
the first frame for these trackers is predicted by our visual grounding module.

Methods Source Initialization
UAVNLT LaSOT TNL2K

AUC PRE AUC PRE AUC PRE

ATOM [50] CVPR2019 BB 0.429 0.587 0.510 0.510 0.390 0.400
DIMP [51] CVPR2019 BB 0.462 0.611 0.569 - - -

KeepTrack [52] ICCV2019 BB 0.483 0.643 0.671 0.702 - -
STARK [29] ICCV2021 BB 0.623 0.811 0.671 0.712 - -

MixFormer [30] CVPR2022 BB 0.666 0.894 0.692 0.747 0.552 0.558
ODtrack [53] AAAI2024 BB 0.657 0.919 0.731 0.757 0.609 0.723
ARtrack [54] CVPR2024 BB 0.689 0.731 0.803 0.747 0.603 0.766

TNL2K-1 [19] CVPR2021 NL - - 0.510 0.490 0.110 0.060
CTRNLT [35] CVPR2022 NL - - 0.520 0.510 0.140 0.090
STARK * [29] ICCV2021 NL 0.062 0.071 - - - -

MixFormer * [30] CVPR2022 NL 0.077 0.094 - - - -
ARtrack * [54] CVPR2024 NL 0.097 0.102 - - - -
ODtrack * [53] AAAI2024 NL 0.103 0.113 - - - -

Ours - NL 0.105 0.105 0.522 0.513 0.461 0.422

SNLT [36] CVPR2021 NL + BB 0.234 0.372 0.540 0.576 0.276 0.419
VLTTT [38] NIPS2022 NL + BB 0.452 0.418 0.673 0.721 0.531 0.533

Ours - NL + BB 0.467 0.421 0.613 0.688 0.547 0.529

Tracking by joint natural language and bbox: As tracking methods that are initialized
by both natural language (NL) and bounding box (BB), SNLT [36] and VLTTT [38] were
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selected for comparative analysis. The findings indicate that the initialization using NL+BB
leads to significant performance improvements, compared to relying solely on NL. This
highlights the sensitivity of current tracking algorithms to bounding boxes. Compared
to initialization using only natural language, our method achieves better results when
combining natural language with bounding boxes. This suggests that existing methods
are more sensitive to the bounding box; once the target is accurately located using the
bounding box, subsequent tracking can be performed more effectively.

Furthermore, to qualitatively demonstrate the efficacy of our proposed method, we pro-
vide visual comparisons of the UAVNLT data set as shown in Figure 6. In the visualizations,
in the simpler scenario depicted in the first row, our methods based on NL or NL+BB achieve
good results, accurately locating the moving white vehicle. The second row shows a more
complex scenario. In this scenario, the method based solely on NL exhibits some inaccuracies.
However, our approach of integrating NL with BB still precisely locates the target.

Figure 6. Qualitative comparison of two challenging scenarios of UAVNLT. The first row depicts a
scenario with fewer vehicles and a lower flying altitude, characterizing a simpler setting. The second
row, on the other hand, showcases a complex scene captured at a higher flying altitude over a crossroads.

5.2. Ablation Study

In order to verify the effectiveness of our proposed method, we conducted ablation
studies on our approach for the TNL2K data set as shown in Table 3. For the baseline sce-
nario indicated by 1⃝, we replaced the M-Adapter, local attention module (LAM) and global
attention module (GAM) with a straightforward concatenation method.

Table 3. Ablation studies on TNL2K. The symbol ✓ indicates the module is used in the framework.

Method M-Adapter LAM GAM AUC Precision

1⃝ 0.443 0.396

2⃝ ✓ 0.452 0.412
3⃝ ✓ ✓ 0.456 0.420
4⃝ ✓ ✓ ✓ 0.461 0.422

The baseline method achieved scores of 0.443 and 0.396 for AUC and precision, respec-
tively. When we incorporated the M-Adapter into our method, the performance improved
to 0.452 for AUC and 0.412 for precision, indicating enhancements in both metrics. This
improvement signifies that the proposed M-Adapter significantly promotes multi-modal
alignment and fusion, demonstrating its effectiveness in enhancing overall tracking accuracy.

In addition, when we added the local attention module (LAM) and global attention
module (GAM) to our approach, there was an improvement in our method’s performance.
This confirms that the proposed LAM and GAM contribute to the switcher module’s ability
to integrate local and global features effectively.
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Efficiency of proposed switcherOur approach includes the visual grounding model,
the object tracker model, and the switcher model. Compared to conventional target tracking
methods, the main expense in our method is associated with the visual grounding model.
However, the application of visual grounding is primarily focused on the initial localization
in the first frame and re-localization after model switches. Based on our analysis and
statistics across multiple data sets, as shown in Table 4, the additional overhead of the visual
grounding model is about 11.4%, which does not lead to significant resource consumption.
The overall method occupies 4.5 GB of VRAM, allowing it to be deployed on popular edge
devices such as the Jetson Orin Nano (8 GB) and Xavier NX (8 GB) (Nvidia, located in
Madison, Alabama, USA), with both operating at around 10 watts of power.

Table 4. The frequency of switch on the UAVNLT, TNL2K and LaSOT data sets.

Data Sets Num Frames Num Switch Cost Rate

TNL2K 512,783 61,576 12.0%
LaSOT 684,688 69,933 10.2%

UAVNLT 295,607 38,731 13.1%
Total 1,493,078 170,240 11.4%

6. Conclusions and Future Works

In this study, we introduced a benchmark for UAV natural language-guided tracking
named UAVNLT. The introduction of UAVNLT fills a gap in the domain of UAV tracking
based on natural language, contributing to the broader applicability of UAV tracking. In our
UAVNLT data set, we offer 2000 video sequences, with each target within the videos having
been densely annotated to ensure the presence of a bounding box for the tracking target in
every frame. Moreover, we provided standardized natural language descriptions, enabling
precise localization of the target based on natural language.

In order to improve the tracking performance further and make full use of our data set,
we propose a baseline for UAV-view natural language-guided tracking. In this baseline, we
delineate three distinct modules: the visual grounding module, the object tracker, and the
global–local switcher module. The incorporation of the switcher model allows our ap-
proach to dynamically switch between the visual grounding module and the object tracker,
ensuring an effective balance between specificity and versatility in tracking performance.

In the future, we will consider further enhancing the robustness and accuracy of
tracking in diverse and challenging environments, such as urban landscapes with high-
density objects and natural terrains with varying weather conditions. Moreover, we will
focus on improving the framework to achieve high performance.
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